Determination of Methotrexate Using an Electrochemical Sensor Based on Carbon Paste Electrode Modified with NiO Nanosheets and Ionic Liquid
<p>XRD pattern of NiO NSs.</p> "> Figure 2
<p>FE-SEM images of NiO NSs at three different magnifications (scale bars: 1 µm (<b>a</b>), 500 nm (<b>b</b>), and 200 nm (<b>c</b>)).</p> "> Figure 3
<p>CVs of bare CPE (curve a), NiO NSs/CPE (curve b), and NiO NSs/IL/CPE (curve c) in 0.1 M phosphate buffer solution (pH 7.0) containing 50.0 µM MTX (scan rate: 50 mV/s).</p> "> Figure 4
<p>LSVs of the modified CPE with NiO NSs/IL in 0.1 M phosphate buffer solution (pH 7.0) at different scan rates: 10 mV s<sup>−1</sup> (1), 20 mV s<sup>−1</sup> (2), 40 mV s<sup>−1</sup> (3), 60 mV s<sup>−1</sup> (4), 80 mV s<sup>−1</sup> (5), 100 mV s<sup>−1</sup> (6), 200 mV s<sup>−1</sup> (7), 300 mV s<sup>−1</sup> (8), and 400 mV s<sup>−1</sup> (9). The plot of the peak current vs. Ʋ<sup>1</sup>/<sup>2</sup> (Inset) from 10 mV s<sup>−1</sup> to 400 mV s<sup>−1</sup> containing 50.0 µM MTX.</p> "> Figure 5
<p>Linear sweep voltammogram of the modified CPE with NiO NSs/IL in 0.1 M phosphate buffer solution (pH 7.0) at scan rate 10 mV s<sup>−1</sup>. Inset: Tafel plot (50.0 μM MTX) derived from the rising portion of the voltammogram recorded.</p> "> Figure 6
<p>Chronoamperograms of 0.1 mM (1), 0.7 mM (2), 1.2 mM (3), 2.2 mM (4), and 3.0 mM (5) of MTX at the NiO NSs/IL/CPE sensor. (Inset <b>A</b>): variations of I<sub>p</sub> vs. t<sup>−1/2</sup> taken from chronoamperograms and (Inset <b>B</b>): plot of corresponding slopes against MTX concentration (0.1–3.0 mM).</p> "> Figure 7
<p>DPVs of NiO NSs/IL/CPE in phosphate buffer solution (0.1 M pH 7.0) in the presence of different concentrations of MTX: 0.01 µM (1), 0.1 µM (2), 0.5 µM (3), 1.0 µM (4), 5.0 µM (5), 10.0 µM (6), 20.0 µM (7), 40.0 µM (8), 60.0 µM (9), 80.0 µM (10), 100.0 µM (11), 120.0 µM (12), 140.0 µM (13), and 160.0 µM (14). DPVs were recorded at the following conditions: step potential of 0.01 V, scan rate of 50 mV/s, and pulse amplitude of 0.025 V. The plot of the I<sub>p</sub> vs. various concentrations of MTX (Inset) from 0.01 µM to 160.0 µM.</p> ">
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Apparatus
2.2. Synthesis of NiO NSs
2.3. Fabrication of NiO NSs/IL/CPE
3. Results and Discussion
3.1. Characterization of NiO NSs
3.2. Electroactive Surface Area
3.3. Electrochemical Behavior of MTX
3.4. Effect of Scan Rate
3.5. Tafel Plot
3.6. Chronoamperometry
3.7. Determination of MTX by Using the DPV Method
3.8. Stability, Repeatability, and Reproducibility of the Designed Sensor for MTX Determination
3.9. Interference Studies
3.10. Measurement of MTX in Real Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mutharani, B.; Ranganathan, P.; Chen, S.M.; Sireesha, P. Ultrasound-induced radicals initiated the formation of inorganic–organic Pr2O3/polystyrene hybrid composite for electro-oxidative determination of chemotherapeutic drug methotrexate. Ultrason. Sonochem. 2019, 56, 410–421. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Luo, L.; Ding, Y.; Si, X.; Ning, Y. Highly sensitive determination of methotrexate at poly (l-lysine) modified electrode in the presence of sodium dodecyl benzene sulfonate. Bioelectrochemistry 2014, 98, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Hamed, K.M.; Dighriri, I.M.; Baomar, A.F.; Alharthy, B.T.; Alenazi, F.E.; Alali, G.H.; Alenazy, R.H.; Alhumaidi, N.T.; Alhulayfi, D.H.; Alotaibi, Y.B.; et al. Overview of methotrexate toxicity: A comprehensive literature review. Cureus 2022, 14, e29518. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, D.; Zhang, T.; Chen, G. Highly sensitive electrochemical determination of methotrexate based on a N-doped hollow nanocarbon sphere modified electrode. Anal. Methods 2021, 13, 117–123. [Google Scholar] [CrossRef]
- Wang, S.; Qi, Z.; Huang, H.; Ding, H. Electrochemical determination of methotrexate at a disposable screen-printed electrode and its application studies. Anal. Lett. 2012, 45, 1658–1669. [Google Scholar] [CrossRef]
- Kummari, S.; Kumar, V.S.; Satyanarayana, M.; Gobi, K.V. Direct electrochemical determination of methotrexate using functionalized carbon nanotube paste electrode as biosensor for in-vitro analysis of urine and dilute serum samples. Microchem. J. 2019, 148, 626–633. [Google Scholar] [CrossRef]
- Hay, A.O.; Trones, R.; Herfindal, L.; Skrede, S.; Hansen, F.A. Determination of methotrexate and its metabolites in human plasma by electromembrane extraction in conductive vials followed by LC-MS/MS. Adv. Sample Prep. 2022, 2, 100011. [Google Scholar] [CrossRef]
- Li, J.; Chen, C.; Wang, J.; Ye, Z.; Pan, L.; Liu, Z.; Tang, C. Simultaneous measurement of upadacitinib and methotrexate by UPLC-MS/MS and its pharmacokinetic application in rats. J. Chromatogr. B 2022, 1188, 123071. [Google Scholar] [CrossRef]
- Abd El-Hady, D.; El-Maali, N.A.; Gotti, R.; Bertucci, C.; Mancini, F.; Andrisano, V. Methotrexate determination in pharmaceuticals by enantioselective HPLC. J. Pharm. Biomed. Anal. 2005, 37, 919–925. [Google Scholar] [CrossRef]
- Yang, L.; Ge, J.; Ma, D.; Tang, J.; Wang, H.; Li, Z. MoS2 quantum dots as fluorescent probe for methotrexate detection. Spectrochim. Acta-A Mol. Biomol. 2022, 279, 121443. [Google Scholar] [CrossRef]
- Mir, A.; Shabani-Nooshabadi, M.; Ziaie, N. Determination of methotrexate in plasma and environmental samples using an electrochemical sensor modified by UiO66-NH2/mesoporous carbon nitride composite and synergistic signal amplification with decorated AuNPs. Chemosphere 2023, 338, 139427. [Google Scholar] [CrossRef] [PubMed]
- Zamani, M.; Tavakkoli, N.; Soltani, N. Electrochemical sensor based on graphene quantum dot/gold nanoparticles and thiol-containing organic compound for measuring methotrexate anti-cancer drug. Diam. Relat. Mater. 2023, 136, 109954. [Google Scholar] [CrossRef]
- Devi, R.K.; Ganesan, M.; Chen, T.W.; Chen, S.M.; Akilarasan, M.; Shaju, A.; Rwei, S.P.; Yu, J.; Yu, Y.Y. In-situ formation of niobium oxide–Niobium carbide–Reduced graphene oxide ternary nanocomposite as an electrochemical sensor for sensitive detection of anticancer drug methotrexate. J. Colloid Interface Sci. 2023, 643, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.W.; Rajaji, U.; Chen, S.M.; Lou, B.S.; Al-Zaqri, N.; Alsalme, A.; Alharthi, F.A.; Lee, S.Y.; Chang, W.H. A sensitive electrochemical determination of chemotherapy agent using graphitic carbon nitride covered vanadium oxide nanocomposite; sonochemical approach. Ultrason. Sonochem. 2019, 58, 104664. [Google Scholar] [CrossRef]
- Ensafi, A.A.; Rezaloo, F.; Rezaei, B. CoFe2O4/reduced graphene oxide/ionic liquid modified glassy carbon electrode, a selective and sensitive electrochemical sensor for determination of methotrexate. J. Taiwan Inst. Chem. Eng. 2017, 78, 45–50. [Google Scholar] [CrossRef]
- Akhter, S.; Shalauddin, M.; Ahmed, S.R.; Lee, V.S.; Ibrahim, F.; Srinivasan, S.; Rajabzadeh, A.R.; Basirun, W.J. Bio-synthesized copper nanoparticle anchored ultrathin petal-shaped black phosphorous nanosheets and 3D graphene decorated nanocomposite for electrochemical sensing of methotrexate and paracetamol in diverse matrices. Electrochim. Acta 2024, 497, 144554. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.; Gao, Y.; Du, B.; Vafaei, S.; Li, M.; Wu, H.; Tong, X.; Chen, Y. Synthesis of poly (L-cysteine)/g-C3N4 modified glassy carbon electrodes for electrochemical detection of methotrexate as a medicine for treatment of breast cancer in pharmaceutical fluid samples. Chemosphere 2023, 331, 138769. [Google Scholar] [CrossRef]
- Huang, D.; Wu, H.; Zhu, Y.; Su, H.; Zhang, H.; Sheng, L.; Liu, Z.; Xu, H.; Song, C. Sensitive determination of anticancer drug methotrexate using graphite oxide-nafion modified glassy carbon electrode. Int. J. Electrochem. Sci. 2019, 14, 3792–3804. [Google Scholar] [CrossRef]
- Ghalkhani, M.; Sohouli, E. Synthesis of the decorated carbon nano onions with aminated MCM-41/Fe3O4 NPs: Morphology and electrochemical sensing performance for methotrexate analysis. Microporous Mesoporous Mater. 2022, 331, 111658. [Google Scholar] [CrossRef]
- Zarean Mousaabadi, K.; Ensafi, A.A.; Rezaei, B. Electrochemical sensor for the determination of methotrexate based on MOF-derived NiO/Ni@ C-Poly (isonicotinic acid). Ind. Eng. Chem. Res. 2022, 62, 4603–4610. [Google Scholar] [CrossRef]
- Yamuna, A.; Chen, T.W.; Chen, S.M.; Yu, M.C.; Yu, J. One-pot synthesis of antimony oxide and bismuth oxide nanocomposites for the selective electrochemical determination of the anticancer drug methotrexate in biomedical samples. Ceram. Int. 2022, 48, 2369–2376. [Google Scholar] [CrossRef]
- Qureshi, I.N.; Tahira, A.; Aljadoa, K.; Alsalme, A.M.; Alothman, A.A.; Nafady, A.; Karsy, A.; Ibupoto, Z.H. Polyaniline as a sacrificing template for the synthesis of controlled Co3O4 nanoparticles for the sensitive and selective detection of methotrexate (MTX). J. Mater. Sci. Mater. Electron. 2021, 32, 15594–15604. [Google Scholar] [CrossRef]
- Asadian, E.; Shahrokhian, S.; Zad, A.I.; Ghorbani-Bidkorbeh, F. Glassy carbon electrode modified with 3D graphene–carbon nanotube network for sensitive electrochemical determination of methotrexate. Sens. Actuators B Chem. 2017, 239, 617–627. [Google Scholar] [CrossRef]
- Mehmeti, E.; Stanković, D.M.; Chaiyo, S.; Švorc, Ľ.; Kalcher, K. Manganese dioxide-modified carbon paste electrode for voltammetric determination of riboflavin. Microchim. Acta 2016, 183, 1619–1624. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Y.; Lu, K.; Wei, X.; Ye, B. Sensitive determination of methotrexate at nano-Au self-assembled monolayer modified electrode. J. Electroanal. Chem. 2012, 674, 83–89. [Google Scholar] [CrossRef]
- Wang, F.; Wu, Y.; Liu, J.; Ye, B. DNA Langmuir–Blodgett modified glassy carbon electrode as voltammetric sensor for determinate of methotrexate. Electrochim. Acta 2009, 54, 1408–1413. [Google Scholar] [CrossRef]
- Shi, Z.; Han, L.; Dong, Y. Electrochemical sensor based on reduced graphene oxide paste electrode for detection of gemcitabine as a chemotherapy drug in breast cancer. Alex. Eng. J. 2024, 102, 49–57. [Google Scholar] [CrossRef]
- Beitollahi, H.; Tajik, S.; Dourandish, Z.; Garkani Nejad, F. Simple preparation and characterization of hierarchical flower-like NiCo2O4 nanoplates: Applications for sunset yellow electrochemical analysis. Biosensors 2022, 12, 912. [Google Scholar] [CrossRef]
- Pushpanjali, P.A.; Manjunatha, J.G.; Amrutha, B.M.; Hareesha, N. Development of carbon nanotube-based polymer-modified electrochemical sensor for the voltammetric study of Curcumin. Mater. Res. Innov. 2021, 10, 412–420. [Google Scholar] [CrossRef]
- Tajik, S.; Lohrasbi-Nejad, A.; Mohammadzadeh Jahani, P.; Askari, M.B.; Salarizadeh, P.; Beitollahi, H. Co-detection of carmoisine and tartrazine by carbon paste electrode modified with ionic liquid and MoO3/WO3 nanocomposite. J. Food Meas. Charact. 2022, 16, 722–730. [Google Scholar] [CrossRef]
- Sharifi Pour, P.; Ebrahimi, M.; Beitollahi, H. Electrochemical sensing of theophylline using modified glassy carbon electrode. Chem. Methodol. 2022, 6, 560–568. [Google Scholar]
- Hareesha, N.; Manjunatha, J.G.; Alothman, Z.A.; Sillanpää, M. Simple and affordable graphene nano-platelets and carbon nanocomposite surface decorated with cetrimonium bromide as a highly responsive electrochemical sensor for rutin detection. J. Electroanal. Chem. 2022, 15, 116388. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, F.; Wang, F.; Xi, L. Simultaneous determination of methotrexate and calcium folinate with electrochemical method based on a poly-ABSA/functionalized MWNTs composite film modified electrode. J. Electroanal. Chem. 2013, 708, 13–19. [Google Scholar] [CrossRef]
- Manjunatha, J.G. Highly sensitive polymer based sensor for determination of the drug mitoxantrone. J. Surface Sci. Technol. 2018, 1, 74–80. [Google Scholar] [CrossRef]
- Rasen, N.D.; Gomaa, E.A.; Salem, S.E.; Abd El-Hady, M.N.; El-Defrawy, A.M. Voltammetric analysis of lead nitrate with various ligands in aqueous solutions at 302.15 K. Chem. Methodol. 2023, 7, 761–775. [Google Scholar]
- Charithra, M.M.; Manjunatha, J.G. Electrochemical sensing of adrenaline using surface modified carbon nanotube paste electrode. Mater. Chem. Phys. 2021, 1, 124293. [Google Scholar] [CrossRef]
- Soltani Nejad, H.; Garkani Nejad, F.; Beitollahi, H. Development of a highly sensitive voltammetric sensor for the detection of folic acid by using MoS2 and ionic liquid-modified carbon paste electrode. ADMET DMPK 2023, 11, 361–371. [Google Scholar] [CrossRef]
- Al Azzawi, M.A.; Saleh, W.R. Fabrication of environmental monitoring amperometric biosensor based on alkaloids compound derived from catharanthus roseus extract nanoparticles for detection of cadmium pollution of water. Chem. Methodol. 2023, 7, 358–371. [Google Scholar]
- Manjunatha Charithra, M.; Manjunatha, J.G. Electrochemical sensing of paracetamol using electropolymerised and sodium lauryl sulfate modified carbon nanotube paste electrode. ChemistrySelect 2020, 14, 9323–9329. [Google Scholar] [CrossRef]
- Zhu, Z.; Wu, H.; Wu, S.; Huang, Z.; Zhu, Y.; Xi, L. Determination of methotrexate and folic acid by ion chromatography with electrochemical detection on a functionalized multi-wall carbon nanotube modified electrode. J. Chromatogr. A 2013, 1283, 62–67. [Google Scholar] [CrossRef]
- Raril, C.; Manjunatha, J.G.; Ravishankar, D.K.; Fattepur, S.; Siddaraju, G.; Nanjundaswamy, L. Validated electrochemical method for simultaneous resolution of tyrosine, uric acid, and ascorbic acid at polymer modified nano-composite paste electrode. Surf. Engin. Appl. Electrochem. 2020, 56, 415–426. [Google Scholar] [CrossRef]
- Tajik, S.; Beitollahi, H.; Garkani Nejad, F.; Zaimbashi, R. CoWO4/reduced graphene oxide nanocomposite-modified screen-printed carbon electrode for enhanced voltammetric determination of 2,4-dichlorophenol in water samples. Micromachines 2024, 15, 1360. [Google Scholar] [CrossRef] [PubMed]
- Manjunatha, J.G. A promising enhanced polymer modified voltammetric sensor for the quantification of catechol and phloroglucinol. Anal. Bioanal. Electrochem. 2020, 31, 893–903. [Google Scholar]
- Šekuljica, S.; Guzsvany, V.; Anojčić, J.; Hegedűs, T.; Mikov, M.; Kalcher, K. Imidazolium-based ionic liquids as modifiers of carbon paste electrodes for trace-level voltammetric determination of dopamine in pharmaceutical preparations. J. Mol. Liq. 2020, 306, 112900. [Google Scholar] [CrossRef]
- Dehdashtian, S.; Pourreza, N.; Rostamnia, S. Electrochemical sensing of indole in plasma using Pd nanoparticles modified metal-organic framework Cr-MIL-101/ionic liquid sensor. Microchem. J. 2022, 181, 107839. [Google Scholar] [CrossRef]
- Beitollahi, H.; Tajik, S.; Aflatoonian, M.R.; Makarem, A. Glutathione detection at carbon paste electrode modified with ethyl 2-(4-ferrocenyl-[1,2,3] triazol-1-yl) acetate, ZnFe2O4 nano-particles and ionic liquid. J. Electrochem. Sci. Eng. 2022, 12, 209–217. [Google Scholar] [CrossRef]
- Zaeifi, F.; Sedaghati, F.; Samari, F. A new electrochemical sensor based on green synthesized CuO nanostructures modified carbon ionic liquid electrode for electrocatalytic oxidation and monitoring of l-cysteine. Microchem. J. 2022, 183, 107969. [Google Scholar] [CrossRef]
- Li, Y.; Zhai, X.; Liu, X.; Wang, L.; Liu, H.; Wang, H. Electrochemical determination of bisphenol A at ordered mesoporous carbon modified nano-carbon ionic liquid paste electrode. Talanta 2016, 148, 362–369. [Google Scholar] [CrossRef]
- Sattarahmady, N.; Heli, H.; Vais, R.D. An electrochemical acetylcholine sensor based on lichen-like nickel oxide nanostructure. Biosens. Bioelectron. 2013, 48, 197–202. [Google Scholar] [CrossRef]
- Li, Y.; Liu, W. Electrochemical detection of blood doping in sports: A novel biosensor based on nickel oxide/nitrogen-doped graphene oxide nanocomposite. Alex. Eng. J. 2024, 96, 176–184. [Google Scholar] [CrossRef]
- Zhang, L.; Tang, J.; Li, J.; Li, Y.; Yang, P.; Zhao, P.; Fei, J.; Xie, Y. A novel dopamine electrochemical sensor based on 3D flake nickel oxide/cobalt oxide@ porous carbon nanosheets/carbon nanotubes/electrochemical reduced of graphene oxide composites modified glassy carbon electrode. Colloids Surf. A Physicochem. Eng. 2023, 666, 131284. [Google Scholar] [CrossRef]
- Bakhsh, H.; Buledi, J.A.; Khand, N.H.; Junejo, B.; Solangi, A.R.; Mallah, A.; Sherazi, S.T.H. NiO nanostructures based functional none-enzymatic electrochemical sensor for ultrasensitive determination of endosulfan in vegetables. J. Food Meas. Charact. 2021, 15, 2695–2704. [Google Scholar] [CrossRef]
- Lv, G.; Shi, B.; Huang, H.; Chen, H.; Feng, H.; Zhou, P.P.; Yang, Z. Ternary NiO/Ag/reduced graphene oxide nanocomposites as, a sensitive electrochemical sensor for nanomolarity detection of sunset yellow in soft drinks. J. Food Compos. Anal. 2021, 104, 104136. [Google Scholar] [CrossRef]
- Ding, H.; Tao, W. Synthesis of NiO-CNTs nanocomposite for modification of glassy carbon electrode and Application for Electrochemical determination of fentanyl as an opioid analgesic drug. Int. J. Electrochem. Sci. 2021, 16, 211137. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, Z.; Zhao, H.; Huang, H.; Jiao, H.; Du, Y. MOF-derived porous Ni2P nanosheets as novel bifunctional electrocatalysts for the hydrogen and oxygen evolution reactions. J. Mater. Chem. A 2018, 6, 18720–18727. [Google Scholar] [CrossRef]
- Karthick, M.; Surendhiran, S.; Jagan, K.S.G.; Savitha, S.; Vidaarth, T.N.; Balu, K.S.; Jaganathan, M.; Karthik, A.; Kalpana, B. Synthesis and characterization of Araucaria columnaris leaf-mediated NiO nanoparticles for removal of pharmaceutical pollutants in municipal water bodies. Appl. Phys. A 2023, 129, 608. [Google Scholar] [CrossRef]
- Meybodi, S.M.; Hosseini, S.A.; Rezaee, M.; Sadrnezhaad, S.K.; Mohammadyani, D. Synthesis of wide band gap nanocrystalline NiO powder via a sonochemical method. Ultrason. Sonochem. 2012, 19, 841–845. [Google Scholar] [CrossRef]
- Fazlali, F.; Mahjoub, A.R.; Abazari, R. A new route for synthesis of spherical NiO nanoparticles via emulsion nano-reactors with enhanced photocatalytic activity. Solid State Sci. 2015, 48, 263–269. [Google Scholar] [CrossRef]
- Rudnicki, K.; Brycht, M.; Leniart, A.; Domagała, S.; Kaczmarek, K.; Kalcher, K.; Skrzypek, S. A sensitive sensor based on single-walled carbon nanotubes: Its preparation, characterization and application in the electrochemical determination of drug clorsulon in milk samples. Electroanalysis 2020, 32, 375–383. [Google Scholar] [CrossRef]
- Fathi, Z.; Jahani, S.; Zandi, M.S.; Foroughi, M.M. Synthesis of bifunctional cabbage flower–like Ho3+/NiO nanostructures as a modifier for simultaneous determination of methotrexate and carbamazepine. Anal. Bioanal. Chem. 2020, 412, 1011–1024. [Google Scholar] [CrossRef]
Electrochemical Sensors Based on Modified Electrodes | Electrochemical Method | LDR | LOD | Ref. |
---|---|---|---|---|
a UiO-66-NH2 MOF/M-gC3N4/Au NPs-modified CPE | DPV | 0.5 µM to 150 µM | 0.15 µM | [11] |
b GQDs/Au NPs/ANSA-modified GCE | DPV | 0.1 µM to 100 µM | 0.03 µM | [12] |
c NbO/NbC/rGO-modified GCE | DPV | 0.1 µM to 850 µM | 1.6 nM | [13] |
d V2O5@g-C3N4 nanocomposite-modified SPCE | DPV | 0.025 µM to 273.15 µM | 13.26 nM | [14] |
e CoFe2O4 NPs/IL-rGO-modified GCE | DPV | 0.05 µM to 7.5 µM | 10 nM | [15] |
f BP-3DGr@BCu NPS-modified GCE | Square wave voltammetry (SWV) | 0.5 µM to 210.0 µM | 0.36 nM | [16] |
g Poly (L-Cys)/g-C3N4-modified GCE | DPV | 7.5 µM to 78.0 µM | 6 nM | [17] |
h GO-nafion-modified GCE | CV | 0.4 µM to 15 µM | 0.009 µM | [18] |
i CNOs/Fe3O4 NPs@NH2-MCM-41 NPs-modified GCE | DPV | 0.01 µM to 50 µM | 3 nM | [19] |
j MOF-derived NiO/Ni@C-PINA-modified GCE | DPV | 0.02 µM to 2.5 µM | 7.2 nM | [20] |
k Antimony oxide@bismuth oxide nanocomposite-modified GCE | Chronoamperometry | 0.01 µM to 174.6 µM | 2.9 nM | [21] |
l PANI-assisted Co3O4 NPs-modified GCE | CV | 5 µM to 75 µM | 1.98 µM | [22] |
m 3D Gr-CNTs-modified GCE | DPV | 0.7 µM to 100 µM | 70 nM | [23] |
n CFL-Ho3+/NiO NSs-modified GCE | DPV | 0.001 µM to 310.0 µM | 5.2 nM | [60] |
NiO NSs/IL/CPE | DPV | 0.01 µM to 160 µM | 0.003 µM | This work |
Interfering Compounds | CInterfering compound/CMTX | Signal Change (%) |
---|---|---|
Mg2+ | 500-fold | 3.6 |
NH4+ | 500-fold | 2.9 |
Ca2+ | 500-fold | 3.4 |
Fe3+ | 500-fold | 2.5 |
tartaric acid | 20-fold | 2.8 |
dopamine | 20-fold | 4.0 |
glucose | 20-fold | 3.7 |
vitamin C | 20-fold | 4.1 |
vitamin B6 | 20-fold | 3.9 |
sucrose | 20-fold | 3.5 |
doxorubicin | equal | 4.7 |
Sample | Spiked Concentration | Found Concentration | Recovery | RSD |
---|---|---|---|---|
MTX tablet | 0 µM | 2.9 µM | - | 3.3% |
2.0 µM | 5.0 µM | 102.0% | 2.8% | |
3.0 µM | 5.8 µM | 98.3% | 1.9% | |
4.0 µM | 6.7 µM | 97.1% | 2.7% | |
5.0 µM | 8.1 µM | 102.5% | 2.9% | |
urine | 0 µM | - | - | - |
5.0 µM | 4.9 µM | 98.0% | 1.8% | |
6.0 µM | 6.2 µM | 103.3% | 3.6% | |
7.0 µM | 6.8 µM | 97.1% | 2.2% | |
8.0 µM | 8.1 µM | 101.2% | 2.6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammadzadeh Jahani, P.; Tajik, S.; Beitollahi, H.; Garkani Nejad, F.; Dourandish, Z. Determination of Methotrexate Using an Electrochemical Sensor Based on Carbon Paste Electrode Modified with NiO Nanosheets and Ionic Liquid. Chemosensors 2024, 12, 266. https://doi.org/10.3390/chemosensors12120266
Mohammadzadeh Jahani P, Tajik S, Beitollahi H, Garkani Nejad F, Dourandish Z. Determination of Methotrexate Using an Electrochemical Sensor Based on Carbon Paste Electrode Modified with NiO Nanosheets and Ionic Liquid. Chemosensors. 2024; 12(12):266. https://doi.org/10.3390/chemosensors12120266
Chicago/Turabian StyleMohammadzadeh Jahani, Peyman, Somayeh Tajik, Hadi Beitollahi, Fariba Garkani Nejad, and Zahra Dourandish. 2024. "Determination of Methotrexate Using an Electrochemical Sensor Based on Carbon Paste Electrode Modified with NiO Nanosheets and Ionic Liquid" Chemosensors 12, no. 12: 266. https://doi.org/10.3390/chemosensors12120266
APA StyleMohammadzadeh Jahani, P., Tajik, S., Beitollahi, H., Garkani Nejad, F., & Dourandish, Z. (2024). Determination of Methotrexate Using an Electrochemical Sensor Based on Carbon Paste Electrode Modified with NiO Nanosheets and Ionic Liquid. Chemosensors, 12(12), 266. https://doi.org/10.3390/chemosensors12120266