Review of Underwater In Situ Voltammetry Analyzers for Trace Metals
<p>Instruments that have been developed include VIP/VGME/PG004. Advancements in electrode technology are of paramount importance for enhancing detection accuracy and efficiency. The main types of electrodes currently include microelectrode arrays, screen-printed, carbon, bismuth, antimony, and lab-on-a-chip electrodes.</p> "> Figure 2
<p>Picture of the (<b>A</b>) in-house flowthrough plexiglass cell with the mini-electrodes (1, 2, and 3) and the shielded Plexiglas holder (4) enabling incorporation of the flowthrough cell into the bottom of the VIP electronic housing; (<b>B</b>) mini-reference electrode (1), the working microelectrode (2), and the mini-counter electrode (3); and (<b>C</b>) the VIP system made up of the peristaltic pump (1), the chirurgical bag containing the nioxime and buffer solutions (2), the voltammetric probe with the in-house flowthrough plexiglass cell at the bottom (3), and the chirurgical bag to collect the waste (4) [<a href="#B51-chemosensors-12-00158" class="html-bibr">51</a>].</p> "> Figure 3
<p>Photographs of the instrumentation. (<b>A</b>) The electronics of the instrument. (<b>B</b>) Instrument and sensor on the buoy just before deployment. (<b>C</b>) The sensor’s protective housing. (<b>D</b>) The electrodes and the vibrator [<a href="#B56-chemosensors-12-00158" class="html-bibr">56</a>]. Copyright 2012 Elsevier.</p> "> Figure 4
<p>The PG004. (<b>A</b>) 1: GPS, 2: touchscreen, 3: panel with an optional keyboard, keys, and command buttons, 4: flow module, and 5: solar boards. The internal view of the PG004. (<b>B</b>) 1: 12 V batteries, 2: actuator of the flow system, 3: galvanostat board, 4: potentiostat board, 5: thermostatted control, 6: fan, 7: USB hub, 8: CPU, and 9: microcontrolled board to control the batteries. The Wi-Fi and Bluetooth board is inserted in the CPU. Flow module, with 1: EFC, 2: SVs, 3: solutions compartment, and 4: mPs [<a href="#B58-chemosensors-12-00158" class="html-bibr">58</a>]. Copyright 2015 Elsevier.</p> "> Figure 5
<p>(<b>A</b>) Thin film process flow steps for the manufacturing of the on-chip interconnected Ir-based microdisk arrays; (<b>B</b>) scheme of a chip incorporating an interconnected Ir microdisk array and an Ir microcounter electrode [<a href="#B50-chemosensors-12-00158" class="html-bibr">50</a>]. Copyright 2021 Elsevier.</p> "> Figure 6
<p>Common geometries in SPE: (<b>a</b>) micro-disc [<a href="#B75-chemosensors-12-00158" class="html-bibr">75</a>], (<b>b</b>) micro-band [<a href="#B80-chemosensors-12-00158" class="html-bibr">80</a>], (<b>c</b>) micro-array [<a href="#B81-chemosensors-12-00158" class="html-bibr">81</a>], (<b>d</b>) dual SPE in perpendicular [<a href="#B73-chemosensors-12-00158" class="html-bibr">73</a>] (<b>d-i</b>) and parallel (<b>d-ii</b>) and (<b>e</b>) double-sided SPE [<a href="#B74-chemosensors-12-00158" class="html-bibr">74</a>]. Copyright 2021 Elsevier.</p> "> Figure 7
<p>(<b>a</b>) SEM image of the self-assembled carbon sphere electrodes. (<b>b</b>) The scheme of the first layer (<b>left</b>) and ordered structures (<b>right</b>) of the hexagonal close-packed structures model. (<b>c</b>) The process of the electrochemical detection of trace Pb(II) in an aqueous solution using SWASV [<a href="#B89-chemosensors-12-00158" class="html-bibr">89</a>]. Copyright 2016 Elsevier.</p> "> Figure 8
<p>Simultaneous determination of lead (II) and cadmium (II) in water paint using a bismuth-modified gassy carbon electrode with anodic stripping voltammetry [<a href="#B101-chemosensors-12-00158" class="html-bibr">101</a>]. Copyright 2014 Elsevier. Copyright 2023 Elsevier.</p> "> Figure 9
<p>(<b>a</b>) Microfluidic channels of the graphene oxide–polydimethylsiloxane (GO-PDMS) chip. A—inlet section of the chip, B—middle section, C—outlet section. (<b>b</b>) GO-PDMS chip device. Despite the high content of GO, the composite maintains typical physical properties of PDMS like mechanical durability and elasticity [<a href="#B120-chemosensors-12-00158" class="html-bibr">120</a>]. Copyright 2017 Elsevier.</p> ">
Abstract
:1. Introduction
2. Research Directions and Advantages of Voltammetry
3. In Situ Voltammetry Analyzer
3.1. From Voltage In Situ Profiling System to Submersible Integrated Multi-Channel Trace Metal Sensing Probe
3.2. Vibrating Gold Microwire Electrode Voltammetric Analyzer
3.3. An Electrochemical Analyzer for On-Site Flow Measurement
3.4. Electrochemical Sensors Based on Flexible Liquid Crystal Polymers
3.5. Deep-Sea Mercury Sensor
3.6. In Situ Electrochemical Analyzer
4. Development of Electrodes
4.1. Microelectrode Arrays
4.2. Screen-Printed Electrodes
4.3. Carbon Electrodes
4.4. Bismuth Electrodes
4.5. Lab-on-a-Chip (LOC)
5. Trends and Future Directions
5.1. Advancements in Electrode Research
5.2. Intelligent Monitoring and Data Analytics
5.3. Interdisciplinary Collaboration and Technological Innovation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmad, A.; Kamaruddin, M.A.; Abdul Khalil, H.P.S.; Yahya, E.B.; Muhammad, S.; Rizal, S.; Ahmad, M.I.; Surya, I.; Abdullah, C.K. Recent Advances in Nanocellulose Aerogels for Efficient Heavy Metal and Dye Removal. Gels 2023, 9, 416. [Google Scholar] [CrossRef] [PubMed]
- Le, T.V.; Nguyen, B.T. Heavy Metal Pollution in Surface Water Bodies in Provincial Khanh Hoa, Vietnam: Pollution and Human Health Risk Assessment, Source Quantification, and Implications for Sustainable Management and Development. Environ. Pollut. 2024, 343, 123216. [Google Scholar] [CrossRef] [PubMed]
- Lv, S.W.; Liu, J.M.; Li, C.Y.; Zhao, N.; Wang, Z.H.; Wang, S. A Novel and Universal Metal–Organic Frameworks Sensing Platform for Selective Detection and Efficient Removal of Heavy Metal Ions. Chem. Eng. J. 2019, 375, 122111. [Google Scholar] [CrossRef]
- Rastogi, M.; Nandal, M. Toxic Metals in Industrial Wastewaters and Phytoremediation Using Aquatic Macrophytes for Environmental Pollution Control: An Eco-Remedial Approach. In Bioremediation Industrial Waste Environmental Safety; Springer: Singapore, 2019; pp. 257–282. [Google Scholar]
- Rajoria, S.; Vashishtha, M.; Sangal, V.K. Treatment of Electroplating Industry Wastewater: A Review on the Various Techniques. Environ. Sci. Pollut. Res. Int. 2022, 29, 72196–72246. [Google Scholar] [CrossRef] [PubMed]
- Chukwu, K.B.; Abafe, O.A.; Amoako, D.G.; Essack, S.Y.; Abia, A.L.K. Antibiotic, Heavy Metal, and Biocide Concentrations in a Wastewater Treatment Plant and Its Receiving Water Body Exceed PNEC Limits: Potential for Antimicrobial Resistance Selective Pressure. Antibiotics 2023, 12, 1166. [Google Scholar] [CrossRef] [PubMed]
- Sheraz, N.; Shah, A.; Haleem, A.; Iftikhar, F.J. Comprehensive Assessment of Carbon-, Biomaterial- and Inorganic-Based Adsorbents for the Removal of the Most Hazardous Heavy Metal Ions from Wastewater. RSC Adv. 2024, 14, 11284–11310. [Google Scholar] [CrossRef] [PubMed]
- Venkateswarlu, V.; Venkatrayulu, C. Bioaccumulation of Heavy Metals in Edible Marine Fish from Coastal Areas of Nellore, Andhra Pradesh, India. GSC Biol. Pharm. Sci. 2020, 10, 18–24. [Google Scholar] [CrossRef]
- Garai, P.; Banerjee, P.; Mondal, P.; Saha, R. Effect of Heavy Metals on Fishes: Toxicity and Bioaccumulation. J. Clin. Toxicol. 2021, S18, 001. [Google Scholar]
- Torbati, S.; Atashbar Kangarloei, B.; Khataee, A. Bioconcentration of Heavy Metals by Three Plant Species Growing in Golmarz Wetland, in Northwestern Iran: The Plants’ Antioxidant Responses to Metal Pollutions. Environ. Technol. Innov. 2021, 24, 101804. [Google Scholar] [CrossRef]
- Chen, Y.G.; He, X.L.S.; Huang, J.H.; Luo, R.; Ge, H.Z.; Wołowicz, A.; Wawrzkiewicz, M.; Gładysz-Płaska, A.; Li, B.; Yu, Q.X.; et al. Impacts of Heavy Metals and Medicinal Crops on Ecological Systems, Environmental Pollution, Cultivation, and Production Processes in China. Ecotoxicol. Environ. Saf. 2021, 219, 112336. [Google Scholar] [CrossRef]
- Kong, M.; Zhu, Y.; Han, T.; Zhang, S.; Li, J.L.; Xu, X.; Chao, J.; Zhang, Y.; Gao, Y. Interactions of Heavy Metal Elements Across Sediment-Water Interface in Lake Jiaogang. Environ. Pollut. 2021, 286, 117578. [Google Scholar] [CrossRef] [PubMed]
- Baharuddin, N.; Mustaffa, N.K.; Ong, M.C. Faunus Ater (Mollusca, Gastropoda) as a Potential Bioindicator Contamination by Heavy Metals. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2023; Volume 1251, p. 012006. [Google Scholar]
- Shen, M.; Hu, Y.; Zhao, K.; Li, C.; Liu, B.; Li, M.; Lyu, C.; Sun, L.; Zhong, S. Occurrence, Bioaccumulation, Metabolism and Ecotoxicity of Fluoroquinolones in the Aquatic Environment: A Review. Toxics 2023, 11, 966. [Google Scholar] [CrossRef] [PubMed]
- Keramari, V.; Karastogianni, S.; Girousi, S. New Prospects in the Electroanalysis of Heavy Metal Ions (Cd, Pb, Zn, Cu): Development and Application of Novel Electrode Surfaces. Methods Protoc. 2023, 6, 60. [Google Scholar] [CrossRef] [PubMed]
- Shirsat, M.D.; Hianik, T. Electrochemical Detection of Heavy Metal Ions Based on Nanocomposite Materials. J. Compos. Sci. 2023, 7, 473. [Google Scholar] [CrossRef]
- Martínez-Paredes, G.; González-García, M.B.; Costa-García, A. Determination of Lead with Electrodes Nanostructured with Gold Nanoparticles. In Nanostructured Electrodes for Chemical Analysis; Academic Press: New York, NY, USA, 2020; Chapter 23; pp. 300–325. [Google Scholar]
- Li, D.; Deng, Y.; Liu, L.; Wang, J.; Huang, Z.; Zhang, X. Analysis of Heavy Metal and Polycyclic Aromatic Hydrocarbon Pollution Characteristics of A Typical Metal Rolling Industrial Site Based on Data Mining. Environ. Geochem. Health 2024, 46, 146. [Google Scholar] [CrossRef] [PubMed]
- Tercier-Waeber, M.-L.; Hezard, T.; Masson, M.; Schäfer, J. In Situ Monitoring of the Diurnal Cycling of Dynamic Metal Species in A Stream Under Contrasting Photobenthic Biofilm Activity and Hydrological Conditions. Environ. Sci. Technol. 2009, 43, 7237–7244. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Gao, J.; Tu, Y.; Zhang, Y.; Gao, J. Estimating Low Concentration Heavy Metals in Water Through Hyperspectral Analysis and Genetic Algorithm-Partial Least Squares Regression. Sci. Total Environ. 2024, 916, 170225. [Google Scholar] [CrossRef] [PubMed]
- Zulkifli, S.N.; Rahim, H.A.; Lau, W.J. Detection of Contaminants in Water Supply: A Review on State-of-the-Art Monitoring Technologies and Their Applications. Sens. Actuators B Chem. 2018, 255, 2657–2689. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yao, Y.; Ying, Y.; Ping, J. Recent Advances in Nanomaterial-Enabled Screen-Printed Electrochemical Sensors for Heavy Metal Detection. Trends Anal. Chem. 2019, 115, 187–202. [Google Scholar] [CrossRef]
- Li, Y.K.; Yang, T.; Chen, M.L.; Wang, J.H. Recent Advances in Nanomaterials for Analysis of Trace Heavy Metals. Crit. Rev. Anal. Chem. 2021, 51, 353–372. [Google Scholar] [CrossRef]
- Mukherjee, S.; Bhattacharyya, S.; Ghosh, K.; Pal, S.; Halder, A.; Naseri, M.; Mohammadniaei, M.; Sarkar, S.; Ghosh, A.; Sun, Y.; et al. Sensory Development for Heavy Metal Detection: A Review on Translation from Conventional Analysis to Field-Portable Sensor. Trends Food Sci. Technol. 2021, 109, 674–689. [Google Scholar] [CrossRef]
- Wang, X.; Kong, L.; Zhou, S.; Ma, C.; Lin, W.; Sun, X.; Kirsanov, D.; Legin, A.; Wan, H.; Wang, P. Development of QDs-Based Nanosensors for Heavy Metal Detection: A Review on Transducer Principles and In-Situ Detection. Talanta 2022, 239, 122903. [Google Scholar] [CrossRef] [PubMed]
- Yaroshenko, I.; Kirsanov, D.; Marjanovic, M.; Lieberzeit, P.A.; Korostynska, O.; Mason, A.; Frau, I.; Legin, A. Real-Time Water Quality Monitoring with Chemical Sensors. Sensors 2020, 20, 3432. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Silva, G.M.; Campos, D.F.; Brasil, J.A.T.; Tremblay, M.; Mendiondo, E.M.; Ghiglieno, F. Advances in Technological Research for Online and In Situ Water Quality Monitoring—A Review. Sustainability 2022, 14, 5059. [Google Scholar] [CrossRef]
- Yang, J.; Ding, A.; Zhou, J.L.; Yan, B.Y.; Gu, Z.; Wang, H.F. A Floating Capsule Electrochemical System for In Situ and Multichannel Ion-Selective Sensing. Biosensors 2023, 13, 914. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Liu, C.; Zhang, L.; Liu, T.; Wang, Z.; Song, Z.; Cai, H.; Fang, Z.; Chen, J.; Wang, J.; et al. Wearable and Flexible Electrochemical Sensors for Sweat Analysis: A Review. Microsyst. Nanoeng. 2023, 9, 1. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W. Beginner’s Guide to Raman Spectroelectrochemistry for Electrocatalysis Study. Chem. Methods 2023, 3, e202200042. [Google Scholar] [CrossRef]
- Mehta, D.; White, H.S. Finite-Element Analysis of Magnetic Field Driven Transport at Inlaid Platinum Microdisk Electrodes. ChemPhysChem 2003, 4, 212–214. [Google Scholar] [CrossRef] [PubMed]
- Radhakrishnan, S.; Talawar, M.B.; Venugopalan, S.; Narasimhan, V.L. Synthesis, Characterization and Thermolysis Studies on 3,7-Dinitro-1,3,5,7-Tetraazabicyclo [3.3.1]Nonane (DPT): A Key Precursor in the Synthesis of Most Powerful Benchmark Energetic Materials (RDX/HMX) of Today. J. Hazard. Mater. 2008, 152, 1317–1324. [Google Scholar] [CrossRef]
- Brøgger, A.L.; Andreasen, S.Z.; Bosco, F.G.; Andersen, K.B.; Kwasny, D.; Svendsen, W.E.; Boisen, A. Centrifugal Microfluidic Platform with Real-Time Electrochemical Detection. Meet. Abstr. 2013, MA2013-02, 2768. [Google Scholar] [CrossRef]
- Swain, G.M. Damien W. M. Arrigan (Ed.): Electrochemical Strategies in Detection Science. Anal. Bioanal. Chem. 2016, 408, 6245–6246. [Google Scholar] [CrossRef]
- Holmes, J.; Pathirathna, P.; Hashemi, P. Novel Frontiers in Voltammetric Trace Metal Analysis: Towards Real Time, On-Site, In Situ Measurements. TrAC Trends Anal. Chem. 2019, 111, 206–219. [Google Scholar] [CrossRef]
- Hong, Y.S.; Kinney, K.A.; Reible, D.D. Effects of Cyclic Changes in pH and Salinity on Metals Release from Sediments. Environ. Toxicol. Chem. 2011, 30, 1775–1784. [Google Scholar] [CrossRef] [PubMed]
- Morrison, M.A.; Benoit, G. Temporal Variability in Physical Speciation of Metals During a Winter Rain-On-Snow Event. J. Environ. Qual. 2005, 34, 1610–1619. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.H.; Guo, X.Y.; Yin, S.; Tian, C.H.; Li, Y.Y.; Shen, Z.Y. Heavy Metal Partitioning of Suspended Particulate Matter-Water and Sediment-Water in the Yangtze Estuary. Chemosphere 2017, 185, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Matar, Z.; Soares Pereira, C.S.; Chebbo, G.; Uher, E.; Troupel, M.; Boudahmane, L.; Saad, M.; Gourlay-France, C.; Rocher, V.; Varrault, G. Influence of Effluent Organic Matter on Copper Speciation and Bioavailability in Rivers Under Strong Urban Pressure. Environ. Sci. Pollut. Res. Int. 2015, 22, 19461–19472. [Google Scholar] [CrossRef]
- Lam, K.P.; Furness, A. K-AVE+ GNN+ Sobel= An Effective, Highly Parallel Edge Detector Approach. Parallel Distrib. Methods Image Process. 1997, 3166, 190–198. [Google Scholar]
- Reyes, C.; Schneider, D.; Thurmer, A.; Kulkarni, A.; Lipka, M.; Sztejrenszus, S.Y.; Bottcher, R.D.; Friedrich, M.W. Potentially active iron, sulfur, and sulfate reducing bacteria in Skagerrak and Bothnian bay sediments. Geomicrobiol. J. 2017, 34, 840–850. [Google Scholar] [CrossRef]
- Hyun, J.H.; Kim, S.H.; Mok, J.S.; Cho, H.; Lee, T.; Vandieken, V.; Thamdrup, B. Manganese and iron reduction dominate organic carbon oxidation in surface sediments of the deep Ulleung Basin, East Sea. Biogeosciences 2017, 14, 941–958. [Google Scholar] [CrossRef]
- Cuartero, M. Electrochemical sensors for in-situ measurement of ions in seawater. Sens. Actuators B Chem. 2021, 334, 129635. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, S.; Zhang, F.; Jin, B.; Yang, C. Improved microelectrode array electrode design for heavy metal detection. Chemosensors 2024, 12, 51. [Google Scholar] [CrossRef]
- Belmont-Hébert, C.; Tercier, M.L.; Buffle, J.; Fiaccabrino, G.C.; De Rooij, N.F.; Koudelka-Hep, M. Gel-integrated microelectrode arrays for direct voltammetric measurements of heavy metals in natural waters and other complex media. Anal. Chem. 1998, 70, 2949–2956. [Google Scholar] [CrossRef]
- Buffle, J.; Tercier-Waeber, M.L. Voltammetric environmental trace-metal analysis and speciation: From laboratory to in situ measurements. TrAC Trends Anal. Chem. 2005, 24, 172–191. [Google Scholar] [CrossRef]
- Tercier-Waeber, M.L.; Hezard, T.; Masson, M. In situ monitoring of the diurnal evolution of the dynamic metal species in the Riou-Mort river. Geochim. Cosmochim. Acta 2009, 73, A1321. [Google Scholar]
- Money, C.; Braungardt, C.B.; Jha, A.N.; Worsfold, P.J.; Achterberg, E.P. Metal speciation and toxicity of Tamar Estuary water to larvae of the Pacific oyster, Crassostrea gigas. Mar. Environ. Res. 2011, 72, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Braungardt, C.B.; Achterberg, E.P.; Axelsson, B.; Buffle, J.; Graziottin, F.; Howell, K.A.; Illuminati, S.; Scarponi, G.; Tappin, A.D.; Tercier-Waeber, M.-L.; et al. Analysis of dissolved metal fractions in coastal waters: An inter-comparison of five voltammetric in situ profiling (VIP) systems. Mar. Chem. 2009, 114, 47–55. [Google Scholar] [CrossRef]
- Tercier-Waeber, M.-L.; Fighera, M.; Abdou, M.; Bakker, E.; van Der Wal, P. Newly designed gel-integrated nanostructured gold-based interconnected microelectrode arrays for continuous in situ arsenite monitoring in aquatic systems. Sens. Actuators B Chem. 2021, 328, 128996. [Google Scholar] [CrossRef]
- Creffield, S.; Tercier-Waeber, M.-L.; Gressard, T.; Bakker, E.; Layglon, N. On-Chip Antifouling Gel-Integrated Microelectrode Arrays for In Situ High-Resolution Quantification of the Nickel Fraction Available for Bio-Uptake in Natural Waters. Molecules 2023, 28, 1346. [Google Scholar] [CrossRef]
- Liu, R.; Cao, H.; Nie, Z.; Si, S.; Zhao, X.; Zeng, X. A disposable expanded graphite paper electrode with self-doped sulfonated polyaniline/antimony for stripping voltammetric determination of trace Cd and Pb. Anal. Methods 2016, 8, 1618–1625. [Google Scholar] [CrossRef]
- Tercier-Waeber, M.-L.; Confalonieri, F.; Abdou, M.; Dutruch, L.; Bossy, C.; Fighera, M.; Bakker, E.; Graziottin, F.; van der Wal, P.; Schäfer, J. Advanced multichannel submersible probe for autonomous high-resolution in situ monitoring of the cycling of the potentially bioavailable fraction of a range of trace metals. Chemosphere 2021, 282, 131014. [Google Scholar] [CrossRef]
- Tercier-Waeber, M.-L.; Abdou, M.; Fighera, M.; Kowal, J.; Bakker, E.; van der Wal, P. In situ voltammetric sensor of potentially bioavailable inorganic mercury in marine aquatic systems based on gel-integrated nanostructured gold-based microelectrode arrays. ACS Sens. 2021, 6, 925–937. [Google Scholar] [CrossRef] [PubMed]
- Gibbon-Walsh, K.; Salaün, P.; van den Berg, C.M.G. Determination of manganese and zinc in coastal waters by anodic stripping voltammetry with a vibrating gold microwire electrode. Environ. Chem. 2011, 8, 475–484. [Google Scholar] [CrossRef]
- Chapman, C.S.; Cooke, R.D.; Salaün, P.; van den Berg, C.M.G. Apparatus for in situ monitoring of copper in coastal waters. J. Environ. Monit. 2012, 14, 2793–2802. [Google Scholar] [CrossRef] [PubMed]
- Domingos, R.F.; Carreira, S.; Galceran, J.; Salaün, P.; Pinheiro, J.P. AGNES at vibrated gold microwire electrode for the direct quantification of free copper concentrations. Anal. Chim. Acta 2016, 920, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Bezerra Dos Santos, V.; Fava, E.L.; Sá de Miranda Curi, N.S.; Faria, R.C.; Guerreiro, T.B.; Fatibello-Filho, O. An electrochemical analyzer for in situ flow determination of Pb(II) and Cd(II) in lake water with on-line data transmission and a global positioning system. Anal. Methods 2015, 7, 3105–3112. [Google Scholar] [CrossRef]
- Bezerra Dos Santos, V.; Fava, E.L.; Pessoa-Neto, O.D.; Bianchi, S.R.; Faria, R.C.; Fatibello-Filho, O. A versatile and robust electrochemical flow cell with a boron-doped diamond electrode for simultaneous determination of Zn2+ and Pb2+ ions in water samples. Anal. Methods 2014, 6, 8526–8534. [Google Scholar] [CrossRef]
- Wang, N.; Kanhere, E.; Kottapalli, A.G.P.; Miao, J.; Triantafyllou, M.S. Flexible liquid crystal polymer-based electrochemical sensor for in-situ detection of zinc (II) in seawater. Microchim. Acta 2017, 184, 3007–3015. [Google Scholar] [CrossRef]
- Wang, N.; Kanhere, E.; Miao, J.; Triantafyllou, M.S. Nanoparticles-modified chemical sensor fabricated on a flexible polymer substrate for cadmium(II) detection. Polymers 2018, 10, 694. [Google Scholar] [CrossRef]
- Yamamoto, M.; Kodamatani, H.; Kono, Y.; Takeuchi, A.; Takai, K.; Tomiyasu, T.; Marumo, K. Development of a deep-sea mercury sensor using in situ anodic strip voltammetry. Geochem. J. 2015, 49, 613–620. [Google Scholar] [CrossRef]
- Luther, G.W., III; Glazer, B.T.; Ma, S.; Trouwborst, R.E.; Moore, T.S.; Metzger, E.; Kraiya, C.; Waite, T.J.; Druschel, G.; Sundby, B.; et al. Use of voltammetric solid-state (micro)electrodes for studying biogeochemical processes: Laboratory measurements to real-time measurements with an in situ electrochemical analyzer (ISEA). Mar. Chem. 2008, 108, 221–235. [Google Scholar] [CrossRef]
- Silva, P.R.M.; El Khakani, M.A.; Chaker, M.; Dufresne, A.; Courchesne, F. Simultaneous determination of Cd, Pb, and Cu metal trace concentrations in water certified samples and soil extracts by means of Hg-electroplated-Ir microelectrode array based sensors. Sens. Actuators B Chem. 2001, 76, 250–257. [Google Scholar] [CrossRef]
- Noël, S.; Tercier-Waeber, M.-L.; Lin, L.; Buffle, J. Complexing gel integrated microelectrode arrays for direct detection of free metal ion concentrations in natural waters. J. Phys. IV 2003, 107, 965–968. [Google Scholar] [CrossRef]
- Kadara, R.O.; Tothill, I.E. Stripping chronopotentiometric measurements of lead(II) and cadmium(II) in soils extracts and wastewaters using a bismuth film screen-printed electrode assembly. Anal. Bioanal. Chem. 2004, 378, 770–775. [Google Scholar] [CrossRef] [PubMed]
- Wang, J. Stripping-based electrochemical metal sensors for environmental monitoring. Compr. Anal. Chem. 2007, 49, 131–141. [Google Scholar]
- Wang, Z.; Liu, G.; Yang, X. On-Site Determination of Heavy Metal in Soil Using Electrochemical Stripping Analysis. In Proceedings of the 2012 ASABE Annual International Meeting, Dallas, TX, USA, 29 July–1 August 2012; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2012; p. 1. Available online: https://elibrary.asabe.org/abstract.asp?aid=42215 (accessed on 26 June 2024).
- Chen, C.; Niu, X.; Chai, Y.; Zhao, H.; Lan, M. Bismuth-based porous screen-printed carbon electrode with enhanced sensitivity for trace heavy metal detection by stripping voltammetry. Sens. Actuators B Chem. 2013, 178, 339–342. [Google Scholar] [CrossRef]
- Xiao, L.; Xu, H.; Zhou, S.; Song, T.; Wang, H.; Li, S.; Gan, W.; Yuan, Q. Simultaneous detection of Cd(II) and Pb(II) by differential pulse anodic stripping voltammetry at a nitrogen-doped microporous carbon/nafion/bismuth-film electrode. Electrochim. Acta 2014, 143, 143–151. [Google Scholar] [CrossRef]
- Sánchez-Calvo, A.; Blanco-López, M.C.; Costa-García, A. Based Working Electrodes Coated with Mercury or Bismuth Films for Heavy Metals Determination. Biosensors 2020, 10, 52. [Google Scholar] [CrossRef]
- Economou, A. Screen-printed electrodes modified with “green” metals for electrochemical stripping analysis of toxic elements. Sensors 2018, 18, 1032. [Google Scholar] [CrossRef]
- García-González, R.; Costa-García, A.; Fernández-Abedul, M.T. Dual screen-printed electrodes with elliptic working electrodes arranged in parallel or perpendicular to the strip. Sens. Actuators B Chem. 2014, 198, 302–308. [Google Scholar] [CrossRef]
- de Souza, A.P.R.; Foster, C.W.; Kolliopoulos, A.V.; Bertotti, M.; Banks, C.E. Screen-printed back-to-back electroanalytical sensors: Heavy metal ion sensing. Analyst 2015, 140, 4130–4136. [Google Scholar] [CrossRef]
- Jadav, J.K.; Umrania, V.V.; Rathod, K.J.; Golakiya, B.A. Development of silver/carbon screen-printed electrode for rapid determination of vitamin C from fruit juices. LWT 2018, 88, 152–158. [Google Scholar] [CrossRef]
- Ong, C.S.; Ng, Q.H.; Low, S.C. Critical reviews of electro-reactivity of screen-printed nanocomposite electrode to safeguard the environment from trace metals. Monatshefte Chem.-Chem. Mon. 2021, 152, 705–723. [Google Scholar] [CrossRef]
- Birara, A.; Washe, A.P.; Bayeh, Y.; Ashebr, T.G. Simultaneous Quantification of Cd(II) and Pb(II) by Bismuth/Poly(bromocresol purple) Modified Screen-Printed Carbon-Electrode in Wastewater. Int. J. Electrochem. Sci. 2023, 19, 100431. [Google Scholar] [CrossRef]
- Pasakon, P.; Kamsong, W.; Primpray, V.; Wisitsoraat, A.; Lomas, T.; Tuantranont, A.; Karuwan, C. Simultaneous Electrochemical Sensing of Cd2+ and Pb2+ Using Screen-Printed Ionic Liquid/Graphene Electrodes. Int. J. Environ. Anal. Chem. 2023, 1–16. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, X.; Zhai, S.; Mu, W.; Li, C.; Han, X. Screen-Printed Electrode Containing Bismuth/Graphene Oxide Hybrid for Simultaneous Detection of Cadmium and Lead Ions. J. Electroanal. Chem. 2024, 961, 118222. [Google Scholar]
- Metters, J.P.; Kadara, R.O.; Banks, C.E. Electroanalytical properties of screen printed graphite microband electrodes. Sens. Actuators B Chem. 2012, 169, 136–143. [Google Scholar] [CrossRef]
- Liu, Y.; Jia, S.; Guo, L.H. Development of microplate-based photoelectrochemical DNA biosensor array for high throughput detection of DNA damage. Sens. Actuators B Chem. 2012, 161, 334–340. [Google Scholar] [CrossRef]
- Huang, H.; Wang, J.; Zheng, Y.; Bai, W.; Ma, Y.; Zhao, A. A Screen-Printed Carbon Electrode Modified with Bismuth Nanoparticles and Conjugated Mesoporous Polymer for Simultaneous Determination of Pb(II) and Cd(II) in Seafood Samples. J. Food Compos. Anal. 2024, 125, 105837. [Google Scholar] [CrossRef]
- Tiwari, M.S.; Kadu, A.K. Thiol-Based Chemically Modified Carbon Screen-Printed Electrode for Simultaneous Quantification of Trace Level Pb(II) and Cd(II). Anal. Sci. 2024, 40, 1449–1457. [Google Scholar] [CrossRef]
- Chen, X.; Yi, Z.; Peng, G.; Yuan, Z.; Wang, R.; Li, Y. In-Situ Deposition of Gold Nanoparticles on Screen-Printed Carbon Electrode for Rapid Determination of Hg2+ in Water Samples. Int. J. Electrochem. Sci. 2024, 19, 100544. [Google Scholar] [CrossRef]
- Djane, N.K.; Armalis, S.; Ndung’u, K.; Johansson, G.; Mathiasson, L. Supported liquid membrane coupled on-line to potentiometric stripping analysis at a mercury-coated reticulated vitreous carbon electrode for trace metal determinations in urine. Analyst 1998, 123, 393–396. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, W. Simultaneous determination of Cd2+ and Pb2+ using a chemically modified electrode. Anal. Sci. 2001, 17, 1015–1018. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Zhang, S. Determination of mercury at a dithizone-modified glassy carbon electrode by anodic stripping voltammetry. Anal. Sci. 2002, 18, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Ngassa, G.B.P.; Tchoffo, R.; Boutianala, M.; Nintedem, L.; Yameni Tchonguang, S.A.; Leuga Fogang, H.F.; Kenfack Tonle, I. Electrochemical sensor based on a thin film of organokaolinite material modified glassy carbon electrode (GCE) and application to the simultaneous sensitive detection of Pb2+ and Cu2+ ions in contaminated water. J. Appl. Electrochem. 2024, 1–21. [Google Scholar] [CrossRef]
- Zhang, L.-H.; Li, W.-C.; Yan, D.; Wang, H.; Lu, A.-H. Size Dependent Electrochemical Detection of Trace Heavy Metal Ions Based on Nano-Patterned Carbon Sphere Electrodes. Nanoscale 2016, 8, 13695–13700. [Google Scholar] [CrossRef] [PubMed]
- Xhanari, K.; Šašek, Ž.; Petovar, B.; Finšgar, M. Validation and Optimization of an In-Situ Copper-Modified Glassy Carbon Electrode. In Proceedings of the International Conference on Advanced Materials and Systems (ICAMS), Bucharest, Romania, 18–20 October 2018; The National Research & Development Institute for Textiles and Leather—INCDTP: Bucharest, Romania, 2018; pp. 489–494. [Google Scholar]
- Tüzün, E.; Atun, G. Individual and Simultaneous Determination of Heavy Metal Ions Using Carbon Paste Electrode Modified with Titania Nanoparticles. Electrocatalysis 2023, 14, 636–647. [Google Scholar] [CrossRef]
- Finšgar, M.; Rajh, B. A Factorial Design and Simplex Optimization of a Bismuth Film Glassy Carbon Electrode for Cd (II) and Pb (II) Determination. Chemosensors 2023, 11, 129. [Google Scholar] [CrossRef]
- Roushani, M.; Ali, N.M.; Karazan, Z.M.; Nasibipour, M.; Hoseini, S.J. Electrochemical Sensing of Pb2+, Cu2+, and Hg2+ by an Aminoclay-Based Porous Covalent Organic Polymer/Multi-Walled Carbon Nanotubes Modified Glassy Carbon Electrode. J. Mol. Struct. 2024, 1312, 138602. [Google Scholar] [CrossRef]
- Švancara, I.; Vytřas, K.; Kalcher, K.; Walcarius, A.; Wang, J. Carbon paste electrodes in facts, numbers, and notes: A review on the occasion of the 50-years jubilee of carbon paste in electrochemistry and electroanalysis. Electroanalysis 2009, 21, 7–28. [Google Scholar] [CrossRef]
- Devnani, H.; Satsangee, S.P. Anthocyanin modified carbon paste electrode for determination of copper ions at trace levels. Meet. Abstr. 2013, MA2013-01, 46. [Google Scholar] [CrossRef]
- Gong, Z.; Chan, H.T.; Chen, Q.; Chen, H. Application of Nanotechnology in Analysis and Removal of Heavy Metals in Food and Water Resources. Nanomaterials 2021, 11, 1792. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Teng, Z.; Wang, S.; Feng, K.; Wang, X.; Wang, C.; Wang, G. Voltammetric simultaneous ion flux measurements platform for Cu2+, Pb2+ and Hg2+ near rice root surface: Utilizing carbon nitride heterojunction film modified carbon fiber microelectrode. Sens. Actuators B Chem. 2018, 256, 98–106. [Google Scholar] [CrossRef]
- Pang, Y.-H.; Yang, Q.-Y.; Jiang, R.; Wang, Y.-Y.; Shen, X.-F. A stack-up electrochemical device based on metal–organic framework modified carbon paper for ultra-trace lead and cadmium ions detection. Food Chem. 2023, 398, 133822. [Google Scholar] [CrossRef]
- Petovar, B.; Xhanari, K.; Finšgar, M. A detailed electrochemical impedance spectroscopy study of a bismuth-film glassy carbon electrode for trace metal analysis. Anal. Chim. Acta 2018, 1004, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Promsuwan, K.; Sanguarnsak, C.; Samoson, K.; Saichanapan, J.; Soleh, A.; Saisahas, K.; Wangchuk, S.; Limbut, W. Single-drop electrodeposition of nanoneedle-like bismuth on disposable graphene electrode for on-site electrochemical detection of cadmium and lead. Talanta 2024, 276, 126179. [Google Scholar] [CrossRef]
- Muluneh, E.Y.; Mekonnen, M.L.; Debebe, S.E. Determination of Lead (II) and Cadmium (II) in Selected Commercially Available Water-Based Paints of Ethiopia by Anodic Stripping Voltammetry Using a Bismuth-Modified Glassy Carbon Electrode. ChemistrySelect 2023, 8, e202300963. [Google Scholar] [CrossRef]
- Liu, N.; Ye, W.; Zhao, G.; Liu, G. Development of smartphone-controlled and machine-learning-powered integrated equipment for automated detection of bioavailable heavy metals in soils. J. Hazard. Mater. 2024, 465, 133140. [Google Scholar] [CrossRef]
- Martynov, L.Y.; Sadova, M.K.; Sakharov, K.A.; Yashtulov, N.A.; Zaytsev, N.K. Determination of indium by adsorptive stripping voltammetry at the bismuth film electrode using combined electrode system facilitating medium exchange. Talanta 2024, 271, 125680. [Google Scholar] [CrossRef]
- Švancara, I.; Prior, C.; Hočevar, S.B.; Wang, J. A decade with bismuth-based electrodes in electroanalysis. Electroanalysis 2010, 22, 1405–1420. [Google Scholar] [CrossRef]
- Wang, J.; Lu, J.; Hocevar, S.B.; Farias, P.A.M.; Ogorevc, B. Bismuth-coated carbon electrodes for anodic strip voltammetry. Anal. Chem. 2000, 72, 3218–3222. [Google Scholar] [CrossRef]
- Kefala, G.; Economou, A.; Voulgaropoulos, A. A study of nafion-coated bismuth-film electrodes for the determination of trace metals by anodic stripping voltammetry. Analyst 2004, 129, 1082–1090. [Google Scholar] [CrossRef] [PubMed]
- Hwang, G.H.; Han, W.K.; Park, J.S.; Kang, S.G. Determination of trace metals by anodic stripping voltammetry using a bismuth-modified carbon nanotube electrode. Talanta 2008, 76, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Torma, F.; Kádár, M.; Tóth, K.; Tatár, E. Nafion/2,2′-bipyridyl-modified bismuth film electrode for anodic stripping voltammetry. Anal. Chim. Acta 2008, 619, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.-J.; Kim, C.K.; Lee, M.K.; Rhee, C.K. Advanced use of nanobismuth/nafion electrode for trace analyses of zinc, cadmium, and lead. J. Electrochem. Soc. 2010, 157, J241–J244. [Google Scholar] [CrossRef]
- Kokkinos, C.; Economou, A.; Raptis, I. Microfabricated disposable lab-on-a-chip sensors with integrated bismuth microelectrode arrays for voltammetric determination of trace metals. Anal. Chim. Acta 2012, 710, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Bong, S.; Ha, J.; Kwak, M.; Park, S.-K.; Piao, Y. Electrochemical deposition of bismuth on activated graphene-nafion composite for anodic stripping voltammetric determination of trace heavy metals. Sens. Actuators B Chem. 2015, 215, 62–69. [Google Scholar] [CrossRef]
- Lee, S.; Oh, J.; Kim, D.; Piao, Y. A sensitive electrochemical sensor using an iron oxide/graphene composite for the simultaneous detection of heavy metal ions. Talanta 2016, 160, 528–536. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Jing, G.; Cui, T. Highly sensitive micro sensor with nafion coated bismuth for trace lead determination. In Proceedings of the 19th International Conference on Solid-State Sensors, Kaohsiung, Taiwan, 18–22 June 2017. [Google Scholar] [CrossRef]
- Schöning, M.J.; Jacobs, M.; Muck, A.; Knobbe, D.-T.; Wang, J.; Chatrathi, M.P.; Spillmann, S. Amperometric PDMS/glass capillary electrophoresis-based biosensor microchip for catechol and dopamine detection. Sens. Actuators B Chem. 2005, 108, 688–694. [Google Scholar] [CrossRef]
- Xu, T.; Hwang, W.L.; Su, F.; Chakrabarty, K. Automated design of pin-constrained digital microfluidic biochips under droplet-interference constraints. ACM J. Emerg. Technol. Comput. Syst. 2007, 3, 14-es. [Google Scholar] [CrossRef]
- Quang, L.X.; Lim, C.; Seong, G.H.; Choo, J.; Do, K.J.; Yoo, S.-K. A portable surface-enhanced Raman scattering sensor integrated with A lab-on-a-chip for field analysis. Lab Chip 2008, 8, 2214–2219. [Google Scholar] [CrossRef]
- Huang, Y.; Mason, A.J. Lab-on-CMOS integration of microfluidics and electrochemical sensors. Lab Chip 2013, 13, 3929–3934. [Google Scholar] [CrossRef] [PubMed]
- Economou, A.; Kokkinos, C. Advances in Stripping Analysis of Metals. In Electrochemical Strategies in Detection Science; Arrigan, D.W.M., Ed.; The Royal Society of Chemistry: London, UK, 2015. [Google Scholar]
- Wang, W.; Ding, S.; Wang, Z.; Lv, Q.; Zhang, Q. Electrochemical paper-based microfluidic device for on-line isolation of proteins and direct detection of lead in urine. Biosens. Bioelectron. 2021, 187, 113310. [Google Scholar] [CrossRef]
- Chałupniak, A.; Merkoçi, A. Graphene oxide–poly (dimethylsiloxane)-based lab-on-a-chip platform for heavy-metals preconcentration and electrochemical detection. ACS Appl. Mater. Interfaces 2017, 9, 44766–44775. [Google Scholar] [CrossRef]
- Zhao, C.; Zhong, G.; Kim, D.; Liu, J.; Liu, X. A portable lab-on-a-chip system for gold-nanoparticle-based colorimetric detection of metal ions in water. Biomicrofluidics 2014, 8, 052107. [Google Scholar] [CrossRef]
- Zou, Z.; Jang, A.; MacKnight, E.T.; Wu, P.-M.; Do, J.; Shim, J.S.; Bishop, P.L.; Ahn, C.H. An on-site heavy metal analyzer with polymer lab-on-a-chips for continuous sampling and monitoring. IEEE Sens. J. 2009, 9, 586–594. [Google Scholar] [CrossRef]
- Jung, W.; Jang, A.; Bishop, P.L.; Ahn, C.H. A polymer lab chip sensor with microfabricated planar silver electrode for continuous and on-site heavy metal measurement. Sens. Actuators B Chem. 2011, 155, 145–153. [Google Scholar] [CrossRef]
- Jang, A.; Zou, Z.; Lee, K.K.; Ahn, C.H.; Bishop, P.L. Potentiometric and voltammetric polymer lab chip sensors for determination of nitrate, pH and Cd(II) in water. Talanta 2010, 83, 1–8. [Google Scholar] [CrossRef]
- Zhan, S.; Wu, Y.; Wang, L.; Zhan, X.; Zhou, P. A mini-review on functional nucleic acids-based heavy metal ion detection. Biosens. Bioelectron. 2016, 86, 353–368. [Google Scholar] [CrossRef]
- Luan, E.; Shoman, H.; Ratner, D.M.; Cheung, K.C.; Chrostowski, L. Silicon photonic biosensors using label-free detection. Sensors 2018, 18, 3519. [Google Scholar] [CrossRef]
- Yantasee, W.; Lin, Y.; Hongsirikarn, K.; Fryxell, G.E.; Addleman, R.; Timchalk, C. Electrochemical sensors for the detection of lead and other toxic heavy metals: The next generation of personal exposure biomonitors. Environ. Health Perspect. 2007, 115, 1683–1690. [Google Scholar] [CrossRef]
- Xu, R.-X.; Yu, X.-Y.; Gao, C.; Jiang, Y.-J.; Han, D.-D.; Liu, J.-H.; Huang, X.-J. Non-conductive nanomaterial enhanced electrochemical response in stripping voltammetry: The use of nanostructured magnesium silicate hollow spheres for heavy metal ions detection. Anal. Chim. Acta 2013, 790, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.-F.; Wang, J.-J.; Gan, L.; Han, X.-J.; Fan, H.-L.; Mei, L.-Y.; Huang, J.; Liu, Y.-Q. Individual and simultaneous electrochemical detection toward heavy metal ions based on L-cysteine modified mesoporous MnFe2O4 nanocrystal clusters. J. Alloys Compd. 2017, 721, 492–500. [Google Scholar] [CrossRef]
- Lu, Y.; Liang, X.; Niyungeko, C.; Zhou, J.; Xu, J.; Tian, G. A review of the identification and detection of heavy metal ions in the environment by voltammetry. Talanta 2018, 178, 324–338. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Lu, Z.; Dai, W.; Liu, B.; Zhang, Y.; Li, J.; Ye, J. Laser engraved nitrogen-doped graphene sensor for the simultaneous determination of Cd(II) and Pb(II). J. Electroanal. Chem. 2018, 828, 41–49. [Google Scholar] [CrossRef]
- Ramalingam, M.; Ponnusamy, V.K.; Narayanan, S.N. A nanocomposite consisting of porous graphitic carbon nitride nanosheets and oxidized multiwalled carbon nanotubes for simultaneous stripping voltammetric determination of cadmium(II), mercury(II), lead(II) and zinc(II). Mikrochim. Acta 2019, 186, 69. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, T.; Lin, H.; Meng, W.; Zhang, C.; Cai, P.; Hao, T.; Wu, Y.; Guo, Z. Disposable faraday cage-type aptasensor for ultrasensitive determination of sub-picomolar Hg(II) via fast scan voltammetry. Sens. Actuators B Chem. 2020, 320, 128349. [Google Scholar] [CrossRef]
- Eswaran, M.; Tsai, P.-C.; Wu, M.-T.; Ponnusamy, V.K. Novel nano-engineered environmental sensor based on polymelamine/graphitic-carbon nitride nanohybrid material for sensitive and simultaneous monitoring of toxic heavy metals. J. Hazard. Mater. 2021, 418, 126267. [Google Scholar] [CrossRef]
- Guo, C.; Wang, C.; Sun, H.; Dai, D.; Gao, H. A simple electrochemical sensor based on RGO/MoS2/CS modified GCE for highly sensitive detection of Pb(II) in tobacco leaves. RSC Adv. 2021, 11, 29590–29597. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Lai, Q.; Fan, W.; Zhang, Y.; Liu, Z. Advances in portable heavy metal ion sensors. Sensors 2023, 23, 4125. [Google Scholar] [CrossRef]
- Mills, G.; Fones, G. A review of in situ methods and sensors for monitoring the marine environment. Sens. Rev. 2012, 32, 17–28. [Google Scholar] [CrossRef]
Instrument | Analyte of Interest | Pre-Concentration Time/min | Limit of Detection | Working Depth | Ref. |
---|---|---|---|---|---|
VIP | Cu(II)/Pb(II)/Cd(II)/Zn(II) | 15 | 0.5 nM/0.25 nM/0.03 nM/0.04 nM | 100 m | [49] |
TracMetal | As(III) | 10 | 1.5 nM | 100 m | [50] |
VGME | Cu(II) | 5 | 4 nM | 40 m | [55] |
PG004 | Pb(II)/Cd(II) | 5 | 0.39 mM/1.6 mM | Surface | [57] |
LCP | Zn(II) | 3 | 1.22 nM | Surface | [60] |
Deep-sea mercury sensor | Hg(II) | 20 | 4.69 nM | 1000 m | [62] |
ISEA | Mn(II)/Fe(II) | 10 | 5 μM/10 μM | 6000 m | [63] |
Electrode | Analyte of Interest | Technique | Pre-Concentration Time/min | Limit of Detection | Ref. |
---|---|---|---|---|---|
GIME | Cu(II), Pb(II), Cd(II), Zn(II) | SWASV | 15 | 0.04 nM/0.03 nM/0.25 nM/0.5 nM | [49] |
AuNS-CSPE | As(III) | SWASV | 3 | 40 nM | [50] |
Au MEA | Cu(II) | DPASV | 5 | 0.013 nM | [56] |
Electrode | Analyte of Interest | Technique | Pre-Concentration Time/min | Limit of Detection | Ref. |
---|---|---|---|---|---|
Bi-P-SPCE | Pb(II)/Cd(II) | SWASV | 3 | 6.32 nM/13.8 nM | [79] |
4-CP/SPCE | Pb(II)/Cd(II) | DPASV | 5 | 0.65 nM/0.882 nM | [83] |
GN-SPCE | Hg(II) | SWASV | 5 | 1.65 nM | [84] |
Electrode | Analyte of Interest | Technique | Pre-Concentration Time/min | Limit of Detection | Ref. |
---|---|---|---|---|---|
GCE/KHEP | Pb(II)/Cu(II) | SWASV | 3 | 1.07 μM/1.94 μM | [88] |
TMCP | Pb(II)/Cu(II)/Hg(II) | ASV | 5 | 1.65 nM/0.56 Nm/15.26 nM | [91] |
CuFE | Pb(II) | SWASV | 1.5 | 9.65 nM | [92] |
Electrode | Analyte of Interest | Technique | Pre-Concentration Time/min | Limit of Detection | Ref. |
---|---|---|---|---|---|
P-GE | Pb(II)/Cd(II) | SWASV | 3 | 10.14 nM/31.2 nM | [100] |
BGCE | Pb(II)/Cd(II) | SWASV | 2 | 60 nM/130 nM | [101] |
Bismuth film electrode | Pb(II) | SWASV | 3 | 0.04 nM | [104] |
Electrode | Analyte of Interest | Technique | Pre-Concentration Time/min | Limit of Detection | Ref. |
---|---|---|---|---|---|
μPAD | Pb (II) | SWASV | 2 | 43.4 nM | [119] |
GO–PDMS | Pb(II) | SWASV | 5 | 2.14 nM | [120] |
LODs | Pb(II)/Al(III) | SWASV | 3 | 144.8 nM/3.3 nM | [121] |
Electrode Type | Advantages | Disadvantages | Re-Use |
---|---|---|---|
Microelectrode Arrays (MEA) | High sensitivity, low detection limits, suitable for in-situ measurements. | Complex fabrication, higher cost, potential for electrode fouling. | Yes, several days to two weeks, long-term functionality can be maintained by regenerating the modification. |
Screen-Printed Electrodes (SPE) | Low cost, easy to mass-produce, portable, disposable. | Lower sensitivity, higher detection limits, shorter lifespan. | No, few hours, single-use. |
Carbon Electrodes (CE) | Stable, wide potential window, good conductivity, modifiable with nanomaterials. | May require modification, higher detection limits, potential for fouling. | Yes, several weeks to months, long-term functionality can be maintained by regenerating the modification. |
Bismuth Electrodes | Environmentally friendly, non-toxic, good sensitivity, low detection limits. | Less stable in some conditions. | Yes, several weeks to months, long-term functionality can be maintained by regenerating the modification. |
Lab-on-a-Chip (LOC) | Integration of multiple functions, small sample volume, portable, on-site analysis. | Complex fabrication, higher costs, limited robustness and reproducibility. | Varies, few hours to several weeks. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Wu, S.; Wu, Z.; Zhang, F.; Jin, B.; Yang, C. Review of Underwater In Situ Voltammetry Analyzers for Trace Metals. Chemosensors 2024, 12, 158. https://doi.org/10.3390/chemosensors12080158
Zhang J, Wu S, Wu Z, Zhang F, Jin B, Yang C. Review of Underwater In Situ Voltammetry Analyzers for Trace Metals. Chemosensors. 2024; 12(8):158. https://doi.org/10.3390/chemosensors12080158
Chicago/Turabian StyleZhang, Jian, Shijun Wu, Ziying Wu, Feng Zhang, Bo Jin, and Canjun Yang. 2024. "Review of Underwater In Situ Voltammetry Analyzers for Trace Metals" Chemosensors 12, no. 8: 158. https://doi.org/10.3390/chemosensors12080158
APA StyleZhang, J., Wu, S., Wu, Z., Zhang, F., Jin, B., & Yang, C. (2024). Review of Underwater In Situ Voltammetry Analyzers for Trace Metals. Chemosensors, 12(8), 158. https://doi.org/10.3390/chemosensors12080158