Perirenal Adipose Tissue—Current Knowledge and Future Opportunities
<p>Schematic diagram of perirenal adipose tissue involvement in pathology. FFAs—free fatty acids; MCP-1—monocyte chemoattractant protein-1; SRAA—renin-angiotensin-aldosterone system; TGs—triglycerides; TNF-α—tumor necrosis factor-α; ↑—increased level.</p> "> Figure 2
<p>Hypothetical pathways of perirenal adipose tissue (PRAT) induced tumor progression. HOXC8—homeobox protein 8; HOXC9—homeobox protein 9; IL-6—interleukin 6; PRAT—perirenal adipose tissue; TNF-α—tumor necrosis factor-α; UCP-1—uncoupling protein 1; ↑—increased level; ↓—decreased level; ?—unknown.</p> ">
Abstract
:1. Introduction
2. Origin and Structure
3. PRAT in Chronic Renal Pathology
4. PRAT in Metabolic and Cardiovascular Pathology
5. PRAT in Tumor Pathology
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hildebrand, S.; Stümer, J.; Pfeifer, A. PVAT and Its Relation to Brown, Beige, and White Adipose Tissue in Development and Function. Front. Physiol. 2018, 9, 70. [Google Scholar] [CrossRef] [Green Version]
- Lara-Castro, C.; Garvey, T. Intracellular lipid accumulation in liver and muscle and the insulin resistance syndrome. Endocrinol. Metab. Clin. N. Am. 2008, 37, 841–856. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Wang, S.; Wang, Y.; Zhou, N.; Shu, J.; Stamm, C.; Jiang, M.; Luo, F. Association of epicardial adipose tissue attenuation with coronary atherosclerosis in patients with a high risk of coronary artery disease. Atherosclerosis 2019, 284, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Stieber, C.; Malka, K.; Boucher, J.M.; Liaw, L. Human Perivascular Adipose Tissue as a Regulator of the Vascular Microenvironment and Diseases of the Coronary Artery and Aorta. J. Cardiol. Cardiovasc. Sci. 2019, 3, 10–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynes, M.D.; Tseng, Y.-H. Deciphering adipose tissue heterogeneity. Ann. N. Y. Acad. Sci. 2018, 1411, 5–20. [Google Scholar] [CrossRef] [PubMed]
- Baer, P.C.; Koch, B.; Hickmann, E.; Schubert, R.; Cinatl, J.J.; Hauser, I.A.; Geiger, H. Isolation, Characterization, Differentiation and Immunomodulatory Capacity of Mesenchymal Stromal/Stem Cells from Human Perirenal Adipose Tissue. Cells 2019, 8, 1346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Pergola, G.; Campobasso, N.; Nardecchia, A.; Triggiani, V.; Caccavo, D.; Gesualdo, L.; Silvestris, F.; Manno, C. Para- and perirenal ultrasonographic fat thickness is associated with 24-hours mean diastolic blood pressure levels in overweight and obese subjects. BMC Cardiovasc. Disord. 2015, 15, 108. [Google Scholar] [CrossRef] [Green Version]
- Shen, F.-C.; Cheng, B.-C.; Chen, J.-F. Peri-renal fat thickness is positively associated with the urine albumin excretion rate in patients with type 2 diabetes. Obes. Res. Clin. Pr. 2020, 14, 345–349. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.X.; Sun, W.; Kong, X.Q. Perirenal fat: A unique fat pad and potential target for cardiovascular disease. Angiology 2019, 70, 584–593. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.; Mao, E.-W.; Hou, N.-N.; Liu, Y.-P.; Han, F.; Sun, X.-D. Novel insight into perirenal adipose tissue: A neglected adipose depot linking cardiovascular and chronic kidney disease. World J. Diabetes 2020, 11, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Ricci, M.A.; Scavizzi, M.; Ministrini, S.; de Vuono, S.; Pucci, G.; Lupattelli, G. Morbid obesity and hypertension: The role of perirenal fat. J. Clin. Hypertens. 2018, 20, 1430–1437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, Y.; Xu, Y.; Yang, Y.; Liu, C.; Zhao, D.; Ke, J. The relationship between perirenal fat thick-ness and reduced glomerular filtration rate in patients with type 2 diabetes. J. Diabetes. Res. 2020, 2020, 6076145. [Google Scholar] [CrossRef]
- Standring, S. Gray’s Anatomy: The Anatomical Basis of Clinical Practice, 40th ed.; Elsevier: London, UK, 2020; pp. 251–410. [Google Scholar]
- Notohamiprodjo, M.; Goepfert, M.; Will, S.; Lorbeer, R.; Schick, F.; Rathmann, W.; Martirosian, P.; Peters, A.; Müller-Peltzer, K.; Helck, A.; et al. Renal and renal sinus fat volumes as quantified by magnetic resonance imaging in subjects with prediabetes, diabetes, and normal glucose tolerance. PLoS ONE 2020, 15, e0216635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spit, K.A.; Muskiet, M.H.A.; Tonneijck, L.; Smits, M.M.; Kramer, M.H.H.; Joles, J.A.; de Boer, A.; van Raalte, D.H. Renal sinus fat and renal hemodynamics: A cross-sectional analysis. Magma Magn. Reson. Mater. Phys. Biol. Med. 2020, 33, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Jespersen, N.Z.; Feizi, A.; Andersen, E.S.; Heywood, S.; Hattel, H.B.; Daugaard, S.; Peijs, L.; Bagi, P.; Feldt-Rasmussen, B.; Schultz, H.S.; et al. Heterogeneity in the perirenal region of humans suggests presence of dormant brown adipose tissue that contains brown fat precursor cells. Mol. Metab. 2019, 24, 30–43. [Google Scholar] [CrossRef] [PubMed]
- Hamer, D.W.; Santer, R.M. Anatomy and blood supply of the coeliac-superior mesenteric ganglion complex of the rat. Beiträge Ref. Anat. Entwickelungsgesch. 1981, 162, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Holmes, M.J.; O’Morchoe, P.J.; O’Morchoe, C.C. Morphology of the intrarenal lymphatic system. Capsular and hilar communications. Am. J. Anat. 1977, 149, 333–351. [Google Scholar] [CrossRef] [PubMed]
- Czaja, K.; Kraeling, R.; Klimczuk, M.; Franke-Radowiecka, A.; Sienkiewicz, W.; Lakomy, M. Distribution of ganglionic sympathetic neurons supplying the subcutaneous, perirenal and mesentery fat tissue depots in the pig. Acta. Neurobiol. Exp. 2002, 62, 227–234. [Google Scholar]
- Shoja, M.M.; Tubbs, R.S.; Loukas, M.; Shokouhi, G.; Ghabili, K.; Agutter, P.S. The sub-peritoneal arterial plexus of Sir William Turner. Ann. Anat. Anat. Anz. 2010, 192, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Svensson, P.-A.; Lindberg, K.; Hoffmann, J.M.; Taube, M.; Pereira, M.J.; Mohsen-Kanson, T.; Hafner, A.-L.; Rizell, M.; Palming, J.; Dani, C.; et al. Characterization of brown adipose tissue in the human perirenal depot. Obesity 2014, 22, 1830–1837. [Google Scholar] [CrossRef] [PubMed]
- Schleinitz, D.; Krause, K.; Wohland, T.; Gebhardt, C.; Linder, N.; Stumvoll, M.; Blüher, M.; Bechmann, I.; Kovacs, P.; Gericke, M.; et al. Identification of distinct transcriptome signatures of human adipose tissue from fifteen depots. Eur. J. Hum. Genet. 2020, 28, 1714–1725. [Google Scholar] [CrossRef] [PubMed]
- Efremova, A.; Senzacqua, M.; Venema, W.; Isakov, E.; di Vincenzo, A.; Zingaretti, M.C.; Protasoni, M.; Thomski, M.; Giordano, A.; Cinti, S. A large proportion of mediastinal and perirenal visceral fat of Siberian adult people is formed by UCP1 immunoreactive multilocular and paucilocular adipocytes. J. Physiol. Biochem. 2020, 76, 185–192. [Google Scholar] [CrossRef]
- Svensson, P.-A.; Jernås, M.; Sjöholm, K.; Hoffmann, J.M.; Nilsson, B.E.; Hansson, M.; Carlsson, L.M. Gene expression in human brown adipose tissue. Int. J. Mol. Med. 2011, 27, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Jespersen, N.Z.; Larsen, T.J.; Peijs, L.; Daugaard, S.; Homøe, P.; Loft, A.; de Jong, J.; Mathur, N.; Cannon, B.; Nedergaard, J.; et al. A Classical Brown Adipose Tissue mRNA Signature Partly Overlaps with Brite in the Supraclavicular Region of Adult Humans. Cell Metab. 2013, 17, 798–805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisner, B.; Zargooshi, J.; Berger, A.; Cooperberg, M.; Doyle, S.; Sheth, S.; Stoller, M. Gender differences in subcutaneous and perirenal fat distribution. Surg. Radiol. Anat. 2010, 32, 879–882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Favre, G.; Grangeon-Chapon, C.; Raffaelli, C.; François-Chalmin, F.; Iannelli, A.; Esnault, V. Perirenal fat thickness measured with computed tomography is a reliable estimate of perirenal fat mass. PLoS ONE 2017, 12, e0175561. [Google Scholar] [CrossRef] [PubMed]
- Beukel, J.C.V.D.; Grefhorst, A.; Hoogduijn, M.J.; Steenbergen, J.; Mastroberardino, P.G.; Dor, F.J.; Themmen, A.P. Women have more potential to induce browning of perirenal adipose tissue than men. Obesity 2015, 23, 1671–1679. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhang, M.; Ning, G.; Gu, W.; Su, T.; Xu, M.; Li, B.; Wang, W. Brown Adipose Tissue in Humans Is Activated by Elevated Plasma Catecholamines Levels and Is Inversely Related to Central Obesity. PLoS ONE 2011, 6, e21006. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; McClusky, R.; Chen, J.; Beaven, S.W.; Tontonoz, P.; Arnold, A.P.; Reue, K. The Number of X Chromosomes Causes Sex Differences in Adiposity in Mice. PLoS Genet. 2012, 8, e1002709. [Google Scholar] [CrossRef] [Green Version]
- D’Marco, L.; Salazar, J.; Cortez, M.; Salazar, M.; Wettel, M.; Lima-Martínez, M.; Rojas, E.; Roque, W.; Bermúdez, V. Perirenal fat thickness is associated with metabolic risk factors in patients with chronic kidney disease. Kidney Res. Clin. Pr. 2019, 38, 365–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, X.; Han, F.; Miao, W.; Hou, N.; Cao, Z.; Zhang, G. Sonographic evaluation of para- and perirenal fat thickness is an independent predictor of early kidney damage in obese patients. Int. Urol. Nephrol. 2013, 45, 1589–1595. [Google Scholar] [CrossRef]
- Ejerblad, E.; Fored, C.M.; Lindblad, P.; Fryzek, J.; McLaughlin, J.K.; Nyrén, O. Obesity and Risk for Chronic Renal Failure. J. Am. Soc. Nephrol. 2006, 17, 1695–1702. [Google Scholar] [CrossRef]
- Klausen, K.P.; Parving, H.-H.; Scharling, H.; Jensen, J.S. Microalbuminuria and obesity: Impact on cardiovascular disease and mortality. Clin. Endocrinol. 2009, 71, 40–45. [Google Scholar] [CrossRef]
- Hall, J.E.; Crook, E.D.; Jones, D.W.; Wofford, M.R.; Dubbert, P.M. Mechanisms of obesity-associated cardiovascular and renal disease. Am. J. Med. Sci. 2002, 324, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.; do Carmo, J.; da Silva, A.; Wang, Z.; Hall, M. Obesity, kidney dysfunction and hypertension: Mechanistic links. Nat. Rev. Nephrol. 2019, 15, 367–385. [Google Scholar] [CrossRef] [PubMed]
- Geraci, G.; Zammuto, M.M.; Mattina, A.; Zanoli, L.; Geraci, C.; Granata, A.; Nardi, E.; Fatuzzo, P.M.; Cottone, S.; Mulè, G. Para-perirenal distribution of body fat is associated with reduced glomerular filtration rate regardless of other indices of adiposity in hypertensive patients. J. Clin. Hypertens. 2018, 20, 1438–1446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adeosun, S.O.; Gordon, D.M.; Weeks, M.F.; Moore, K.H.; Hall, J.E.; Hinds, T.D.; Stec, D.E.; Adeosun, S.O. Loss of biliverdin reductase-A promotes lipid accumulation and lipotoxicity in mouse proximal tubule cells. Am. J. Physiol. Physiol. 2018, 315, F323–F331. [Google Scholar] [CrossRef] [PubMed]
- López-Bermejo, A.; Prats-Puig, A.; Osiniri, I.; Martínez-Calcerrada, J.-M.; Bassols, J. Perirenal and epicardial fat and their association with carotid intima-media thickness in children. Ann. Pediatr. Endocrinol. Metab. 2019, 24, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Guo, G.; Morrissey, J.; McCracken, R.; Tolley, T.; Liapis, H.; Klahr, S. Contributions of angiotensin II and tumor necrosis factor-alpha to the development of renal fibrosis. Am. J. Physiol. Renal. Physiol. 2001, 280, F777–F785. [Google Scholar] [CrossRef]
- Tarzi, R.M.; Cook, H.T.; Jackson, I.; Pusey, C.D.; Lord, G.M. Leptin-Deficient Mice Are Protected from Accelerated Nephrotoxic Nephritis. Am. J. Pathol. 2004, 164, 385–390. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Li, M.; Liu, P.; Wang, Y.; Zhang, H.; Li, H.; Yang, S.; Song, Y.; Yin, Y.; Gao, L.; et al. Telmisartan Ameliorates Nephropathy in Metabolic Syndrome by Reducing Leptin Release from Perirenal Adipose Tissue. Hypertension 2016, 68, 478–490. [Google Scholar] [CrossRef] [Green Version]
- Ma, S.; Zhu, X.Y.; Eirin, A.; Woollard, J.R.; Jordan, K.L.; Tang, H.; Lerman, A.; Lerman, L.O. Perirenal fat promotes renal arterial endothelial dysfunction in obese swine through Tumor Necrosis Factor-α. J. Urol. 2016, 195, 1152–1159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ndisang, J.F.; Jadhav, A.; Mishra, M. The Heme Oxygenase System Suppresses Perirenal Visceral Adiposity, Abates Renal Inflammation and Ameliorates Diabetic Nephropathy in Zucker Diabetic Fatty Rats. PLoS ONE 2014, 9, e87936. [Google Scholar] [CrossRef] [PubMed]
- Boissier, R.; François, P.; Tellier, B.G.; Meunier, M.; Lyonnet, L.; Simoncini, S.; Magalon, J.; Legris, T.; Arnaud, L.; Giraudo, L.; et al. Perirenal adipose tissue displays an age-dependent inflammatory signature associated with early graft dysfunction of marginal kidney transplants. Front. Immunol. 2020, 11, 445. [Google Scholar] [CrossRef] [PubMed]
- Manno, C.; Campobasso, N.; Nardecchia, A.; Triggiani, V.; Zupo, R.; Gesualdo, L.; Silvestris, F.; de Pergola, G. Relationship of para- and perirenal fat and epicardial fat with metabolic parameters in overweight and obese subjects. Eat. Weight Disord. Stud. Anorex. Bulim. Obes. 2018, 24, 67–72. [Google Scholar] [CrossRef]
- Lama, D.J.; Safiullah, S.; Yang, A.; Okhunov, Z.; Landman, J.; Clayman, R.V. Three-dimensional evaluation of perirenal fat volume in patients with nephrolithiasis. Urolithiasis 2018, 46, 535–541. [Google Scholar] [CrossRef]
- Heilbronn, L.; Smith, S.R.; Ravussin, E. Failure of fat cell proliferation, mitochondrial function and fat oxidation results in ectopic fat storage, insulin resistance and type II diabetes mellitus. Int. J. Obes. 2004, 28, S12–S21. [Google Scholar] [CrossRef] [Green Version]
- Canoy, D.; Boekholdt, S.M.; Wareham, N.; Luben, R.; Welch, A.; Bingham, S.; Buchan, I.; Day, N.; Khaw, K.T. Body fat distribution and risk of coronary heart disease in men and women in the European prospective investigation into cancer and nutrition in Norfolk cohort: A population-based prospective study. Circulation 2007, 116, 2933–2943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borges, L.S.; Resende, E.S.; Veloso, F.C.; Diniz, A.L.; Penha-Silva, N.; Filho, A.C.; Dourado, P.M.; Chagas, A.C. Perirenal fat and association with metabolic risk factors: The Uberlandia Heart Study. BBA Clin. 2015, 3, S5–S6. [Google Scholar] [CrossRef] [Green Version]
- Bassols, J.; Martínez-Calcerrada, J.M.; Prats-Puig, A.; Carreras-Badosa, G.; Xargay-Torrent, S.; Lizarraga-Mollinedo, E.; Feliu-Alsina, M.; Riera-Pérez, E.; Osiniri, I.; de Zegher, F.; et al. Perirenal fat is related to carotid intima-media thickness in children. Int. J. Obes. 2018, 42, 641–647. [Google Scholar] [CrossRef]
- Xiong, X.Q.; Chen, W.W.; Zhu, G.Q. Adipose afferent reflex: Sympathetic activation and obesity hypertension. Acta Physiol. 2014, 210, 468–478. [Google Scholar] [CrossRef] [PubMed]
- Chughtai, H.L.; Morgan, T.M.; Rocco, M.; Stacey, B.; Brinkley, T.; Ding, J.; Nicklas, B.; Hamilton, C.; Hundley, G. Renal sinus fat and poor blood pressure control in middle-age and elderly individuals at risk for cardiovascular events. Hypertension 2010, 56, 901–906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.; Zhang, H.; Zhang, J.; Xie, C.; Fan, C.; Zhang, H.; Wu, P.; Wei, Q.; Tan, W.; Xu, L.; et al. Inflammation and fibrosis in perirenal adipose tissue of patients with aldosterone-producing adenoma. Endocrinology 2018, 159, 227–237. [Google Scholar] [CrossRef] [Green Version]
- Praga, M.; Morales, E. The Fatty Kidney: Obesity and Renal Disease. Nephron 2016, 136, 273–276. [Google Scholar] [CrossRef]
- Xu, T.; Sheng, Z.; Yao, L. Obesity-related glomerulopathy: Pathogenesis, pathologic, clinical characteristics and treatment. Front. Med. 2017, 11, 340–348. [Google Scholar] [CrossRef]
- Oterdoom, L.H.; de Vries, A.; Ganservoort, R.T.; de Jong, P.E.; Gans, R.O.; Bakker, S.J. Fasting insulin modifies the relation between age and renal function. Nephrol. Dial. Transplant. 2007, 22, 1587–1592. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Cao, C.; Deng, T.; Zhou, Z. Obesity-Related Glomerulopathy: A Latent Change in Obesity Requiring More Attention. Kidney Blood Press. Res. 2020, 45, 510–522. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Luo, M.; Chen, N.; Deng, X.; He, J.; Zhang, L.; Luo, P.; Wu, J. Inhibition of PAI-1 attenuates perirenal fat inflammation and the associated nephropathy in high-fat di-et-induced obese mice. Am. J. Physiol. Endocrinol. Metab. 2019, 316, E260–E267. [Google Scholar] [CrossRef]
- Trayhurn, P.; Wood, I. Signalling role of adipose tissue: Adipokines and inflammation in obesity. Biochem. Soc. Trans. 2005, 33, 1078–1081. [Google Scholar] [CrossRef] [Green Version]
- Al Zaim, I.; Hammoud, S.; Al-Koussa, H.; Ghazi, A.; Eid, A.; El-Yazb, A. Adipose tissue immuno-modulation: A novel therapeutic approach in cardiovascular and metabolic diseases. Front. Cardiovasc. Med. 2020, 7, 602088. [Google Scholar] [CrossRef]
- Mancuso, P. The role of adipokines in chronic inflammation. ImmunoTargets Ther. 2016, 5, 47–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parrish, C.; Pathy, D.; Angel, A. Dietary fish oils limit adipose tissue hypertrophy in rats. Metabolism 1990, 39, 217–219. [Google Scholar] [CrossRef]
- Zhao, S.-Q.; Shi, H.-J.; Zheng, N.-N. Effects of different intensity interval exercise of 6 weeks on body composition of obese rats. Zhongguo Ying Yong Sheng Li Xue Za Zhi 2019, 35, 326–330. [Google Scholar] [PubMed]
- Warner, A.; Kjellstedt, A.; Carreras, A.; Böttcher, G.; Peng, X.-R.; Seale, P.; Oakes, N.; Lindén, D. Activation of β3-adrenoceptors increases in vivo free fatty acid uptake and utilization in brown but not white fat depots in high-fat-fed rats. Am. J. Physiol. Metab. 2016, 311, E901–E910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, H.; Cao, S.; Li, Y.; Zhang, H.; Liu, J. Reduced meal frequency alleviates high-fat diet-induced lipid accumulation and inflammation in adipose tissue of pigs under the circumstance of fixed feed allowance. Eur. J. Nutr. 2019, 59, 595–608. [Google Scholar] [CrossRef]
- Shimizu, I.; Walsh, K. The whitening of brown fat and its implications for weight management in obesity. Curr. Obes. Rep. 2015, 4, 224–229. [Google Scholar] [CrossRef]
- Iyengar, N.; Gucalp, A.; Dannenberg, A.; Hudis, C. Obesity and cancer mechanisms: Tumor micro-environment and inflammation. J. Clin. Oncol. 2016, 34, 4270–4276. [Google Scholar] [CrossRef]
- Avgerinos, K.; Spyrou, N.; Mantzoros, C.; Dalamaga, M. Obesity and cancer risk: Emerging biological mechanisms and perspectives. Metabolism 2019, 92, 121–135. [Google Scholar] [CrossRef]
- Nieman, K.M.; Kenny, H.A.; Penicka, C.V.; Ladanyi, A.; Buell-Gutbrod, R.; Zillhardt, M.R.; Romero, I.L.; Carey, M.S.; Mills, G.B.; Hotamisligil, G.S.; et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat. Med. 2011, 17, 1498–1503. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.-J.; Wu, Y.; Fried, S.K. Adipose tissue heterogeneity: Implication of depot differences in adipose tissue for obesity complications. Mol. Asp. Med. 2013, 34, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Chen, S.; Li, W.; Wu, X.; Xing, J. High perirenal fat thickness predicts a poor progression-free survival in patients with localized clear cell renal cell carcinoma. Urol. Oncol. 2018, 36, 157.e1–157.e6. [Google Scholar] [CrossRef] [PubMed]
- Delahunt, B.; Eble, J.N.; Samaratunga, H.; Thunders, M.; Yaxley, J.W.; Egevad, L. Staging of renal cell carcinoma: Current progress and potential advances. Pathology 2021, 53, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, G.; Liu, J.; Ding, G. Increased UCP1 expression in the perirenal adipose tissue of patients with renal cell carcinoma. Oncol. Rep. 2019, 42, 1972–1980. [Google Scholar] [CrossRef] [PubMed]
- Nieman, K.M.; Romero, I.L.; van Houten, B.; Lengyel, E. Adipose tissue and adipocytes support tumorigenesis and metastasis. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2013, 1831, 1533–1541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, B.; Kim, H.S.; Kim, S.; Haegeman, G.; Tsang, B.; Dhanasekaran, D.; Song, Y.S. Adipose stromal cells from visceral and subcutaneous fat facilitate migration of ovarian cancer cells via IL-6/JAK2/STAT3 pathway. Cancer Res. Treat. 2017, 49, 338–349. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Coletta, A.M.; Allen, P.K.; Parikh, A.M.; Cox-Mattin, M.; Meyer, L.A.; Sun, C.C.; Basen-Engquist, K.M.; Lu, K.H.; Klopp, A.H. Perirenal Adiposity is Associated with Lower Progression-Free Survival from Ovarian Cancer. Int. J. Gynecol. Cancer 2018, 28, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Aquila, I.; Ricci, P.; Oliverio, A.; Gratteri, S. Role of the body mass index in the genesis of ascites in ovarian cancer: A forensic case and review of the literature. BMJ Case Rep. 2018, 11, e226491. [Google Scholar] [CrossRef]
- Kato, S.; Abarzua-Catalan, L.; Trigo, C.; Delpiano, A.; Sanhueza, C.; García, K.; Ibañez, C.; Hor-mazábal, K.; Diaz, D.; Brañes, J.; et al. Leptin stimulates migration and invasion and maintains cancer stem-like properties in ovarian cancer cells: An explanation for poor outcomes in obese women. Oncotarget 2015, 6, 21100–21119. [Google Scholar] [CrossRef] [Green Version]
- Jung, M.; Volonte, F.G.D.; Buchs, N.C.; Gayet-Ageron, A.; Pugin, F.L.; Gervaz, P.; Ris, F.; Morel, P. Perirenal Fat Surface Area as a Risk Factor for Morbidity After Elective Colorectal Surgery. Dis. Colon Rectum 2014, 57, 201–209. [Google Scholar] [CrossRef]
- Eto, K.; Ida, S.; Ohashi, T.; Kumagai, K.; Nunobe, S.; Ohashi, M.; Sano, T.; Hiki, N. Perirenal fat thickness as a predictor of postoperative complications after laparoscopic distal gastrectomy for gastric cancer. BJS Open 2020, 4, 865–872. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grigoraș, A.; Balan, R.A.; Căruntu, I.-D.; Giușcă, S.E.; Lozneanu, L.; Avadanei, R.E.; Rusu, A.; Riscanu, L.A.; Amalinei, C. Perirenal Adipose Tissue—Current Knowledge and Future Opportunities. J. Clin. Med. 2021, 10, 1291. https://doi.org/10.3390/jcm10061291
Grigoraș A, Balan RA, Căruntu I-D, Giușcă SE, Lozneanu L, Avadanei RE, Rusu A, Riscanu LA, Amalinei C. Perirenal Adipose Tissue—Current Knowledge and Future Opportunities. Journal of Clinical Medicine. 2021; 10(6):1291. https://doi.org/10.3390/jcm10061291
Chicago/Turabian StyleGrigoraș, Adriana, Raluca Anca Balan, Irina-Draga Căruntu, Simona Eliza Giușcă, Ludmila Lozneanu, Roxana Elena Avadanei, Andreea Rusu, Laura Adriana Riscanu, and Cornelia Amalinei. 2021. "Perirenal Adipose Tissue—Current Knowledge and Future Opportunities" Journal of Clinical Medicine 10, no. 6: 1291. https://doi.org/10.3390/jcm10061291
APA StyleGrigoraș, A., Balan, R. A., Căruntu, I. -D., Giușcă, S. E., Lozneanu, L., Avadanei, R. E., Rusu, A., Riscanu, L. A., & Amalinei, C. (2021). Perirenal Adipose Tissue—Current Knowledge and Future Opportunities. Journal of Clinical Medicine, 10(6), 1291. https://doi.org/10.3390/jcm10061291