[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Electrochemical sensor based on a thin film of organokaolinite material modified glassy carbon electrode (GCE) and application to the simultaneous sensitive detection of Pb2+ and Cu2+ ions in contaminated water

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A pure natural kaolinite (K) was modified by intercalation and grafting into the interlayer space of 1-(2-hydroxyethyl)piperazine (HEP). The resulting organo-inorganic hybrid material (referred as KHEP) was characterised using X-ray diffraction (XRD), Fourier transform infrared (FTIR) and 29Si nuclear magnetic resonance (NMR) techniques. The electrochemical characterisation of K and KHEP materials was carried out by studying the electrochemical behaviour using cyclic voltammetry of [Fe(CN)6]3− ions on the surface of a glassy carbon electrode (GCE) modified with a film of each of these materials (GCE/K and GCE/KHEP). The GCE/KHEP organokaolinite film electrode was successfully applied for the simultaneous detection of Pb(II) and Cu(II) in contaminated media. The peak currents of Pb(II) and Cu(II) obtained under the same optimal conditions on GCE/KHEP were much more intense than those obtained on GCE/K and bare GCE. Under optimal conditions, the influence of the concentration of Cu2+ and Pb2+ ions on the peak currents was studied for several concentration ranges. The obtained linear calibration curves were then used to calculate the different limits of detection (LOD) on the basis of a signal-to-noise ratio of 3. Thus, in simultaneous detection and for the concentration range from 0.02 to 0.12 µmol L−1 (pH accumulation medium 5.0) and for each of the ions analysed, LODs of 1.942 nmol L−1 for Cu(II) and a LOD of 1.072 nmol L−1 for Pb(II) were obtained. The GCE/KHEP sensor developed in this work was successfully applied for the simultaneous detection of Pb(II) and Cu(II) in real samples.

Graphical abstract

ASSWV signal corresponding to the simultaneous detection of Pb2+ and Cu2+ ions recorded on unmodified GCE (black curve), GCE/K; (red curve) and GCE/KHEP (blue curve) in 0.2 mol L−1 NaNO3 (with pH adjusted at 2.5) after 7 min of accumulation in aqueous medium (pH 5.0) of each ion at the concentration at 2.0 µmol L−1. Other experimental conditions are as follows: telec: 80 s, Eelec: − 0.90 V, Potential amplitude: 0.05 V, Step potential (V): 0.005 V and Frequency: 50 Hz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included in the article. The data that support the findings of this study are available from corresponding authors upon reasonable request.

References

  1. Cheng HF, Hu YA (2010) Lead (pb) isotopic fingerprinting and its applications in lead pollution studies in China. Environ Pollut 158:1134–1146. https://doi.org/10.1016/j.envpol.2009.12.028

    Article  CAS  PubMed  Google Scholar 

  2. Luo L, Wang X, Ding Y, Li Q, Jia J, Deng D (2010) Voltammetric determination of Pb2+ and Cd2+ with montmorillonite-bismuth-carbon electrodes. Appl Clay Sci 50:154–157. https://doi.org/10.1016/j.clay.2010.06.024

    Article  CAS  Google Scholar 

  3. Tonle IK, Ngameni E, Walcarius A (2005) Preconcentration and voltammetric analysis of mercury (II) at a carbon paste electrode modified with natural smectite-type clays grafted with organic chelating groups. Sens Actuators B 110:195–203. https://doi.org/10.1016/j.snb.2005.01.027

    Article  CAS  Google Scholar 

  4. Wiener JG, Krabbenheit DP, Heinz GH, Scheuhammer AM (2003) Ecotoxicology of mercury. In: Hoffman DJ (ed) Handbook of ecotoxicology, 2nd edn. CRC Press LLC, Boca Raton, p 409

    Google Scholar 

  5. Chiron N, Guilet R, Deydier E (2003) Adsorption of Cu(II) and pb(II) onto a grafted silica isotherms and kinetic models. Wat Res 37:3079–3086. https://doi.org/10.1016/S0043-1354(03)00156-8

    Article  CAS  Google Scholar 

  6. Carvalho WA, Vignado C, Fontana J (2008) Ni(II) removal from aqueous effluents by silylated clays. J Hazard Mater 153:1240–1247. https://doi.org/10.1016/j.jhazmat.2007.09.083

    Article  CAS  PubMed  Google Scholar 

  7. Filho NL, do Carmo DR, Rosa AH (2006) An electroanalytical application of 2-aminothiazole modified silica gel after adsorption and separation of hg(II) from heavy metals in aqueous solution. Electrochim Acta 52:965–972. https://doi.org/10.1016/j.electacta.2006.06.033

    Article  CAS  Google Scholar 

  8. Jang A, Seo Y, Bishop PL (2005) The removal of heavy metals in urban runoff by sorption on mulch. Environ Pollut 133:117–127. https://doi.org/10.1016/j.envpol.2004.05.020

    Article  CAS  PubMed  Google Scholar 

  9. Shams E, Torabi R (2006) Determination of nanomolar concentrations of cadmium by anodic stripping voltammetric at a carbon paste electrode modified with zicornium phosphated amorphous silica. Sens Actuators B 117:86–92. https://doi.org/10.1016/j.snb.2005.10.049

    Article  CAS  Google Scholar 

  10. Zou Z, Jang A, Macktnight E, Wu PM, Do J, Bishop PL, Ahn CH (2008) Environmentally friendly disposable sensors with microfabricated on-chip planar bismuth for in situ heavy metal ions measurement. Sens Actuators B 134:18–24. https://doi.org/10.1016/j.snb.2008.04.005

    Article  CAS  Google Scholar 

  11. World Health Organisation (1993) Guidelines for drinking water quality, 2nd Recommendations. WHO, Genève

    Google Scholar 

  12. Rickard DT, Nriagu JE (1978) Aqueous environmental chemistry of lead. In: Nriagu JO (ed) The biogeochemistry of the lead in the environment. Part A ecological cycles. Elsevier, New-York, pp 219–284

    Google Scholar 

  13. Sterckeman T, Douay F, Proix N, Fourrier H, Perdrix E (2002) Assessment of the contamination of cultivated soils by eighteen trace elements around smelters in the North of France. Water Air Soil Pollut 135:173–194. https://doi.org/10.1023/A:1014758811194

    Article  CAS  Google Scholar 

  14. Sterckeman T, Douay F, Baize D, Fourrier H, Proix N, Schvartz C (2006) Trace elements in soils developed in sedimentary materials from northern France. Geoderma 136:912–926. https://doi.org/10.1016/j.geoderma.2006.06.010

    Article  CAS  Google Scholar 

  15. Hsieh SAK, Chong YS, Tan JF, Ma TS (1982) Determination of lead, mercury, cadmium and thallium in foods by amperometry and by atomic absorption spectrometry. Microchim Acta 78:337–346. https://doi.org/10.1007/BF01197983

    Article  Google Scholar 

  16. Bannon DI, Chisolm JJ (2001) Anodic stripping voltammetry compared with graphite furnace atomic absorption spectrophotometry for blood lead analysis. Clin Chem 47:1703–1704. https://doi.org/10.1093/clinchem/47.9.1703

    Article  CAS  PubMed  Google Scholar 

  17. Liu H, Jiang S, Liu S (1999) Determination of cadmium, mercury and lead in seawater by electrothermal vaporization isotope dilution inductively coupled plasma mass spectrometry. Spectrochim Acta B 54:1367–1375. https://doi.org/10.1016/S0584-8547(99)00081-6

    Article  Google Scholar 

  18. Stosnach H (2006) On-site analysis of heavy metal contaminated areas by means of total reflection X-ray fluorescence analysis (TXRF). Spectrochim Acta B 61:1141–1145. https://doi.org/10.1016/j.sab.2006.06.007

    Article  CAS  Google Scholar 

  19. Huang W, Yang C, Zhang S (2002) Anodic stripping voltammetric determination of mercury by use of a sodium montmorillonite-modified carbon-paste electrode. Anal Bioanal Chem 374:998–1001. https://doi.org/10.1007/s00216-002-1438-0

    Article  CAS  PubMed  Google Scholar 

  20. Xu H, Zeng L, Xing S, Xian Y, Shi G, Jin L (2008) Ultrasensitive voltammetric detection of trace lead (ii) and cadmium (ii) using MWCNTs-nafion/bismuth composite electrodes. Electroanalysis 20(24):2655–2662. https://doi.org/10.1002/elan.200804367

    Article  CAS  Google Scholar 

  21. Ensafi AA, Nazari Z, Fritsch I (2010) Highly sensitive differential pulse voltammetric determination of cd, zn, and pb ions in Water samples using stable carbon-based mercury thin-film electrode. Electroanalysis 22(21):2551–2557. https://doi.org/10.1002/elan.201000246

    Article  CAS  Google Scholar 

  22. Guo D, Li J, Yuan J, Zhou W, Wang E (2010) Nafion film immobilized nano Ag-Hg amalgam glassy carbon electrode used for simultaneous determination of lead, cadmium and copper. Electroanalysis 22(1):69–73. https://doi.org/10.1002/elan.200900259

    Article  CAS  Google Scholar 

  23. Filho NLD, Carmo do DR (2006) Study of an organically modified clay: selective adsorption of heavy metal ions and voltammetric determination of mercury (II). Talanta 68:919–927. https://doi.org/10.1016/j.talanta.2005.06.028

    Article  CAS  Google Scholar 

  24. Yuan S, Chen W, Hu S (2004) Simultaneous determination of cadmium (II) and lead (II) with clay nanoparticules and anthraquinone complexly modified glassy carbon electrode. Talanta 64:922–928. https://doi.org/10.1016/j.talanta.2004.04.008

    Article  CAS  PubMed  Google Scholar 

  25. Ogorec B, Cai X, Grabec I (1995) Determination of traces of copper by anodic stripping voltammetric after its preconcentration via an ion-exchange route at carbon paste electrodes modified with vermiculite. Anal Chim Acta 305:176–182. https://doi.org/10.1016/0003-2670(94)00504-F

    Article  Google Scholar 

  26. Fan L, Chen J, Zhu S, Wang M, Xu G (2009) Determination of Cd2+ and Pb2+ on glassy carbon electrode modified by electrochemical reduction of aromatic diazonium salts. Electrochem Commun 11:1823–1825. https://doi.org/10.1016/j.elecom.2009.07.026

    Article  CAS  Google Scholar 

  27. Tchoffo R, Ngassa GBP, Doungmo G, Kamdem AT, Tonlé IK, Ngameni E (2022) Surface functionalization of natural hydroxyapatite by polymerization of β-cyclodextrin: application as electrode material for the electrochemical detection of pb(II). Environ Sci Pollut Res 29(1):222–235. https://doi.org/10.1007/s11356-021-15578-8

    Article  CAS  Google Scholar 

  28. Pengou M, Ngassa GBP, Boutianala M, Tchakouté HK, Nanseu-Njiki CP, Ngameni E (2020) Geopolymer cement–modified carbon paste electrode: application to electroanalysis of traces of lead(II) ions in aqueous solution. J Solid State Electrochem 25:1183–1195. https://doi.org/10.1007/s10008-021-04897-y

    Article  CAS  Google Scholar 

  29. Etienne M, Bessière J, Walcarius A (2001) Voltammetric detection of copper (II) at a carbon paste electrode containing an organically modified silica. Sens Actuators B 76:531–538. https://doi.org/10.1016/S0925-4005(01)00614-1

    Article  CAS  Google Scholar 

  30. Sayen S, Walcarius A (2005) Electrochimical modulation of the ligand properties of organically modified mesoporous silicas. J Electroanal Chem 581:70–78. https://doi.org/10.1016/j.jelechem.2005.04.013

    Article  CAS  Google Scholar 

  31. Etienne E, Walcarius A (2003) Analytical investigation of the chemical reactivity and stability of aminopropyl-grafed silica in aqueous medium. Talanta 59:1173–1188. https://doi.org/10.1016/S0039-9140(03)00024-9

    Article  CAS  PubMed  Google Scholar 

  32. Walcarius A, Etienne M, Delacote C (2004) Uptake of inorganic hg(II) by organically modified silicates: influence of pH and chloride concentration on the binding pathways and electrochemical monitoring of processes. Anal Chim Acta 508:87–98. https://doi.org/10.1016/j.aca.2003.11.055

    Article  CAS  Google Scholar 

  33. Sayen S, Géradin C, Rodehüser L, Walcarius A (2003) Electrochemical detection of copper(II) at an electrode modified by carnosine-silice hybrid material. Electroanalysis 15(6):422–430. https://doi.org/10.1002/elan.200390049

    Article  CAS  Google Scholar 

  34. Cesarino I, Cavalheiro ETG, Brett CMA (2010) Simultaneous determination of cadmium, lead, copper and Mercury ions using organofunctionalised SBA-15 nanostructured silica modified graphite – polyurethane composite electrode. Electroanalysis 22(1):61–68. https://doi.org/10.1002/elan.200900167

    Article  CAS  Google Scholar 

  35. Kula P, Navratilova Z, Kulova P, Kotoucek M (1999) Sorption and determination of hg (II) on clay modified carbon paste electrodes. Anal Chim Acta 385:91–101. https://doi.org/10.1016/S0003-2670(98)00697-7

    Article  CAS  Google Scholar 

  36. Sun D, Wan C, Li G, Wu K (2007) Electrochemical determination of lead(II) using a montmorillonite calcium-modified carbon paste electrode. Microchim Acta 158:255–260. https://doi.org/10.1007/s00604-006-0686-7

    Article  CAS  Google Scholar 

  37. Ngassa GBP, Tonle IK, Walcarius A, Ngameni E (2014) One-step co-intercalation of cetyltrimethylammonium and thiourea in smectite and application of organoclay to the sensitive electrochemical detection of pb(II). Appl Clay Sci 99:297–305. https://doi.org/10.1016/j.clay.2014.07.014

    Article  CAS  Google Scholar 

  38. Bouwé RGB, Tonle IK, Letaief S, Ngameni E, Detellier C (2011) Structural characterisation of 1, 10-phenanthroline-montmorillonite intercalation compounds and their application as low-cost electrochemical sensors for pb(II) detection at the sub-nanomolar level. Appl Clay Sci 52:258–265. https://doi.org/10.1016/j.clay.2011.02.028

    Article  CAS  Google Scholar 

  39. Ngassa GBP, Fafard J, Tonle IK (2022) Kaolinite-based hybrid material from interlayer grafting of 1-(2-hydroxyethyl)piperazine and application to the sensitive voltammetric detection of lead. Electroanalysis 34(5):844–853. https://doi.org/10.1002/elan.202100205

    Article  CAS  Google Scholar 

  40. Tonle IK, Ngameni E, Njopwouo D, Carteret C, Walcarius A (2003) Functionalization of natural smectite-type clays by grafing with organosilanes: physico chemical characterisation and application to mercury uptake. Phys Chem Chem Phys. https://doi.org/10.1039/b415618h

    Article  Google Scholar 

  41. Tonle IK, Letaief S, Ngameni E, Walcarius A, Detellier C (2011) Square wave voltammetric determination of lead(ii) ions using a carbon paste electrode modified by a thiol-functionalized kaolinite. Electroanalysis 23(1):245–252. https://doi.org/10.1002/elan.201000467

    Article  CAS  Google Scholar 

  42. Jiemboue AT, Ngameni E, Walcarius A (2006) Thiol-functionalized porous clay heterosstructures (PCHs) deposited as thin film on carbon electrode: towards mercury (II) sensing. Sens Actuators B 121:113–123. https://doi.org/10.1016/j.snb.2006.09.005

    Article  CAS  Google Scholar 

  43. Dedzo GK, Detellier C (2013) Ionic liquid-kaolinite nanohybrid materials for the amperometric detection of trace levels of iodide. Analyst 138:767–770. https://doi.org/10.1039/C2AN36618E

    Article  CAS  PubMed  Google Scholar 

  44. Nguelo BB, Fomat MF, Dedzo GK, Ngameni E (2020) Catalytic detection of iodide at cationic kaolinite modified gold electrode in presence of thiosulfate. Electroanalysis 32:1417–1425. https://doi.org/10.1002/elan.201900569

    Article  CAS  Google Scholar 

  45. Tonle IK, Diaco T, Ngameni E, Detellier C (2007) Nanohybrid kaolinite-based materials obtained from the interlayer grafting of 3-Aminopropyltriethoxysilane and their potential use as electrochemical sensors. Chem Mater 19:6629–6636. https://doi.org/10.1021/cm702206z

    Article  CAS  Google Scholar 

  46. Dedzo GK, Letaief S, Detellier C (2012) Kaolinite–ionic liquid nanohybrid materials as electrochemical sensors for size-selective detection of anions. J Mater Chem 22:20593–20601. https://doi.org/10.1039/C2JM34772E

    Article  CAS  Google Scholar 

  47. Tonle IK, Letaief S, Ngameni E, Detellier C (2009) Nanohybrid materials from the grafting of imidazolium cations on the interlayer surfaces of kaolinite. Application as electrode modifier. J Mater Chem 19:5996–6003. https://doi.org/10.1039/C2JM34772E

    Article  CAS  Google Scholar 

  48. Ngassa GBP, Tonle IK, Walcarius A, Ngameni E (2016b) An inorganic-organic hybrid material from the co-intercalation of a cationic surfactant and thiourea within montmorillonite layers: application to the sensitive stripping voltammetric detection of Pb2+ and Cd2+ ions. C R Chim 19:789–797. https://doi.org/10.1016/j.crci.2015.08.008

    Article  CAS  Google Scholar 

  49. Tunney JJ, Detellier C (1996) Chemically modified kaolinite. Grafting of methoxy groups on the interlamellar aluminol surface of kaolinite. J Mater Chem 6(10):1679–1685. https://doi.org/10.1039/JM9960601679

    Article  CAS  Google Scholar 

  50. Letaief S, Elbokl TA, Detellier C (2006) Reactivity of ionic liquids with kaolinite: melt intersalation of ethylpyridinium chloride in an urea-kaolinite pre-intercalate. J Coll Interf Sci 302:254–258. https://doi.org/10.1016/j.jcis.2006.06.008

    Article  CAS  Google Scholar 

  51. Letaief S, Detellier C (2007) Functionalized nanohybrid materials obtained from the interlayer grafting of aminoalcohols on kaolinite. Chem Commun. https://doi.org/10.1039/B701235G

    Article  Google Scholar 

  52. Tunney JJ, Detellier C (1994) Preparation and characterization of two distinct ethylene glycol derivatives of kaolinite. Clays Clay Min 42:552–560. https://doi.org/10.1346/CCMN.1994.0420506

    Article  CAS  Google Scholar 

  53. Raupach M, Barron PF, Thompson JG (1987) Nuclear magnetic resonance, infrared, and X-ray powder diffraction study of dimethylsulfoxide and dimethylselenoxide intercalates with kaolinite. Clays Clay Min 35:208–219. https://doi.org/10.1346/CCMN.1987.0350307

    Article  CAS  Google Scholar 

  54. Barron PF, Frost RL, Skjemstad JO, Koppi AJ (1983) Detection of two silicon environments in kaolins by solid-state silicon-29 NMR. Nature 302:49–50. https://doi.org/10.1038/302049a0

    Article  CAS  Google Scholar 

  55. Thompson JG, Barron PF (1987) Further consideration of the 29Si nuclear magnetic resonance spectrum of kaolinite. Clays Clay Min 35:38–42. https://doi.org/10.1346/CCMN.1987.0350105

    Article  CAS  Google Scholar 

  56. Lipsicas M, Raythatha R, Giese RFJ, Costanzo PM (1986) Molecular motions, surface interactions, and stacking disorder in kaolinite intercalates. Clays Clay Min 34:635–644. https://doi.org/10.1346/CCMN.1986.0340603

    Article  CAS  Google Scholar 

  57. Matusik J, Kłapyta Z, Olejniczak Z (2013) NMR and IR study of kaolinite intercalation compounds with benzylalkylammonium chlorides. Appl Clay Sci 83–84:426–432. https://doi.org/10.1016/j.clay.2013.07.008

    Article  CAS  Google Scholar 

  58. Tonle IK, Ngameni E, Walcarius A (2004) From clay to organoclay-film modified electrodes: tuning charge selectivity in ion exchange voltammetry. Electrochim Acta 49:3435–3443. https://doi.org/10.1016/j.electacta.2004.03.012

    Article  CAS  Google Scholar 

  59. Ngameni E, Tonle IK, Apohkeng JT, Bouwé RGB, Jieumboué AT, Walcarius A (2006) Permselective and preconcentration properties of a surfactant-intercaled clay modified electrode. Electroanalysis 18(22):2243–2250. https://doi.org/10.1002/elan.200603654

    Article  CAS  Google Scholar 

  60. Tcheumi HL, Tonle IK, Ngameni E, Walcarius A (2010) Electrochemical analysis of methylparathion pesticide by a gemini surfactant-intercalated clay-modified electrode. Talanta 81:972–979. https://doi.org/10.1016/j.talanta.2010.01.049

    Article  CAS  PubMed  Google Scholar 

  61. Nguelo BB, Nganji SU, Yami KRY, Dedzo KG, Ngameni E (2022) Electrochemical study of methoxykaolinite interactions with cations and applications to trace level detection of pb(II) in various aqueous media. Clays Clays Min. https://doi.org/10.1007/s42860-022-00196-3

    Article  Google Scholar 

Download references

Funding

This work was financed partially by a Discovery Grant of the Natural Sciences and Engineering Research Council of Canada (NSERC). The Canada Foundation for Innovation and the Ontario Research Fund are gratefully acknowledged for infrastructure grants to the Centre for Catalysis Research and Innovation of the University of Ottawa. The authors thank the International Science Programme (ISP, Sweden) for its support to the African Network of Electroanalytical Chemist (ANEC).

Author information

Authors and Affiliations

Authors

Contributions

GBPN conceptualization and original draft writing, data collection and formal analysis. RT data collection and formal analysis. MB data collection and formal analysisI. KT funding acquisition supervised the present work. All authors reviewed the manuscript.

Corresponding author

Correspondence to Guy Bertrand Piegang Ngassa.

Ethics declarations

Competing interest

The authors declare no competing interests.

Ethical approval

Not Applicable (as the results of studies do not involve any human or animal).

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2809 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngassa, G.B.P., Tchoffo, R., Boutianala, M. et al. Electrochemical sensor based on a thin film of organokaolinite material modified glassy carbon electrode (GCE) and application to the simultaneous sensitive detection of Pb2+ and Cu2+ ions in contaminated water. J Appl Electrochem 54, 2339–2359 (2024). https://doi.org/10.1007/s10800-024-02101-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-024-02101-3

Keywords