Investigation of Microbial Fermentation Degree of Pu-Erh Tea Using Deep Learning Coupled Colorimetric Sensor Array via Prediction of Total Polyphenols
<p>Schematic overview of prediction of optimum microbial fermentation of Pu −erh tea liquid via polyphenol detection using CSA and chemometrics.</p> "> Figure 2
<p>Flow chart illustrating the overall experimental procedure.</p> "> Figure 3
<p>Variation in total polyphenol content throughout the fermentation process.</p> "> Figure 4
<p>CSA images before and after the interaction of the volatile compound of Pu-erh tea liquid and their difference.</p> "> Figure 5
<p>Scatter plot of predicted concentration (mg/mL) vs. measured concentration (mg/mL) in calibration and prediction set for PLS (<b>A</b>), RF-PLS (<b>C</b>), IRIV-PLS (<b>D</b>), GA-PLS (<b>F</b>), and CARS-PLS (<b>H</b>). Spectral variables selected using RF (<b>B</b>), GA (<b>E</b>), and CARS (<b>G</b>).</p> "> Figure 6
<p>Basic setting of CNN architecture in this study (<b>A</b>). Optimized CNN model corresponds to the ideal batch_size and number of epochs for polyphenol prediction (<b>B</b>). Scatter plot of predicted vs. measured concentration (mg/mL) for CNN (<b>C</b>) in both calibration and prediction sets (<b>C</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Organism
2.2. Instruments
2.3. Factors of Response Surface Test on Fermentation
2.4. Sample Preparation
2.5. Chemical Analysis of Polyphenols
2.6. Design of CSA
2.7. Acquisition of CSA Data
2.8. Establishment of the Prediction Model
2.9. Model Calibration and Validation
2.10. Limit of Detection
3. Results and Discussion
3.1. Construction of Regression Models and Statistical Analysis
3.2. Analysis of Response Surface Outcomes
3.3. Dynamic Variations in Total Polyphenol Content Under Fermentation
3.4. CSA Responses
3.5. Evaluation of the Performance of Prediction Models
3.5.1. PLS Model Results
3.5.2. RF-PLS Model Results
3.5.3. IRIV-PLS Model Results
3.5.4. GA-PLS Model Results
3.5.5. CARS-PLS Model Results
3.5.6. CNN Model Results
3.5.7. Overview of Modeling Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, B.; Wang, J.; Xu, C.; Wang, Z.; Yin, D.; Zhou, B.; Ma, C. Interrelation analysis between phenolic compounds and in vitro antioxidant activities in Pu-erh tea. LWT 2022, 158, 113117. [Google Scholar] [CrossRef]
- Zhao, C.; Tang, G.; Cao, S.; Xu, X.; Gan, R.; Liu, Q.; Mao, Q.; Shang, A.; Li, H. Phenolic profiles and antioxidant activities of 30 tea infusions from green, black, oolong, white, yellow and dark teas. Antioxidants 2019, 8, 215. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Pang, Y.; Xie, R.; Luo, J.; Xiao, S.; Wang, J.; Yang, R.; Wang, B. Unveiling metabolite network dynamics during Pu-erh tea storage via non-targeted metabolomics. LWT 2024, 209, 116789. [Google Scholar] [CrossRef]
- Xu, J.; Wei, Y.; Li, F.; Weng, X.; Wei, X. Regulation of fungal community and the quality formation and safety control of Pu-erh tea. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4546–4572. [Google Scholar] [CrossRef] [PubMed]
- Hlebová, M.; Hleba, L.; Medo, J.; Kováčik, A.; Čuboň, J.; Ivana, C.; Uzsáková, V.; Božik, M.; Klouček, P. Antifungal and synergistic activities of some selected essential oils on the growth of significant indoor fungi of the genus Aspergillus. J. Environ. Sci. Health A 2021, 56, 1335–1346. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, L.; do Carmo, M.; Wu, Y.; Esmerino, L.; Azevedo, L.; Zhang, L.; Granato, D. Optimizing the extraction of bioactive compounds from pu-erh tea (Camellia sinensis var. assamica) and evaluation of antioxidant, cytotoxic, antimicrobial, antihemolytic, and inhibition of α-amylase and α-glucosidase activities. Food Res. Int. 2020, 137, 109430. [Google Scholar] [CrossRef]
- Dong, C.; An, T.; Zhu, H.; Wang, J.; Hu, B.; Jiang, Y.; Yang, Y.; Li, J. Rapid sensing of key quality components in black tea fermentation using electrical characteristics coupled to variables selection algorithms. Sci. Rep. 2020, 10, 1598. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Wang, Y.; Li, L.; Shen, S.; Deng, W.; Zhang, Z.; Ning, J. Intelligent evaluation of black tea fermentation degree by FT-NIR and computer vision based on data fusion strategy. LWT 2020, 125, 109216. [Google Scholar]
- Li, T.; Lu, C.; Wei, Y.; Zhang, J.; Shao, A.; Li, L.; Wang, Y.; Ning, J. Chemical imaging for determining the distributions of quality components during the piling fermentation of Pu-erh tea. Food Control 2024, 158, 110234. [Google Scholar] [CrossRef]
- Li, T.; Lu, C.; Huang, J.; Chen, Y.; Zhang, J.; Wei, Y.; Wang, Y.; Ning, J. Qualitative and quantitative analysis of the pile fermentation degree of Pu-erh tea. LWT 2023, 173, 114327. [Google Scholar] [CrossRef]
- Ma, C.; Zhou, B.; Wang, J.; Ma, B.; Lv, X.; Chen, X.; Li, X. Investigation and dynamic changes of phenolic compounds during a new-type fermentation for ripened Pu-erh tea processing. LWT 2023, 180, 114683. [Google Scholar] [CrossRef]
- Ma, Y.; Jiang, B.; Liu, K.; Li, R.; Chen, L.; Liu, Z.; Xiang, G.; An, J.; Luo, H.; Wu, J.; et al. Multi-omics analysis of the metabolism of phenolic compounds in tea leaves by Aspergillus luchuensis during fermentation of pu-erh tea. Food Res. Int. 2022, 162, 111981. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhou, Q.; Liu, Z.; Qing, X.; Zheng, J.; Mu, S.; Liu, P. Comparison of three second-order multivariate calibration methods for the rapid identification and quantitative analysis of tea polyphenols in Chinese teas using high-performance liquid chromatography. J. Chromatogr. A 2020, 1618, 460905. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Y.; Lin, L.; Liao, Y.; Fang, H.; Wang, T. Intelligent identification of picking periods of Lu’an Guapian tea by an indicator displacement colorimetric sensor array combined with machine learning. Food Res. Int. 2024, 195, 114960. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Bi, Z.; Yin, C.; Zhang, S.; Song, D.; Huang, H.; Li, Y. A colorimetric sensor array based on peroxidase activity nanozyme for the highly efficient differential sensing of tea polyphenols and Tieguanyin adulteration. Food Chem. 2024, 432, 137265. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Zhou, X.; Dong, H.; Xu, Y.; Gao, Y.; Wang, B.; Liu, X. Mellow and Thick Taste of Pu−Erh Ripe Tea Based on Chemical Properties by Sensory−Directed Flavor Analysis. Foods 2022, 11, 2285. [Google Scholar] [CrossRef]
- Lin, Y.; Ma, J.; Cheng, J.; Sun, D. Visible detection of chilled beef freshness using a paper-based colourimetric sensor array combining with deep learning algorithms. Food Chem. 2024, 441, 138344. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, X.; Aheto, J.; Ren, Y.; Wang, L.; Yu, S.; Wang, Y. Comparable analysis of flavor compounds and quality assessment of fermented bean curd using HS-SPME-GC/MS and colorimetric sensor array. Food Biosci. 2024, 60, 104291. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, W.; Huang, J.; Xu, H. Colorimetric sensors for detection of organophosphorus pesticides in food: From sensing strategies to chemometrics driven discrimination. Trends Food Sci. Technol. 2024, 152, 104683. [Google Scholar] [CrossRef]
- Li, H.; Hu, Y.; Ma, S.; Haruna, S.A.; Chen, Q.; Zhu, W.; Xia, A. Porphyrin and pH sensitive dye-based colorimetric sensor array coupled with chemometrics for dynamic monitoring of tea quality during ultrasound-assisted fermentation. Microchem. J. 2024, 197, 109813. [Google Scholar] [CrossRef]
- Liu, M.; Wang, R.; Shi, D.; Cao, R. Non-destructive prediction of tea polyphenols during Pu-erh tea fermentation using NIR coupled with chemometrics methods. J. Food Compos. Anal. 2024, 131, 106247. [Google Scholar] [CrossRef]
- Teng, Y.; Chen, Y.; Chen, X.; Zuo, S.; Li, X.; Pan, Z.; Shao, K.; Du, J.; Li, Z. Revealing the adulteration of sesame oil products by portable Raman spectrometer and 1D CNN vector regression: A comparative study with chemometrics and colorimetry. Food Chem. 2024, 436, 137694. [Google Scholar] [CrossRef] [PubMed]
- GB/T 21733-2008; Method for Determination of Tea Polyphenols in Tea Liquid. Standardization Administration of China: Beijing, China, 2008.
- El Maouardi, M.; De Braekeleer, K.; Bouklouze, A.; Vander Heyden, Y. Comparison of Near-Infrared and Mid-Infrared spectroscopy for the identification and quantification of argan oil adulteration through PCA, PLS-DA and PLS. Food Control 2024, 165, 110671. [Google Scholar] [CrossRef]
- Shen, G.; Kang, X.; Su, J.; Qiu, J.; Liu, X.; Xu, J.; Shi, J.; Mohamed, S. Rapid detection of fumonisin B1 and B2 in ground corn samples using smartphone-controlled portable near-infrared spectrometry and chemometrics. Food Chem. 2022, 384, 132487. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Xie, H.; Zhang, J.; Li, M.; Wang, B.; Wu, Y.; Yu, H.; Nie, X.; Hao, J.; Jia, J.; et al. Rapid evaluation of the quality of Epimedium with different processing degrees by E-eye and NIR spectroscopy combined with machine learning. Microchem. J. 2024, 205, 111181. [Google Scholar] [CrossRef]
- Wu, X.; Zeng, S.; Fu, H.; Wu, B.; Zhou, H.; Dai, C. Determination of corn protein content using near-infrared spectroscopy combined with A-CARS-PLS. Food Chem. X 2023, 18, 100666. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Xie, W. SSC and pH prediction and maturity classification of grapes based on hyperspectral imaging. Smart Agric. Technol. 2024, 8, 100457. [Google Scholar] [CrossRef]
- Alhijawi, B.; Awajan, A. Genetic algorithms: Theory, genetic operators, solutions, and applications. Evol. Intel. 2024, 17, 1245–1256. [Google Scholar] [CrossRef]
- Li, H.; Zhu, L.; Li, N.; Liu, Z.; Wang, L.; Chitrakar, B.; Xu, D.; Cui, Z.; Tang, Y.; Hu, L.; et al. NIR spectroscopy for quality assessment and shelf-life prediction of kiwifruit. Postharvest Biol. Technol. 2024, 218, 113201. [Google Scholar] [CrossRef]
- Cacciari, I.; Ranfagni, A. Hands-On Fundamentals of 1D Convolutional Neural Networks—A Tutorial for Beginner Users. Appl. Sci. 2024, 14, 8500. [Google Scholar] [CrossRef]
- Nunekpeku, X.; Zhang, W.; Gao, J.; Adade, S.; Li, H.; Chen, Q. Gel strength prediction in ultrasonicated chicken mince: Fusing near-infrared and Raman spectroscopy coupled with deep learning LSTM algorithm. Food Control 2025, 168, 110916. [Google Scholar] [CrossRef]
- Li, H.; Sheng, W.; Adade, S.; Nunekpeku, X.; Chen, Q. Investigation of heat-induced pork batter quality detection and change mechanisms using Raman spectroscopy coupled with deep learning algorithms. Food Chem. 2024, 461, 140798. [Google Scholar] [CrossRef]
- Li, H.; Nunekpeku, X.; Zhang, W.; Adade, S.; Ahmad, W.; Sheng, W.; Chen, Q. Quantitative prediction of minced chicken gel strength under ultrasonic treatment by NIR spectroscopy coupled with nonlinear chemometric tools evaluated using APaRPs. Food Chem. 2025, 463, 141373. [Google Scholar] [CrossRef]
- Zhang, Y.; Zareef, M.; Rong, Y.; Lin, H.; Chen, Q.; Ouyang, Q. Application of colorimetric sensor array coupled with chemometric methods for monitoring the freshness of snakehead fillets. Food Chem. 2024, 439, 138172. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Yang, H.; Xiao, S. Rapid, direct determination of polyphenols in tea by reversed-phase column liquid chromatography. J. Chromatogr. A. 1999, 849, 637–640. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Xu, L.; Huang, P.; Wang, Y.; Liu, J.; Hu, Y.; Wang, P.; Kang, Z. Nondestructive Testing Model of Tea Polyphenols Based on Hyperspectral Technology Combined with Chemometric Methods. Agriculture 2021, 11, 673. [Google Scholar] [CrossRef]
Number | Color-Sensitivity Materials | Formula |
---|---|---|
1 | 5, 10, 15, 20-Tetraphenyl-21H, 23H-porphine iron (III) chloride | C44H28ClFeN4 |
2 | 5, 10, 15, 20-Tetraphenyl-21H, 23H-porphine manganese (III) chloride | C44H28ClMnN4 |
3 | 2, 3, 7, 8, 12, 13, 17, 18-Octaethyl-21H, 23H-porphine manganese (III) chloride | C44H28ClMnN4 |
4 | 5, 10, 15, 20-Tetrakis (4-methoxyphenyl)-21H, 23H-porphine iron (III) chloride | C44H36ClFeN4O4 |
5 | 5, 10, 15, 20-Tetrakis (pentafluorophenyl)-21H, 23H-porphyrin iron (III) chloride | C44H24ClFeF20N4 |
6 | 5, 10, 15, 20-Tetraphenyl-21H, 23H-porphine | C44H30N4 |
7 | 5, 10, 15, 20-Tetraphenyl-21H, 23H-porphine copper (II) | C44H28CuN4 |
8 | 5, 10, 15, 20-Tetrakis (4-methoxyhenyl)-21H, 23H-porphine cobalt (II) | C48H38N4O4 |
9 | Bromophenol blue | C19H10Br4O5S |
Source | Sum of Squares | Degree of Freedom | Average Variance | F Value | p Value | Significance Level |
---|---|---|---|---|---|---|
Model | 806.22 | 9 | 89.58 | 33.37 | p < 0.01 | ** |
X1 | 23.33 | 1 | 23.33 | 8.69 | p < 0.05 | * |
X2 | 1.84 | 1 | 1.84 | 0.68 | -- | -- |
X3 | 354.90 | 1 | 354.90 | 132.22 | p < 0.01 | ** |
X1X2 | 5.42 | 1 | 5.42 | 2.02 | -- | -- |
X1X3 | 0.22 | 1 | 0.22 | 0.083 | -- | -- |
X2X3 | 20.24 | 1 | 20.24 | 7.54 | p < 0.05 | * |
X12 | 157.66 | 1 | 157.66 | 58.74 | p < 0.01 | ** |
X22 | 161.71 | 1 | 161.71 | 60.25 | p < 0.01 | ** |
X32 | 42.52 | 1 | 42.52 | 15.84 | p < 0.01 | ** |
Residual | 18.79 | 7 | 2.68 | -- | -- | -- |
Lack of fit | 2.49 | 3 | 0.83 | 0.20 | -- | -- |
Pure error | 16.30 | 4 | 4.07 | -- | -- | -- |
Model | Number of Variables | Optimum PC | Calibration Set | Prediction Set | ||
---|---|---|---|---|---|---|
Rc | RMSECV (mg/mL) | Rp | RMSEP (mg/mL) | |||
PLS | 27 | 9 | 0.8497 | 0.417 | 0.8632 | 0.480 |
RF-PLS | 16 | 8 | 0.8580 | 0.412 | 0.8233 | 0.547 |
IRIV-PLS | 14 | 6 | 0.8268 | 0.458 | 0.8201 | 0.527 |
GA-PLS | 10 | 7 | 0.8596 | 0.405 | 0.8566 | 0.474 |
CARS-PLS | 15 | 9 | 0.8567 | 0.409 | 0.8503 | 0.439 |
CNN | 27 | -- | 0.8735 | 0.383 | 0.8724 | 0.396 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Jiang, C.; Hassan, M.M.; Zhang, X.; Wang, R.; Cao, R.; Sheng, W.; Li, H. Investigation of Microbial Fermentation Degree of Pu-Erh Tea Using Deep Learning Coupled Colorimetric Sensor Array via Prediction of Total Polyphenols. Chemosensors 2024, 12, 265. https://doi.org/10.3390/chemosensors12120265
Liu M, Jiang C, Hassan MM, Zhang X, Wang R, Cao R, Sheng W, Li H. Investigation of Microbial Fermentation Degree of Pu-Erh Tea Using Deep Learning Coupled Colorimetric Sensor Array via Prediction of Total Polyphenols. Chemosensors. 2024; 12(12):265. https://doi.org/10.3390/chemosensors12120265
Chicago/Turabian StyleLiu, Min, Cui Jiang, Md Mehedi Hassan, Xinru Zhang, Runxian Wang, Renyong Cao, Wei Sheng, and Huanhuan Li. 2024. "Investigation of Microbial Fermentation Degree of Pu-Erh Tea Using Deep Learning Coupled Colorimetric Sensor Array via Prediction of Total Polyphenols" Chemosensors 12, no. 12: 265. https://doi.org/10.3390/chemosensors12120265
APA StyleLiu, M., Jiang, C., Hassan, M. M., Zhang, X., Wang, R., Cao, R., Sheng, W., & Li, H. (2024). Investigation of Microbial Fermentation Degree of Pu-Erh Tea Using Deep Learning Coupled Colorimetric Sensor Array via Prediction of Total Polyphenols. Chemosensors, 12(12), 265. https://doi.org/10.3390/chemosensors12120265