Mesenchymal Stem/Stromal Cells Reverse Adipose Tissue Inflammation in Pigs with Metabolic Syndrome and Renovascular Hypertension
"> Figure 1
<p>Schematic of the experimental protocol and treatment timeline.</p> "> Figure 2
<p>MSCs downregulate visceral adipose tissue accumulation. (<b>A</b>) Abdominal CT axial images with post-imaging processing highlighting subcutaneous (red) and visceral (yellow) fat. (<b>B</b>) Visceral fat fraction was augmented in MetS and MetS + RAS, but not in MetS + RAS + MSC. (<b>C</b>) The subcutaneous fat fraction was increased in all 3 experimental groups relative to Lean. * <span class="html-italic">p</span> < 0.05 vs. Lean. MetS, metabolic syndrome; RAS, renal artery stenosis; MSC, mesenchymal stem/stromal cells.</p> "> Figure 3
<p>MSCs attenuate adipose tissue fibrosis and hypertrophy. Representative images of trichrome-stained (blue) perirenal (<b>A</b>) and subcutaneous (<b>B</b>) fat (10× magnification). Pink: eosin counterstain. (<b>C</b>) Perirenal fat fibrosis increased in MetS + RAS but was attenuated by the delivery of MSCs. (<b>D</b>) Subcutaneous fat fibrosis was only higher in MetS + RAS vs. MetS. (<b>E</b>) Adipocyte cross-sectional area was higher in the perirenal fat of MetS + RAS vs. Lean, suggesting hypertrophy, but decreased in MetS + RAS + MSC. (<b>F</b>) In the subcutaneous fat, MetS had smaller adipocytes compared to Lean and MetS + RAS. * <span class="html-italic">p</span> < 0.05 vs. Lean; <sup>†</sup> <span class="html-italic">p</span> < 0.05 vs. MetS; <sup><span>$</span></sup> <span class="html-italic">p</span> < 0.05 vs. MetS + RAS. MetS, metabolic syndrome; RAS, renal artery stenosis; MSC, mesenchymal stem/stromal cells.</p> "> Figure 4
<p>MSCs downregulate perirenal adipose tissue inflammation. (<b>A</b>) Representative immunofluorescence images (40×) showing the expression of MCP-1 (red), TNF-a (green), and IL-6 (red) in pig perirenal fat. MCP-1 (<b>B</b>), TNF-a (<b>C</b>), and IL-6 (<b>D</b>) were upregulated in MetS + RAS relative to Lean and MetS but were downregulated in MetS + RAS + MSC. * <span class="html-italic">p</span> < 0.05 vs. Lean; <sup>†</sup> <span class="html-italic">p</span> < 0.05 vs. MetS; <sup><span>$</span></sup> <span class="html-italic">p</span> < 0.05 vs. MetS + RAS. MetS, metabolic syndrome; RAS, renal artery stenosis; MSC, mesenchymal stem/stromal cell.</p> "> Figure 5
<p>MSCs downregulate subcutaneous adipose tissue inflammation. (<b>A</b>) Representative immunofluorescence staining images (40×) showing the expression of MCP-1 (red), TNF-a (green), and IL-6 (red) in pig subcutaneous fat. MCP-1 (<b>B</b>) and TNF-a (<b>C</b>) were upregulated in MetS + RAS vs. Lean. MCP-1 significantly decreased in MetS + RAS + MSC and TNF-a tended to decrease as well. (<b>D</b>) IL-6 expression was not elevated in MetS or MetS + RAS vs. Lean. Nevertheless, MSCs reduced IL-6 expression compared to MetS + RAS. * <span class="html-italic">p</span> < 0.05 vs. Lean; <sup>†</sup> <span class="html-italic">p</span> < 0.05 vs. MetS; <sup><span>$</span></sup> <span class="html-italic">p</span> < 0.05 vs. MetS + RAS. MetS, metabolic syndrome; RAS, renal artery stenosis; MSC, mesenchymal stem/stromal cell.</p> "> Figure 6
<p>MSCs downregulate proinflammatory cytokine gene expression. (<b>A</b>,<b>C</b>,<b>E</b>) MCP-1 and IL-6 gene expression was upregulated in the MetS + RAS perirenal fat relative to Lean, but MSC treatment attenuated this effect. A slight elevation of TNF-a gene expression (<span class="html-italic">p</span> = 0.09) in the perirenal fat of MetS + RAS did not achieve statistical significance. (<b>B</b>,<b>D</b>,<b>F</b>) In the subcutaneous fat, no differences in MCP-1 or TNF-a gene expression were observed among the four groups. However, IL-6 mRNA expression was reduced in the MetS + RAS pigs, while in the MetS + RAS + MSC group, IL-6 levels trended lower relative to the Lean group (<span class="html-italic">p</span> = 0.08) but did not reach statistical significance. * <span class="html-italic">p</span> < 0.05 vs. Lean; <sup>†</sup> <span class="html-italic">p</span> < 0.05 vs. MetS. MetS, metabolic syndrome; RAS, renal artery stenosis; MSC, mesenchymal stem cells.</p> "> Figure 7
<p>MSCs alter perirenal and subcutaneous anti-inflammatory and adipogenic gene expression. (<b>A</b>) Perirenal fat showed upregulated TSG-6 expression in MetS and MetS + RAS + MSC relative to Lean. (<b>B</b>) In contrast, subcutaneous fat showed downregulated TSG-6 expression in MetS and MetS + RAS relative to Lean. MetS + RAS + MSC tended to be lower than Lean, but this did not reach statistical significance (<span class="html-italic">p</span> = 0.06). C/EBPa expression increased only in the perirenal fat of MetS + RAS + MSC pigs relative to Lean (<b>C</b>) and in the subcutaneous fat of MetS + RAS relative to Lean and MetS (<b>D</b>). (<b>E</b>) Perirenal fat C/EBPb expression was upregulated in MetS relative to Lean and in MetS + RAS + MSC relative to Lean and MetS + RAS. (<b>F</b>) Subcutaneous fat expression of C/EBPb was upregulated in MetS + RAS relative to Lean and MetS. PPARy was upregulated in the perirenal fat of MetS + RAS relative to Lean (<b>G</b>) but was unchanged in the subcutaneous fat of all pig groups (<b>H</b>). * <span class="html-italic">p</span> < 0.05 vs. Lean; <sup>†</sup> <span class="html-italic">p</span> < 0.05 vs. MetS; <sup><span>$</span></sup> <span class="html-italic">p</span> < 0.05 vs. MetS + RAS. MetS, metabolic syndrome; RAS, renal artery stenosis; MSC, mesenchymal stem cells.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Animal Preparation
2.2. Specific Methods
2.3. Systemic and Post-Stenotic Renal Vein Blood Analysis
2.4. Adipose Tissue Volume
2.5. Adipose Tissue Remodeling
2.6. Adipose Tissue Inflammatory Markers
2.7. Statistical Analysis
3. Results
3.1. Systemic Characteristics
3.2. Intrarenally Injected MSCs Decrease Inflammation
3.3. MSCs Attenuate Visceral Adipose Accumulation
3.4. MSCs Reduce Perirenal Fat Remodeling
3.5. MSCs Reduce Fat Inflammation in MetS + RAS
3.6. MSCs Alter Adipogenic Gene Expression in Perirenal Adipose Tissue
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, P.L. A comprehensive definition for metabolic syndrome. Dis. Model. Mech. 2009, 2, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Kawai, T.; Autieri, M.V.; Scalia, R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am. J. Physiol. Cell Physiol. 2021, 320, C375–C391. [Google Scholar] [CrossRef] [PubMed]
- Huang Cao, Z.F.; Stoffel, E.; Cohen, P. Role of Perivascular Adipose Tissue in Vascular Physiology and Pathology. Hypertension 2017, 69, 770–777. [Google Scholar] [CrossRef]
- Horwitz, A.; Birk, R. Adipose Tissue Hyperplasia and Hypertrophy in Common and Syndromic Obesity-The Case of BBS Obesity. Nutrients 2023, 15, 3445. [Google Scholar] [CrossRef]
- Tyagi, S.; Gupta, P.; Saini, A.S.; Kaushal, C.; Sharma, S. The peroxisome proliferator-activated receptor: A family of nuclear receptors role in various diseases. J. Adv. Pharm. Technol. Res. 2011, 2, 236–240. [Google Scholar] [CrossRef] [PubMed]
- Berg, A.H.; Scherer, P.E. Adipose Tissue, Inflammation, and Cardiovascular Disease. Circ. Res. 2005, 96, 939–949. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M. Adipose tissue and metabolic syndrome: Too much, too little or neither. Eur. J. Clin. Investig. 2015, 45, 1209–1217. [Google Scholar] [CrossRef] [PubMed]
- Kloting, N.; Bluher, M. Adipocyte dysfunction, inflammation and metabolic syndrome. Rev. Endocr. Metab. Disord. 2014, 15, 277–287. [Google Scholar] [CrossRef]
- Schleinitz, D.; Krause, K.; Wohland, T.; Gebhardt, C.; Linder, N.; Stumvoll, M.; Bluher, M.; Bechmann, I.; Kovacs, P.; Gericke, M.; et al. Identification of distinct transcriptome signatures of human adipose tissue from fifteen depots. Eur. J. Hum. Genet. 2020, 28, 1714–1725. [Google Scholar] [CrossRef]
- Kim, S.; Cho, B.; Lee, H.; Choi, K.; Hwang, S.S.; Kim, D.; Kim, K.; Kwon, H. Distribution of abdominal visceral and subcutaneous adipose tissue and metabolic syndrome in a Korean population. Diabetes Care 2011, 34, 504–506. [Google Scholar] [CrossRef] [PubMed]
- Tastemur, S.; Olcucuoglu, E.; Karaaslan, M. High Perirenal Fat Volume Affect Negatively Renal Function in Living Renal Transplantation. Transplant. Proc. 2022, 54, 1768–1772. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Zhu, X.Y.; Eirin, A.; Woollard, J.R.; Jordan, K.L.; Tang, H.; Lerman, A.; Lerman, L.O. Perirenal Fat Promotes Renal Arterial Endothelial Dysfunction in Obese Swine through Tumor Necrosis Factor-alpha. J. Urol. 2016, 195, 1152–1159. [Google Scholar] [CrossRef]
- D’Agati, V.D.; Chagnac, A.; de Vries, A.P.; Levi, M.; Porrini, E.; Herman-Edelstein, M.; Praga, M. Obesity-related glomerulopathy: Clinical and pathologic characteristics and pathogenesis. Nat. Rev. Nephrol. 2016, 12, 453–471. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, X.Y.; Song, T.; Zhang, L.; Eirin, A.; Conley, S.; Tang, H.; Saadiq, I.; Jordan, K.; Lerman, A.; et al. Mesenchymal stem cells protect renal tubular cells via TSG-6 regulating macrophage function and phenotype switching. Am. J. Physiol. Renal Physiol. 2021, 320, F454–F463. [Google Scholar] [CrossRef]
- Song, T.; Zhao, Y.; Zhu, X.; Eirin, A.; Krier, J.D.; Tang, H.; Jordan, K.L.; Lerman, A.; Lerman, L.O. Superimposition of metabolic syndrome magnifies post-stenotic kidney injury in dyslipidemic pigs. Am. J. Transl. Res. 2021, 13, 8965–8976. [Google Scholar]
- Eirin, A.; Gloviczki, M.L.; Tang, H.; Gossl, M.; Jordan, K.L.; Woollard, J.R.; Lerman, A.; Grande, J.P.; Textor, S.C.; Lerman, L.O. Inflammatory and injury signals released from the post-stenotic human kidney. Eur. Heart J. 2013, 34, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Littlejohn, N.K.; Keen, H.L.; Weidemann, B.J.; Claflin, K.E.; Tobin, K.V.; Markan, K.R.; Park, S.; Naber, M.C.; Gourronc, F.A.; Pearson, N.A.; et al. Suppression of Resting Metabolism by the Angiotensin AT2 Receptor. Cell Rep. 2016, 16, 1548–1560. [Google Scholar] [CrossRef]
- Yilmaz, M.I.; Sonmez, A.; Caglar, K.; Celik, T.; Yenicesu, M.; Eyileten, T.; Acikel, C.; Oguz, Y.; Yavuz, I.; Vural, A. Effect of antihypertensive agents on plasma adiponectin levels in hypertensive patients with metabolic syndrome. Nephrology (Carlton) 2007, 12, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Xu, J. Immune modulation by mesenchymal stem cells. Cell Prolif. 2020, 53, e12712. [Google Scholar] [CrossRef]
- Shamsuddin, S.A.; Chan, A.M.L.; Ng, M.H.; Yazid, M.D.; Law, J.X.; Hj Idrus, R.B.; Fauzi, M.B.; Mohd Yunus, M.H.; Lokanathan, Y. Stem cells as a potential therapy in managing various disorders of metabolic syndrome: A systematic review. Am. J. Transl. Res. 2021, 13, 12217–12227. [Google Scholar] [PubMed]
- Zhao, Y.; Zhu, X.; Zhang, L.; Ferguson, C.M.; Song, T.; Jiang, K.; Conley, S.M.; Krier, J.D.; Tang, H.; Saadiq, I.; et al. Mesenchymal Stem/Stromal Cells and their Extracellular Vesicle Progeny Decrease Injury in Poststenotic Swine Kidney Through Different Mechanisms. Stem Cells Dev. 2020, 29, 1190–1200. [Google Scholar] [CrossRef]
- Choi, H.; Lee, R.H.; Bazhanov, N.; Oh, J.Y.; Prockop, D.J. Anti-inflammatory protein TSG-6 secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NF-kappaB signaling in resident macrophages. Blood 2011, 118, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Lerman, L.O. The metabolic syndrome and chronic kidney disease. Transl. Res. 2017, 183, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.S.; Yi, M.Y.; Wu, X.; Liu, Q.; Deng, Y.H.; Wu, T.; Wang, L.; Kang, Y.X.; Luo, X.Q.; Yan, P.; et al. Effects of mesenchymal stem cells in renovascular disease of preclinical and clinical studies: A systematic review and meta-analysis. Sci. Rep. 2022, 12, 18080. [Google Scholar] [CrossRef] [PubMed]
- Lerman, L.O.; Schwartz, R.S.; Grande, J.P.; Sheedy, P.F.; Romero, J.C. Noninvasive evaluation of a novel swine model of renal artery stenosis. J. Am. Soc. Nephrol. 1999, 10, 1455–1465. [Google Scholar] [CrossRef] [PubMed]
- Bunnell, B.A.; Flaat, M.; Gagliardi, C.; Patel, B.; Ripoll, C. Adipose-derived stem cells: Isolation, expansion and differentiation. Methods 2008, 45, 115–120. [Google Scholar] [CrossRef]
- Zhu, X.Y.; Urbieta-Caceres, V.; Krier, J.D.; Textor, S.C.; Lerman, A.; Lerman, L.O. Mesenchymal stem cells and endothelial progenitor cells decrease renal injury in experimental swine renal artery stenosis through different mechanisms. Stem Cells 2013, 31, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Eirin, A.; Zhu, X.Y.; Jonnada, S.; Lerman, A.; van Wijnen, A.J.; Lerman, L.O. Mesenchymal Stem Cell-Derived Extracellular Vesicles Improve the Renal Microvasculature in Metabolic Renovascular Disease in Swine. Cell Transplant. 2018, 27, 1080–1095. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Galili, O.; Versari, D.; Sattler, K.J.; Olson, M.L.; Mannheim, D.; McConnell, J.P.; Chade, A.R.; Lerman, L.O.; Lerman, A. Early experimental obesity is associated with coronary endothelial dysfunction and oxidative stress. Am. J. Physiol. Heart Circ. Physiol. 2007, 292, H904–H911. [Google Scholar] [CrossRef]
- Parlee, S.D.; Lentz, S.I.; Mori, H.; MacDougald, O.A. Quantifying size and number of adipocytes in adipose tissue. Methods Enzymol. 2014, 537, 93–122. [Google Scholar] [PubMed]
- Eirin, A.; Zhu, X.Y.; Puranik, A.S.; Tang, H.; McGurren, K.A.; van Wijnen, A.J.; Lerman, A.; Lerman, L.O. Mesenchymal stem cell-derived extracellular vesicles attenuate kidney inflammation. Kidney Int. 2017, 92, 114–124. [Google Scholar] [CrossRef]
- Bagno, L.L.; Salerno, A.G.; Balkan, W.; Hare, J.M. Mechanism of Action of Mesenchymal Stem Cells (MSCs): Impact of delivery method. Expert. Opin. Biol. Ther. 2022, 22, 449–463. [Google Scholar] [CrossRef] [PubMed]
- Kahn, C.R.; Wang, G.; Lee, K.Y. Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. J. Clin. Investig. 2019, 129, 3990–4000. [Google Scholar] [CrossRef] [PubMed]
- Iacobini, C.; Vitale, M.; Haxhi, J.; Menini, S.; Pugliese, G. Impaired Remodeling of White Adipose Tissue in Obesity and Aging: From Defective Adipogenesis to Adipose Organ Dysfunction. Cells 2024, 13, 763. [Google Scholar] [CrossRef]
- Deshmane, S.L.; Kremlev, S.; Amini, S.; Sawaya, B.E. Monocyte chemoattractant protein-1 (MCP-1): An overview. J. Interferon Cytokine Res. 2009, 29, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Popko, K.; Gorska, E.; Stelmaszczyk-Emmel, A.; Plywaczewski, R.; Stoklosa, A.; Gorecka, D.; Pyrzak, B.; Demkow, U. Proinflammatory cytokines Il-6 and TNF-alpha and the development of inflammation in obese subjects. Eur. J. Med. Res. 2010, 15 (Suppl. S2), 120–122. [Google Scholar] [CrossRef]
- Kistner, T.M.; Pedersen, B.K.; Lieberman, D.E. Interleukin 6 as an energy allocator in muscle tissue. Nat. Metab. 2022, 4, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Wueest, S.; Konrad, D. The controversial role of IL-6 in adipose tissue on obesity-induced dysregulation of glucose metabolism. Am. J. Physiol. Endocrinol. Metab. 2020, 319, E607–E613. [Google Scholar] [CrossRef] [PubMed]
- Jonas, M.I.; Kurylowicz, A.; Bartoszewicz, Z.; Lisik, W.; Jonas, M.; Wierzbicki, Z.; Chmura, A.; Pruszczyk, P.; Puzianowska-Kuznicka, M. Interleukins 6 and 15 Levels Are Higher in Subcutaneous Adipose Tissue, but Obesity Is Associated with Their Increased Content in Visceral Fat Depots. Int. J. Mol. Sci. 2015, 16, 25817–25830. [Google Scholar] [CrossRef]
- Gerstner, M.; Heller, V.; Fechner, J.; Hermann, B.; Wang, L.; Lausen, J. Prmt6 represses the pro-adipogenic Ppar-gamma-C/ebp-alpha transcription factor loop. Sci. Rep. 2024, 14, 6656. [Google Scholar] [CrossRef] [PubMed]
- Grigoras, A.; Balan, R.A.; Caruntu, I.D.; Giusca, S.E.; Lozneanu, L.; Avadanei, R.E.; Rusu, A.; Riscanu, L.A.; Amalinei, C. Perirenal Adipose Tissue-Current Knowledge and Future Opportunities. J. Clin. Med. 2021, 10, 1291. [Google Scholar] [CrossRef] [PubMed]
- Baer, P.C.; Koch, B.; Hickmann, E.; Schubert, R.; Cinatl, J., Jr.; Hauser, I.A.; Geiger, H. Isolation, Characterization, Differentiation and Immunomodulatory Capacity of Mesenchymal Stromal/Stem Cells from Human Perirenal Adipose Tissue. Cells 2019, 8, 1346. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, G.; Liu, J.; Ding, G. Increased UCP1 expression in the perirenal adipose tissue of patients with renal cell carcinoma. Oncol. Rep. 2019, 42, 1972–1980. [Google Scholar] [CrossRef] [PubMed]
- Pawar, A.S.; Eirin, A.; Tang, H.; Zhu, X.Y.; Lerman, A.; Lerman, L.O. Upregulated tumor necrosis factor-alpha transcriptome and proteome in adipose tissue-derived mesenchymal stem cells from pigs with metabolic syndrome. Cytokine 2020, 130, 155080. [Google Scholar] [CrossRef] [PubMed]
Lean (n = 6) | MetS (n = 6) | MetS + RAS (n = 6) | MetS + RAS + MSC (n = 6) | |
---|---|---|---|---|
Body Weight (kg) | 71 ± 12 | 94 ± 2 * | 92 ± 7 * | 81 ± 14 † |
Stenosis (%) | 0 | 0 | 60 ± 24 * | 88 ± 19 *$ |
Fasting Glucose (mg/dL) | 146 ± 16 | 157 ± 42 | 150 ± 37 | 130 ± 13 |
Fasting Insulin (ulU/mL) | 24 ± 4.2 | 27 ± 6.2 | 33 ± 11 | 22 ± 4.7 |
HOMA-IR | 8.5 ± 1.1 | 10 ± 2.5 | 12 ± 4.0 | 7.2 ± 1.9 $ |
Total Cholesterol (mg/dL) | 75 ± 7 | 434 ± 219 * | 417 ± 142 * | 479 ± 285 * |
SCr (μmol/L) | 1.60 ± 0.31 | 1.79 ± 0.15 | 1.73 ± 0.18 | 1.93 ± 0.21 |
PRA (ng/mL/h) | 98.53 ± 7.21 | 187.7 ± 59.58 * | 185.71 ± 34.00 * | 187.40 ± 60.08 * |
MAP (mmHg) | 103 ± 11 | 125 ± 9 * | 131 ± 18 * | 127 ± 39 |
Renal Vein MCP-1 (pg/mL) | 433 ± 395 | 332 ± 120 | 2143 ± 1519 *† | 588 ± 423 |
Systemic MCP-1 (pg/mL) | 147 ± 89 | 705 ± 413 * | 1284 ± 781 * | 768 ± 286 * |
Renal Vein TNF-a (pg/mL) | 36.3 ± 11 | 97.2 ± 98 | 63.9 ± 20 | 36.3 ± 15 |
Systemic TNF-a (pg/mL) | 43.6 ± 22 | 33.2 ± 7.7 | 96.1 ± 74 | 43.4 ± 18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krueger, A.B.C.; Zhu, X.; Siddiqi, S.; Whitehead, E.C.; Tang, H.; Jordan, K.L.; Lerman, A.; Lerman, L.O. Mesenchymal Stem/Stromal Cells Reverse Adipose Tissue Inflammation in Pigs with Metabolic Syndrome and Renovascular Hypertension. Cells 2025, 14, 40. https://doi.org/10.3390/cells14010040
Krueger ABC, Zhu X, Siddiqi S, Whitehead EC, Tang H, Jordan KL, Lerman A, Lerman LO. Mesenchymal Stem/Stromal Cells Reverse Adipose Tissue Inflammation in Pigs with Metabolic Syndrome and Renovascular Hypertension. Cells. 2025; 14(1):40. https://doi.org/10.3390/cells14010040
Chicago/Turabian StyleKrueger, Alexander B. C., Xiangyang Zhu, Sarosh Siddiqi, Emma C. Whitehead, Hui Tang, Kyra L. Jordan, Amir Lerman, and Lilach O. Lerman. 2025. "Mesenchymal Stem/Stromal Cells Reverse Adipose Tissue Inflammation in Pigs with Metabolic Syndrome and Renovascular Hypertension" Cells 14, no. 1: 40. https://doi.org/10.3390/cells14010040
APA StyleKrueger, A. B. C., Zhu, X., Siddiqi, S., Whitehead, E. C., Tang, H., Jordan, K. L., Lerman, A., & Lerman, L. O. (2025). Mesenchymal Stem/Stromal Cells Reverse Adipose Tissue Inflammation in Pigs with Metabolic Syndrome and Renovascular Hypertension. Cells, 14(1), 40. https://doi.org/10.3390/cells14010040