Application of Machine Learning and Hydrological Models for Drought Evaluation in Ungauged Basins Using Satellite-Derived Precipitation Data
<p>(<b>a</b>) Map of the United States with California state; (<b>b</b>) map of California with every watershed; and (<b>c</b>) map of the watershed with gauge stations and water line.</p> "> Figure 2
<p>Historical drought conditions in California (D0, D1, D2, D3, and D4 indicates Abnormally Dry, Moderate Drought, Severe Drought, Extreme Drought and Exceptional Drought conditions, respectively) [<a href="#B36-climate-12-00190" class="html-bibr">36</a>].</p> "> Figure 3
<p>The correlation matrix: (<b>a</b>) SSI1 (<b>b</b>) SSI3.</p> "> Figure 4
<p>Flowchart of Hydrology analysis and drought index calculation.</p> "> Figure 5
<p>Modeled flow vs. observed flow from 4 January to 14 January 2018.</p> "> Figure 6
<p>Correlation graph showing the scatter plot of modeled Vs observed flow.</p> "> Figure 7
<p>Regression analysis of the standardized streamflow index for the given months: (<b>a</b>) 1 month and (<b>b</b>) 3 months from the observed flow in the basin to the SSI from the HEC-HMS.</p> "> Figure 8
<p>Correlation graph of observed and random forest predicted standardized streamflow index: (<b>a</b>) SSI1 (overall data) and (<b>b</b>) SSI3 (overall data).</p> "> Figure 8 Cont.
<p>Correlation graph of observed and random forest predicted standardized streamflow index: (<b>a</b>) SSI1 (overall data) and (<b>b</b>) SSI3 (overall data).</p> "> Figure 9
<p>Correlation graph of observed and support vector regression estimated. Standardized streamflow index: (<b>a</b>) SSI1 (overall data) and (<b>b</b>) SSI3 (overall data).</p> "> Figure 9 Cont.
<p>Correlation graph of observed and support vector regression estimated. Standardized streamflow index: (<b>a</b>) SSI1 (overall data) and (<b>b</b>) SSI3 (overall data).</p> "> Figure 10
<p>(<b>a</b>) SSI1 and (<b>b</b>) SSI3.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Processing
2.3. Drought Indices
2.3.1. Standardized Precipitation Index (SPI)
2.3.2. Standardized Streamflow Index (SSI)
2.4. Hydrological Model
2.5. Machine Learning Models
2.5.1. Random Forest
2.5.2. Support Vector Regression
2.6. Selection of Input Variables
2.7. Evaluation Parameters
3. Results
3.1. Verification of HEC-HMS Model
3.2. Drought Evaluation Using HEC-HMS Model
3.3. Drought Prediction Evaluation Using Machine Learning Models
3.3.1. Random Forest Model
3.3.2. Support Vector Regression Model
3.4. Standardized Streamflow Index Variation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haile, G.G.; Tang, Q.; Li, W.; Liu, X.; Zhang, X. Drought: Progress in Broadening Its Understanding. WIREs Water 2020, 7, e1407. [Google Scholar] [CrossRef]
- Hao, Z.; Singh, V.P.; Xia, Y. Seasonal Drought Prediction: Advances, Challenges, and Future Prospects. Rev. Geophys. 2018, 56, 108–141. [Google Scholar] [CrossRef]
- Nielsen-Gammon, J.W. The 2011 Texas Drought. Tex. Water J. 2012, 3, 59–95. [Google Scholar] [CrossRef]
- USDA. Available online: https://www.usda.gov/ (accessed on 24 March 2024).
- Khan, N.; Sachindra, D.A.; Shahid, S.; Ahmed, K.; Shiru, M.S.; Nawaz, N. Prediction of Droughts over Pakistan Using Machine Learning Algorithms. Adv. Water Resour. 2020, 139, 103562. [Google Scholar] [CrossRef]
- Thakur, B.; Parajuli, R.; Kalra, A.; Ahmad, S.; Gupta, R. Coupling HEC-RAS and HEC-HMS in Precipitation Runoff Modelling and Evaluating Flood Plain Inundation Map. In Proceedings of the World Environmental and Water Resources Congress 2017, Sacramento, CA, USA, 21–25 May 2017; pp. 240–251. [Google Scholar]
- Brunner, M.I.; Slater, L.; Tallaksen, L.M.; Clark, M. Challenges in Modeling and Predicting Floods and Droughts: A Review. Wiley Interdiscip. Rev. Water 2021, 8, e1520. [Google Scholar] [CrossRef]
- Dikshit, A.; Pradhan, B.; Huete, A. An Improved SPEI Drought Forecasting Approach Using the Long Short-Term Memory Neural Network. J. Environ. Manag. 2021, 283, 111979. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A Review of Drought Concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Slette, I.J.; Post, A.K.; Awad, M.; Even, T.; Punzalan, A.; Williams, S.; Smith, M.D.; Knapp, A.K. How Ecologists Define Drought, and Why We Should Do Better. Glob. Chang. Biol. 2019, 25, 3193–3200. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Quiring, S.M.; Peña-Gallardo, M.; Yuan, S.; Domínguez-Castro, F. A Review of Environmental Droughts: Increased Risk under Global Warming? Earth Sci. Rev. 2020, 201, 102953. [Google Scholar] [CrossRef]
- Xie, W.; Yi, S.; Leng, C. Impacts of Gauge Data Bias on the Performance Evaluation of Satellite-Based Precipitation Products in the Arid Region of Northwestern China. Water 2022, 14, 1860. [Google Scholar] [CrossRef]
- Aadhar, S.; Mishra, V. High-Resolution near Real-Time Drought Monitoring in South Asia. Sci. Data 2017, 4, 170145. [Google Scholar] [CrossRef] [PubMed]
- Toté, C.; Patricio, D.; Boogaard, H.; Van der Wijngaart, R.; Tarnavsky, E.; Funk, C. Evaluation of Satellite Rainfall Estimates for Drought and Flood Monitoring in Mozambique. Remote Sens. 2015, 7, 1758–1776. [Google Scholar] [CrossRef]
- Shukla, S.; McNally, A.; Husak, G.; Funk, C. A Seasonal Agricultural Drought Forecast System for Food-Insecure Regions of East Africa. Hydrol. Earth Syst. Sci. 2014, 18, 3907–3921. [Google Scholar] [CrossRef]
- Bourdin, D.R.; Fleming, S.W.; Stull, R.B. Streamflow Modelling: A Primer on Applications, Approaches and Challenges. Atmos. Ocean 2012, 50, 507–536. [Google Scholar] [CrossRef]
- Deo, R.C.; Şahin, M. Application of the Extreme Learning Machine Algorithm for the Prediction of Monthly Effective Drought Index in Eastern Australia. Atmos. Res. 2015, 153, 512–525. [Google Scholar] [CrossRef]
- Fahimi, F.; Yaseen, Z.M.; El-shafie, A. Application of Soft Computing Based Hybrid Models in Hydrological Variables Modeling: A Comprehensive Review. Theor. Appl. Climatol. 2017, 128, 875–903. [Google Scholar] [CrossRef]
- Rhee, J.; Im, J. Meteorological Drought Forecasting for Ungauged Areas Based on Machine Learning: Using Long-Range Climate Forecast and Remote Sensing Data. Agric. For. Meteorol. 2017, 237, 105–122. [Google Scholar] [CrossRef]
- Bhusal, A.; Parajuli, U.; Regmi, S.; Kalra, A. Application of Machine Learning and Process-Based Models for Rainfall-Runoff Simulation in DuPage River Basin, Illinois. Hydrology 2022, 9, 117. [Google Scholar] [CrossRef]
- Park, S.; Im, J.; Han, D.; Rhee, J. Short-Term Forecasting of Satellite-Based Drought Indices Using Their Temporal Patterns and Numerical Model Output. Remote Sens. 2020, 12, 3499. [Google Scholar] [CrossRef]
- Sundararajan, K.; Garg, L.; Srinivasan, K.; Bashir, A.K.; Kaliappan, J.; Ganapathy, G.P.; Selvaraj, S.K.; Meena, T. A Contemporary Review on Drought Modeling Using Machine Learning Approaches. Comput. Model. Eng. Sci. 2021, 128, 447–487. [Google Scholar] [CrossRef]
- Chen, J.; Li, M.; Wang, W. Statistical Uncertainty Estimation Using Random Forests and Its Application to Drought Forecast. Math. Probl. Eng. 2012, 2012, e915053. [Google Scholar] [CrossRef]
- Dikshit, A.; Pradhan, B.; Alamri, A.M. Short-Term Spatio-Temporal Drought Forecasting Using Random Forests Model at New South Wales, Australia. Appl. Sci. 2020, 10, 4254. [Google Scholar] [CrossRef]
- Park, S.; Im, J.; Jang, E.; Rhee, J. Drought Assessment and Monitoring through Blending of Multi-Sensor Indices Using Machine Learning Approaches for Different Climate Regions. Agric. For. Meteorol. 2016, 216, 157–169. [Google Scholar] [CrossRef]
- Park, H.; Kim, K.; Lee, D. kun Prediction of Severe Drought Area Based on Random Forest: Using Satellite Image and Topography Data. Water 2019, 11, 705. [Google Scholar] [CrossRef]
- Borji, M.; Malekian, A.; Salajegheh, A.; Ghadimi, M. Multi-Time-Scale Analysis of Hydrological Drought Forecasting Using Support Vector Regression (SVR) and Artificial Neural Networks (ANN). Arab. J. Geosci. 2016, 9, 725. [Google Scholar] [CrossRef]
- Achite, M.; Jehanzaib, M.; Elshaboury, N.; Kim, T.-W. Evaluation of Machine Learning Techniques for Hydrological Drought Modeling: A Case Study of the Wadi Ouahrane Basin in Algeria. Water 2022, 14, 431. [Google Scholar] [CrossRef]
- Almikaeel, W.; Čubanová, L.; Šoltész, A. Hydrological Drought Forecasting Using Machine Learning—Gidra River Case Study. Water 2022, 14, 387. [Google Scholar] [CrossRef]
- Bhusal, A.; Thakur, B.; Kalra, A.; Benjankar, R.; Shrestha, A. Evaluating the Effectiveness of Best Management Practices in Adapting the Impacts of Climate Change-Induced Urban Flooding. Atmosphere 2024, 15, 281. [Google Scholar] [CrossRef]
- Mozgovoy, D.K. Monitoring of the Droughts Consequence by High Resolution Satellite Images. Ecol. Noospherology 2016, 27, 89–95. [Google Scholar] [CrossRef]
- Western Regional Climate Center. Available online: https://wrcc.dri.edu (accessed on 24 March 2024).
- MacDonald, G.M. Severe and sustained drought in southern California and the West: Present conditions and insights from the past on causes and impacts. Quat. Int. 2007, 173–174, 87–100. [Google Scholar] [CrossRef]
- Berg, N.; Hall, A. Increased interannual precipitation extremes over California under climate change. J. Clim. 2015, 28, 6324–6334. [Google Scholar] [CrossRef]
- News, A.B.C. At California’s Folsom Lake, a Stark Image of State’s Drought Disaster. Available online: https://abcnews.go.com/US/californias-folsom-lake-stark-image-states-drought-disaster/story?id=78209909 (accessed on 18 August 2023).
- Home|Drought.Gov. Available online: https://www.drought.gov/ (accessed on 24 March 2024).
- Naresh Kumar, M.; Murthy, C.S.; Sesha Sai, M.V.R.; Roy, P.S. On the Use of Standardized Precipitation Index (SPI) for Drought Intensity Assessment. Meteorol. Appl. 2009, 16, 381–389. [Google Scholar] [CrossRef]
- Zargar, A.; Sadiq, R.; Naser, B.; Khan, F.I. A Review of Drought Indices. Environ. Rev. 2011, 19, 333–349. [Google Scholar] [CrossRef]
- Ghimire, A.B.; Faruk, O.; Shadia, N.; Parajuli, U.; Shin, S. Correlation of Drought Indices with Climatic and Socio-Economic Factors in San Diego, USA. J. Environ. Eng. Sci. 2023, 19, 120–131. [Google Scholar] [CrossRef]
- Hayes, M.; Svoboda, M.; Wall, N.; Widhalm, M. The Lincoln Declaration on Drought Indices: Universal Meteorological Drought Index Recommended. Bull. Am. Meteorol. Soc. 2011, 92, 485–488. [Google Scholar] [CrossRef]
- Fitchett, J. On Defining Droughts: Response to ‘The Ecology of Drought—A Workshop Report’. S. Afr. J. Sci. 2019, 115, 1. [Google Scholar] [CrossRef]
- Shukla, S.; Wood, A.W. Use of a Standardized Runoff Index for Characterizing Hydrologic Drought. Geophys. Res. Lett. 2008, 35, 2. [Google Scholar] [CrossRef]
- Shamshirband, S.; Hashemi, S.; Salimi, H.; Samadianfard, S.; Asadi, E.; Shadkani, S.; Kargar, K.; Mosavi, A.; Nabipour, N.; Chau, K.-W. Predicting Standardized Streamflow Index for Hydrological Drought Using Machine Learning Models. Eng. Appl. Comput. Fluid Mech. 2020, 14, 339–350. [Google Scholar] [CrossRef]
- Lai, C.; Zhong, R.; Wang, Z.; Wu, X.; Chen, X.; Wang, P.; Lian, Y. Monitoring Hydrological Drought Using Long-Term Satellite-Based Precipitation Data. Sci. Total Environ. 2019, 649, 1198–1208. [Google Scholar] [CrossRef]
- Dahal, D.; Magar, B.A.; Aryal, A.; Poudel, B.; Banjara, M.; Kalra, A. Analyzing Climate Dynamics and Developing Machine Learning Models for Flood Prediction in Sacramento, California. Hydroecology Eng. 2024, 1, 10003. [Google Scholar] [CrossRef]
- Khan, N.; Shahid, S.; Ahmed, K.; Ismail, T.; Nawaz, N.; Son, M. Performance Assessment of General Circulation Model in Simulating Daily Precipitation and Temperature Using Multiple Gridded Datasets. Water 2018, 10, 1793. [Google Scholar] [CrossRef]
- Scharffenberg, W.A.; Fleming, M.J. Hydrologic Modeling System-HEC-HMS-User’s Manual, Version 2.0; US Army Corps of Engineers Hydrologic Engineering Center: Davis, CA, USA, 2016.
- Mockus, V. Estimation of Direct Runoff from Storm Rainfall. Chapter 1972, 10, 79. [Google Scholar]
- Jyolsna, P.; Kambhammettu, B.V.N.; Gorugantula, S. Application of Random Forest and Multi Linear Regression Methods in Downscaling GRACE Derived Groundwater Storage Changes. Hydrol. Sci. J. 2021, 66, 874–887. [Google Scholar] [CrossRef]
- Grömping, U. Variable Importance Assessment in Regression: Linear Regression versus Random Forest. Am. Stat. 2009, 63, 308–319. [Google Scholar] [CrossRef]
- Thai, N.T. Building Early Drought Forecasting Model in the Dak Dak Province Using Machine Learning Algorithms. IOP Conf. Ser. Earth Environ. Sci. 2023, 1170, 012002. [Google Scholar] [CrossRef]
- Sadri, S.; Burn, D.H. Nonparametric Methods for Drought Severity Estimation at Ungauged Sites. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Ghimire, A.; Banjara, M.; Bhusal, A.; Kalra, A. Evaluating the Effectiveness of Low Impact Development Practices against Climate Induced Extreme Floods. Int. J. Environ. Clim. Chang. 2023, 13, 288–303. [Google Scholar] [CrossRef]
- Belayneh, A.; Adamowski, J. Drought Forecasting Using New Machine Learning Methods. J. Water Land Dev. 2013, 18, 3–12. [Google Scholar] [CrossRef]
- Huang, W.-R.; Liu, P.-Y.; Hsu, J. Multiple Timescale Assessment of Wet Season Precipitation Estimation over Taiwan Using the PERSIANN Family Products. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102521. [Google Scholar] [CrossRef]
- Vernimmen, R.R.E.; Hooijer, A.; Mamenun; Aldrian, E.; van Dijk, A.I.J.M. Evaluation and Bias Correction of Satellite Rainfall Data for Drought Monitoring in Indonesia. Hydrol. Earth Syst. Sci. 2012, 16, 133–146. [Google Scholar] [CrossRef]
- Gao, F.; Zhang, Y.; Ren, X.; Yao, Y.; Hao, Z.; Cai, W. Evaluation of CHIRPS and Its Application for Drought Monitoring over the Haihe River Basin, China. Nat. Hazards 2018, 92, 155–172. [Google Scholar] [CrossRef]
- Hinge, G.; Mohamed, M.M.; Long, D.; Hamouda, M.A. Meta-Analysis in Using Satellite Precipitation Products for Drought Monitoring: Lessons Learnt and Way Forward. Remote Sens. 2021, 13, 4353. [Google Scholar] [CrossRef]
- Trambauer, P.; Maskey, S.; Winsemius, H.; Werner, M.; Uhlenbrook, S. A Review of Continental Scale Hydrological Models and Their Suitability for Drought Forecasting in (Sub-Saharan) Africa. Phys. Chem. Earth Parts A/B/C 2013, 66, 16–26. [Google Scholar] [CrossRef]
- Xing, Z.; Ma, M.; Su, Z.; Lv, J.; Yi, P.; Song, W. A Review of the Adaptability of Hydrological Models for Drought Forecasting. Proc. IAHS 2020, 383, 261–266. [Google Scholar] [CrossRef]
- Jehanzaib, M.; Shah, S.A.; Son, H.; Jang, S.-H.; Kim, T.-W. Predicting Hydrological Drought Alert Levels Using Supervised Machine-Learning Classifiers. KSCE J. Civ. Eng. 2022, 26, 3019–3030. [Google Scholar] [CrossRef]
- Kazakis, N.; Karakatsanis, D.; Ntona, M.M.; Polydoropoulos, K.; Zavridou, E.; Voudouri, K.A.; Busico, G.; Kalaitzidou, K.; Patsialis, T.; Perdikaki, M.; et al. Groundwater Depletion. Are Environmentally Friendly Energy Recharge Dams a Solution? Water 2024, 16, 1541. [Google Scholar] [CrossRef]
Water Network and Its Location | Gauge id | Latitude | Longitude | Elevation (m.a.s.l) |
---|---|---|---|---|
Lake Valley canyon near North Fork American river | 11426190 | 39°17′56″ | 120°38′31″ | 1341 |
North Fork American river at North fork dam (study outlet) | 11427000 | 38°56′10″ | 121°01′22″ | 579 |
Onion Creek tributary no.3 near Soda springs | 11426110 | 39°17′04″ | 120°21′20″ | 1099.5 |
Onion Creek tributary no.5 near Soda springs | 11426120 | 39°17′04″ | 120°20′44″ | 564 |
Onion Creek tributary no.2 near Soda springs | 11426130 | 39°16′34″ | 120°21′57″ | 457 |
Onion Creek tributary no.1 near Soda springs | 11426140 | 39°16′30″ | 120°21′58″ | 406 |
Onion Creek near Soda springs | 11426150 | 39°16′02″ | 120°21′50″ | 1828 |
Onion Creek tributary no.7 near Soda springs | 11426160 | 39°15′58″ | 120°21′19″ | 300 |
NF Forbes Creek near Dutch flat | 11426200 | 39°08′37″ | 120°45′30″ | 1163 |
North Shirttail Creek near Dutch flat | 11426400 | 39°07′49″ | 120°47′44″ | 1110 |
North Fork American river near Colfax | 11426500 | 39°02′25″ | 120°54′06″ | 671 |
Data Used | Sources |
---|---|
Digital Elevation Model (DEM) | National Map Viewer (The National Map Viewer|U.S. Geological Survey) |
Precipitation | CHRS Data Portal (CHRS Data Portal) |
Station Discharge | USGS USGS Current Water Data for the Nation |
Land Use and Land Cover (LULC) | National Land Cover Database USGS (LULC) |
Watershed Boundary | USGS Stream stat (“https://www.usgs.gov/streamstats accessed on 4 April 2024”) |
Soil | USDA (USDA—National Agricultural Statistics Service—Quick Stats) |
SPI Range | Conditions |
---|---|
≥2.0 | Extremely wet |
1.5 ≥ 1.99 | Very wet |
1.0 ≥ 1.49 | Moderately wet |
−0.99 ≥ 0.99 | Near Normal |
−1.0 ≥ −1.49 | Moderately dry |
−1.5 ≥ −1.99 | Severely dry |
≤−2 | Extremely dry |
SSI Range | Condition | Probability |
---|---|---|
≥2.0 | Extremely wet | 2.3% |
1.5 ≥ 1.99 | Severe wet | 4.4% |
1.0 to 1.5 | Moderate wet | 9.2% |
−1 to 1.0 | Near Normal | 68.2% |
−1.5 to −1.0 | Moderate drought | 9.2% |
−2.0 to −1.5 | Severe drought | 4.4% |
≤−2 | Extreme drought | 2.3% |
S. N | Input | Output |
---|---|---|
1 | Q(t-1), Q(t-2), Q(t-3), Q(t-4), Q(t-5), P(t), P(t-1), P(t-2), P(t-3), P(t-4), P(t-5), P5months, SPI1, SH2M, DEWP2M, SPI1(t-1), SPI1(t-2), SPI1(t-3), SPI1(t-4), SPI1(t-5), SSI1(t-1), SSI1(t-2), SSI1(t-3), SSI1(t-4), SSI1(t-5) | SSI1 |
2 | Q(t-1), Q(t-2), Q(t-3), Q(t-4), Q(t-5), P(t), P(t-1), P(t-2), P(t-3), P(t-4), P(t-5), P5months, SPI3, SH2M, DEWP2M, SPI3(t-1), SPI3(t-2), SPI3(t-3), SPI3(t-4), SPI3(t-5), SSI3(t-1), SSI3(t-2), SSI3(t-3), SSI3(t-4), SSI3(t-5) | SSI3 |
Evaluation Parameters | SSI-1 | SSI-3 |
---|---|---|
MAE | 0.115 | 0.131 |
RMSE | 0.290 | 0.361 |
R2 | 0.89 | 0.84 |
SSI-1 | SSI-3 | |||||
---|---|---|---|---|---|---|
Evaluation Parameters | Training | Testing | Overall | Training | Testing | Overall |
MAE | 0.137 | 0.485 | 0.224 | 0.099 | 0.323 | 0.156 |
RMSE | 0.20 | 0.605 | 0.347 | 0.150 | 0.434 | 0.252 |
R2 | 0.984 | 0.628 | 0.85 | 0.968 | 0.823 | 0.9 |
SSI-1 | SSI-3 | |||||
---|---|---|---|---|---|---|
Evaluation Parameters | Training | Testing | Overall | Training | Testing | Overall |
MAE | 0.331 | 0.392 | 0.346 | 0.212 | 0.209 | 0.211 |
RMSE | 0.480 | 0.500 | 0.482 | 0.340 | 0.287 | 0.328 |
R2 | 0.70 | 0.629 | 0.696 | 0.847 | 0.903 | 0.862 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parajuli, A.; Parajuli, R.; Banjara, M.; Bhusal, A.; Dahal, D.; Kalra, A. Application of Machine Learning and Hydrological Models for Drought Evaluation in Ungauged Basins Using Satellite-Derived Precipitation Data. Climate 2024, 12, 190. https://doi.org/10.3390/cli12110190
Parajuli A, Parajuli R, Banjara M, Bhusal A, Dahal D, Kalra A. Application of Machine Learning and Hydrological Models for Drought Evaluation in Ungauged Basins Using Satellite-Derived Precipitation Data. Climate. 2024; 12(11):190. https://doi.org/10.3390/cli12110190
Chicago/Turabian StyleParajuli, Anjan, Ranjan Parajuli, Mandip Banjara, Amrit Bhusal, Dewasis Dahal, and Ajay Kalra. 2024. "Application of Machine Learning and Hydrological Models for Drought Evaluation in Ungauged Basins Using Satellite-Derived Precipitation Data" Climate 12, no. 11: 190. https://doi.org/10.3390/cli12110190
APA StyleParajuli, A., Parajuli, R., Banjara, M., Bhusal, A., Dahal, D., & Kalra, A. (2024). Application of Machine Learning and Hydrological Models for Drought Evaluation in Ungauged Basins Using Satellite-Derived Precipitation Data. Climate, 12(11), 190. https://doi.org/10.3390/cli12110190