The Tumor Suppressor Par-4 Regulates Adipogenesis by Transcriptional Repression of PPARγ
<p>Adipogenesis and PPARγ expression are inversely associated with Par-4 status. (<b>A</b>) Loss of Par-4 in MEFs enhances adipogenesis. Par-4<sup>+/+</sup> and Par-4<sup>−/−</sup> MEFs were grown in adipocyte differentiation media and subjected to Oil-red O (ORO) staining (left panel). Percentage of ORO-positive cells is shown (right panel). (<b>B</b>) Adipogenesis of 3T3-L1 cells was confirmed by growing them in adipocyte differentiation (AD) medium or control (Con) medium and performing ORO staining. Percentage of ORO-positive cells is shown. (<b>C</b>) Adipogenesis in 3T3-L1 cells is accelerated by Par-4 knockdown and prevented by PPARγ knockdown. Preadipocyte 3T3-L1 cells were transfected with siRNAs for Par-4 or PPARγ, or co-transfected with these siRNAs, and subjected to treatment with adipogenesis differentiation medium. For control, the cells were treated with scrambled siRNA and maintained in adipogenesis differentiation medium (left panels). After staining the cells with ORO, the percentage of cells with oil droplets was calculated (middle panel). Knockdown of Par-4 and PPARγ was confirmed by Western blot analysis (right panel). (<b>D</b>) Adipogenesis in 3T3-L1 cells accelerated by Par-4 knockdown is reversed by Par-4 re-expression. 3T3-L1 cells were transfected with siRNA duplexes for mouse Par-4 or control siRNA and then infected with rat Par-4-expressing adenovirus (P) or control GFP adenovirus (G). The cells were grown in differentiation medium and adipogenesis was examined via oil red O staining (top left panels) and quantified (top right panel). Western blot analysis confirmed Par-4 siRNA knockdown and Par-4 adenoviral expression (bottom panel). (<b>E</b>) Par-4 protein expression is downregulated during adipogenesis. Whole-cell extracts were prepared from Par-4<sup>+/+</sup> and Par-4<sup>−/−</sup> MEFs (left panel) or 3T3-L1 cells (right panel) grown in normal growth medium (control, C) or in adipocyte differentiation medium (AD) for up to 10 days and subjected to Western blot analysis. (<b>A</b>,<b>C</b>,<b>D</b>) Scale bar, 200 μm. (<b>A</b>–<b>D</b>) Mean <span class="underline">+</span> SEM of three independent experiments shown. Asterisks: (*) indicates <span class="html-italic">p</span> < 0.05, (***) indicates <span class="html-italic">p</span> < 0.005, and (****) indicates <span class="html-italic">p</span> < 0.001; n.s. indicates not significant according to the Student’s <span class="html-italic">t</span> test. Molecular weights, β-actin: 42 kDa; Par-4: 40 kDa; GAPDH: 36 kDa; PPARγ: 53,57 kDa.</p> "> Figure 2
<p>PPARγ expression is inversely associated with Par-4 expression. MEFs or adult fibroblasts from Par-4<sup>+/+</sup> and Par-4<sup>−/−</sup> mice (<b>A</b>), human adipose-derived stem cells (ADSCs) differentiated into adipocytes by growing them in adipocyte differentiation (AD) medium or undifferentiated control cells (Con) (<b>B</b>), or MCF7 cells with CRISPR/Cas9 induced Par-4 knockout (Par-4 KO) or control cells (<b>C</b>) were lysed in RIPA buffer and the whole-cell lysates were subjected to Western blotting for Par-4, actin, and PPARγ.</p> "> Figure 3
<p>PPARγ gene transcription is inversely associated with Par-4 expression. (<b>A</b>) Par-4<sup>−/−</sup> MEFs display increased transcription of PPARγ. RNA was extracted from Par-4<sup>+/+</sup> and Par-4<sup>−/−</sup> MEFs and subjected to qPCR for Par-4, PPARγ, and GAPDH. Data normalized to corresponding GAPDH levels are shown. (<b>B</b>) PPARγ expression is inhibited by Par-4 overexpression. 3T3-L1 cells were infected with GFP or GFP-Par-4 producing adenovirus, and whole-cell lysates were subjected to Western blot analysis. (<b>C</b>) Generation of luciferase constructs containing PPARγ2 promoter deletion fragments 1, 2, and 3. The deletion fragments 1, 2, and 3 of the mouse PPARγ (isoform 2) promoter were cloned into pGL4 luciferase expression constructs (left panel). MEFs were transfected with either the luc constructs containing PPARγ promoter fragments or an empty pGL4, in the presence of a β-galactosidase (β-gal) expression construct. Whole-cell extracts were then subjected to luciferase activity assays. The luciferase activity normalized to β-gal activity is shown for Fragments (Frag) 1, 2, and 3 (right panel). (<b>D</b>) Deletion fragment 6 is necessary for Par-4-mediated regulation of the PPARγ2 promoter. PPARγ promoter Fragment 3 was subdivided into five smaller fragments (left panel), and the luc assay was repeated as above in MEFs. Luciferase activity normalized to β-gal is shown (right panel). (<b>E</b>) Nuclear entry is necessary for Par-4 mediated regulation of the PPARγ2 promoter. Par-4<sup>−/−</sup> MEFs were co-transfected with the luc construct containing fragment 6 along with a β-gal expression vector combined with (i) an empty pCB6 control plasmid, (ii) full length Par-4-expression plasmid, (iii) Par-4 plasmid containing deletion of NLS1 sequence (ΔNLS1), or (iv) Par-4 plasmid with deletion of both NLS1 and NLS2 (ΔNLS2). The whole-cell lysates were subjected to luciferase assays; luciferase activity normalized to β-gal is shown. (<b>A</b>,<b>C</b>–<b>E</b>) Means of 3 experiments <span class="underline">+</span> SEM are shown. Asterisks: (***) indicates <span class="html-italic">p</span> < 0.005 and (****) indicates <span class="html-italic">p</span> < 0.001 according to the Student’s <span class="html-italic">t</span> test.</p> "> Figure 4
<p>Par-4 binds to the PPARγ promoter. (<b>A</b>) Endogenous Par-4 protein binds the PPARγ2 promoter sequence in Fragment 6. NIH 3T3 cells were transfected with either an empty control vector, Fragment 6-containing plasmid, or Fragment 7-containing plasmid. These transfected cells were then subjected to ChIP with pull-down accomplished with either anti-Par-4 antibody (Ab) or IgG control Ab. Immunoprecipitated DNA fragments were analyzed using primers for Fragment 6, Fragment 7, or negative control primers. (<b>B</b>) Endogenous Par-4 protein binds the endogenous PPARγ2 promoter region. Non-transfected NIH 3T3 cells were subjected to ChIP analysis with either the anti-Par-4 antibody (Ab), IgG control Ab or C/EBPα Ab. Immunoprecipitated DNA fragments were analyzed using primers for Fragment 6, C/EBP positive-control primers, or negative control primers. (<b>A</b>,<b>B</b>) Means of 3 experiments + SEM are shown. Asterisk (****) indicates <span class="html-italic">p</span> < 0.001 according to the Student’s <span class="html-italic">t</span> test.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Cell Culture
2.3. Constructs and RNA-Interference
2.4. In Vitro Adipogenesis
2.5. Antibodies
2.6. Western Blot Analysis
2.7. Real-Time qPCR
2.8. Oil Red O Staining of Cultured Cells
2.9. Luciferase Reporter Assays
2.10. Promoter Subcloning
2.11. Chromatin Immunoprecipitation (ChIP)
2.12. Statistical Analysis
3. Results
3.1. Par-4 Inhibits Adipogenesis In Vitro
3.2. Par-4 Overexpression Inhibits Adipogenesis
3.3. Adipogenesis Downregulates Par-4 Expression
3.4. PPARγ Expression Is Inversely Associated with Par-4 Status
3.5. Par-4 Transcriptionally Inhibits PPARγ
3.6. Par-4 Overexpression Inhibits PPARγ1 and γ2 Isoforms
3.7. Par-4 Inhibits Transcriptional Activity of the PPARγ2 Promoter
3.8. Nuclear Localization of Par-4 Is Required for Regulation of the PPARγ2 Promoter
3.9. Par-4 Binds the PPARγ2 Promoter
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-Guendy, N.; Zhao, Y.; Gurumurthy, S.; Burikhanov, R.; Rangnekar, V.M. Identification of a unique core domain of par-4 sufficient for selective apoptosis induction in cancer cells. Molec. Cell Biol. 2003, 23, 5516–5525. [Google Scholar] [CrossRef] [PubMed]
- Cheratta, A.R.; Thayyullathil, F.; Pallichankandy, S.; Subburayan, K.; Alakkal, A.; Galadari, S. Prostate apoptosis response-4 and tumor suppression: It’s not just about apoptosis anymore. Cell Death Dis. 2021, 12, 47. [Google Scholar] [CrossRef] [PubMed]
- Cook, J.; Krishnan, S.; Ananth, S.; Sells, S.F.; Shi, Y.; Walther, M.M.; Linehan, W.M.; Sukhatme, V.P.; Weinstein, M.H.; Rangnekar, V.M. Decreased expression of the pro-apoptotic protein Par-4 in renal cell carcinoma. Oncogene 1999, 18, 1205–1208. [Google Scholar] [CrossRef]
- Goswami, A.; Burikhanov, R.; de Thonel, A.; Fujita, N.; Goswami, M.; Zhao, Y.; Eriksson, J.E.; Tsuruo, T.; Rangnekar, V.M. Binding and phosphorylation of par-4 by akt is essential for cancer cell survival. Molec. Cell 2005, 20, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Hebbar, N.; Wang, C.; Rangnekar, V.M. Mechanisms of apoptosis by the tumor suppressor Par-4. J. Cell Physol. 2012, 227, 3715–3721. [Google Scholar] [CrossRef]
- Moreno-Bueno, G.; Fernandez-Marcos, P.J.; Collado, M.; Tendero, M.J.; Rodriguez-Pinilla, S.M.; Garcia-Cao, I.; Hardisson, D.; Diaz-Meco, M.T.; Moscat, J.; Serrano, M.; et al. Inactivation of the candidate tumor suppressor par-4 in endometrial cancer. Cancer Res. 2007, 67, 1927–1934. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Cao, I.; Lafuente, M.J.; Criado, L.M.; Diaz-Meco, M.T.; Serrano, M.; Moscat, J. Genetic inactivation of Par4 results in hyperactivation of NF-kappaB and impairment of JNK and p38. EMBO Rep. 2003, 4, 307–312. [Google Scholar] [CrossRef]
- Contract, D.; Mackley, H.; Irby, R.B. Par-4 sensitizes human colon cancer cells to chemoradiotherapy. J. Cancer Ther. 2011, 2, 542–547. [Google Scholar] [CrossRef]
- Alvarez, J.V.; Pan, T.-C.; Ruth, J.; Feng, Y.; Zhou, A.; Pant, D.; Grimley, J.S.; Wandless, T.J.; Demichele, A.; Chodosh, L.A. Par-4 downregulation promotes breast cancer recurrence by preventing multinucleation following targeted therapy. Cancer Cell 2013, 24, 30–44. [Google Scholar] [CrossRef]
- Pereira, M.C.; de Bessa-Garcia, S.A.; Burikhanov, R.; Pavanelli, A.C.; Antunes, L.; Rangnekar, V.M.; Nagai, M.A. Prostate apoptosis response-4 is involved in the apoptosis response to docetaxel in MCF-7 breast cancer cells. Int. J. Oncol. 2013, 43, 531–538. [Google Scholar] [CrossRef]
- Zhao, Y.; Burikhanov, R.; Qiu, S.; Lele, S.M.; Jennings, C.D.; Bondada, S.; Spear, B.; Rangnekar, V.M. Cancer resistance in transgenic mice expressing the SAC module of Par-4. Cancer Res. 2007, 67, 9276–9285. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Burikhanov, R.; Brandon, J.; Qiu, S.; Shelton, B.J.; Spear, B.; Bondada, S.; Bryson, S.; Rangnekar, V.M. Systemic Par-4 inhibits non-autochthonous tumor growth. Cancer Biol. Ther. 2011, 12, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Burikhanov, R.; Zhao, Y.; Goswami, A.; Qiu, S.; Schwarze, S.R.; Rangnekar, V.M. The tumor suppressor Par-4 activates an extrinsic pathway for apoptosis. Cell 2009, 138, 377–388. [Google Scholar] [CrossRef]
- Gurumurthy, S.; Goswami, A.; Vasudevan, K.M.; Rangnekar, V.M. Phosphorylation of Par-4 by protein kinase A is critical for apoptosis. Mol. Cell Biol. 2005, 25, 1146–1161. [Google Scholar] [CrossRef]
- Johnstone, R.W.; See, R.H.; Sells, S.F.; Wang, J.; Muthukkumar, S.; Englert, C.; Haber, D.A.; Licht, J.D.; Sugrue, S.P.; Roberts, T.; et al. A novel repressor, par-4, modulates transcription and growth suppression functions of the Wilms’ tumor suppressor WT1. Mol. Cell Biol. 1996, 16, 6945–6956. [Google Scholar] [CrossRef]
- Cheema, S.K.; Mishra, S.K.; Rangnekar, V.M.; Tari, A.M.; Kumar, R.; Lopez-Berestein, G. Par-4 transcriptionally regulates Bcl-2 through a WT1-binding site on the bcl-2 promoter. J. Biol. Chem. 2003, 278, 19995–20005. [Google Scholar] [CrossRef]
- Lu, C.; Li, J.-Y.; Ge, Z.; Zhang, L.; Zhou, G.-P. Par-4/THAP1 complex and Notch3 competitively regulated pre-mRNA splicing of CCAR1 and affected inversely the survival of T-cell acute lymphoblastic leukemia cells. Oncogene 2013, 32, 5602–5613. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, X.; Zhang, J.; Lam, E.K.Y.; Shin, V.Y.; Cheng, A.S.L.; Yu, J.; Chan, F.K.L.; Sung, J.J.Y.; Jin, H.C. Warburg effect revisited: An epigenetic link between glycolysis and gastric carcinogenesis. Oncogene 2010, 29, 442–450. [Google Scholar] [CrossRef]
- Faubert, B.; Boily, G.; Izreig, S.; Griss, T.; Samborska, B.; Dong, Z.; Dupuy, F.; Chambers, C.; Fuerth, B.J.; Viollet, B.; et al. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab. 2013, 17, 113–124. [Google Scholar] [CrossRef]
- Liang, Y.; Liu, J.; Feng, Z. The regulation of cellular metabolism by tumor suppressor p53. Cell Biosci. 2013, 3, 9. [Google Scholar] [CrossRef]
- Araujo, N.; Sledziona, J.; Noothi, S.K.; Burikhanov, R.; Hebbar, N.; Ganguly, S.; Shrestha-Bhattarai, T.; Zhu, B.; Katz, W.S.; Zhang, Y.; et al. Tumor suppressor Par-4 regulates complement factor C3 and obesity. Front. Oncol. 2022, 12, 860446. [Google Scholar] [CrossRef] [PubMed]
- Yahagi, N.; Shimano, H.; Matsuzaka, T.; Najima, Y.; Sekiya, M.; Nakagawa, Y.; Ide, T.; Tomita, S.; Okazaki, H.; Tamura, Y.; et al. p53 Activation in adipocytes of obese mice. J. Biol. Chem. 2003, 278, 25395–25400. [Google Scholar] [CrossRef] [PubMed]
- Molchadsky, A.; Ezra, O.; Amendola, P.G.; Krantz, D.; Kogan-Sakin, I.; Buganim, Y.; Rivlin, N.; Goldfinger, N.; Folgiero, V.; Falcioni, R.; et al. p53 is required for brown adipogenic differentiation and has a protective role against diet-induced obesity. Cell Death Differ. 2013, 20, 774–783. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhao, X.; Gao, X.; Mei, Y.; Wu, M. A new role of p53 in regulating lipid metabolism. J. Mol. Cell Biol. 2013, 5, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Hegele, R.A. Lessons from human mutations in PPARγ. Int. J. Obes. 2005, 29, S31–S35. [Google Scholar] [CrossRef]
- Zhu, Y.; Qi, C.; Korenbergt, J.R.; Chent, X.-N.; Noyat, D.; Sambasiva Rao, M.; Reddyt, J.K.; Tolbert, N.E. Structural organization of mouse peroxisome proliferator- activated receptor y (mPPARy) gene: Alternative promoter use and different splicing yield two mPPARy isoforms (peroxisome proliferation/nuclear receptor superfamily/fatty acid P-oxidation). Proc. Natl. Acad. Sci. USA 1995, 92, 7921–7925. [Google Scholar] [CrossRef]
- Mukherjee, R.; Jow, L.; Croston, G.E.; Paterniti, J.R. Identification, Characterization, and Tissue Distribution of Human Peroxisome Proliferator-activated Receptor (PPAR) Isoforms PPARγ2 versus PPARγ1 and activation with retinoid x receptor agonists and antagonists. J. Biol. Chem. 1997, 272, 8071–8076. [Google Scholar] [CrossRef]
- Schadinger, S.E.; Bucher, N.L.R.; Schreiber, B.M.; Farmer, S.R. PPAR 2 regulates lipogenesis and lipid accumulation in steatotic hepatocytes. AJP Endocrinol. Metab. 2005, 288, E1195–E1205. [Google Scholar] [CrossRef]
- Lee, Y.K.; Park, J.E.; Lee, M.; Hardwick, J.P. Hepatic lipid homeostasis by peroxisome proliferator-activated receptor gamma 2. Liver Res. 2018, 2, 209–215. [Google Scholar] [CrossRef]
- Tontonoz, P.; Hu, E.; Spiegelman, B.M. Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor. Cell 2014, 79, 1147–1156. [Google Scholar] [CrossRef]
- Ruiz-Ojeda, F.J.; Rupérez, A.I.; Gomez-Llorente, C.; Gil, A.; Aguilera, C.M. Cell models and their application for studying adipogenic differentiation in relation to obesity: A review. Int. J. Mol. Sci. 2016, 17, 1040. [Google Scholar] [CrossRef] [PubMed]
- Cristancho, A.G.; Mitchell, L.A. Forming functional fat: A growing understanding of adipocyte differentiation. Nat. Rev. Mol. Cell Biol. 2011, 12, 722–734. [Google Scholar] [CrossRef]
- JASPAR 2018. Available online: http://jaspar.genereg.net/analysis (accessed on 3 July 2018).
- Dastagir, K.; Reimers, K.; Lazaridis, A.; Jahn, S.; Maurer, V.; Strauß, S.; Dastagir, N.; Radtke, C.; Kampmann, A.; Bucan, V.; et al. Murine embryonic fibroblast cell lines differentiate into three mesenchymal lineages to different extents: New models to investigate differentiation processes. Cell Reprog. 2014, 16, 241–252. [Google Scholar] [CrossRef] [PubMed]
- Al-Sayegh, M.; Ali, H.; Jamal, M.H.; El-Gindi, M.; Chanyong, T.; Al-Awadi, K.; Abu-Farha, M. Mouse embryonic fibroblast adipogenic potential: A comprehensive transcriptome analysis. Adipocyte 2021, 10, 1. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Eeda, V.; Undi, R.B.; Mann, S.; Stout, M.; Lim, H.-Y.; Wang, W. A novel peroxisome proliferator-activated receptor gamma ligand improves insulin sensitivity and promotes browning of white adipose tissue in obese mice. Mol. Metab. 2021, 54, 101363. [Google Scholar] [CrossRef]
- Lauschke, V.M.; Hagberg, C.E. Next-generation human adipose tissue culture methods. Curr. Opin. Genet. Dev. 2023, 80, 102057. [Google Scholar] [CrossRef]
- Kleinert, M.; Clemmensen, C.; Hofmann, S.M.; Moore, M.C.; Renner, S.; Woods, S.C.; Huypens, P.; Beckers, J.; de Angelis, M.H.; Schürmann, A.; et al. Animal models of obesity and diabetes mellitus. Nat. Rev. Endocrinol. 2018, 14, 140–162. [Google Scholar] [CrossRef] [PubMed]
- Martins, T.; Castro-Ribeiro, C.; Lemos, S.; Ferreira, T.; Nascimento-Gonçalves, E.; Rosa, E.; Oliveira, P.A.; Antunes, L.M. Murine models of obesity. Obesities 2022, 2, 127–147. [Google Scholar] [CrossRef]
- Barradas, M.; Monjas, A.; Diaz-Meco, M.T.; Serrano, M.; Moscat, J. The downregulation of the pro-apoptotic protein Par-4 is critical for Ras-induced survival and tumor progression. EMBO J. 1999, 18, 6362–6369. [Google Scholar] [CrossRef]
- Kukoc-Zivojnov, N.; Puccetti, E.; Chow, K.U.; Bergmann, M.; Ruthardt, M.; Hoelzer, D.; Mitrou, P.S.; Weidmann, E.; Boehrer, S. Prostate apoptosis response gene-4 (par-4) abrogates the survival function of p185(BCR-ABL) in hematopoietic cells. Exp. Hematol. 2004, 32, 49–56. [Google Scholar] [CrossRef]
- Diaz-Meco, M.T.; Abu-Baker, S. The Par-4/PTEN connection in tumor suppression. Cell Cycle 2009, 8, 2518–2522. [Google Scholar] [CrossRef] [PubMed]
- Nagai, M.A.; Gerhard, R.; Salaorni, S.; Fregnani, J.H.; Nonogaki, S.; Netto, M.M.; Soares, F.A. Down-regulation of the candidate tumor suppressor gene PAR-4 is associated with poor prognosis in breast cancer. Int. J. Oncol. 2010, 37, 41–49. [Google Scholar] [CrossRef]
- Chaudhry, P.; Singh, M.; Parent, S.; Asselin, E. Prostate apoptosis response 4 (Par-4), a novel substrate of caspase-3 during apoptosis activation. Mol. Cell Biol. 2012, 32, 826–839. [Google Scholar] [CrossRef] [PubMed]
- Meynier, S.; Kramer, M.; Ribaux, P.; Tille, J.C.; Delie, F.; Petignat, P.; Cohen, M. Role of PAR-4 in ovarian cancer. Oncotarget 2015, 6, 22641–22652. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, Y.; Ma, F.; Zhou, H.; Ding, R.; Lu, B.; Zou, L.; Li, J.; Lu, R. Inhibitory effect of Par-4 combined with cisplatin on human Wilms’ tumor cells. Tumor Biol. 2017, 39, 1010428317716689. [Google Scholar] [CrossRef]
- Mabe, N.W.; Fox, D.B.; Lupo, R.; Decker, A.E.; Phelps, S.N.; Thompson, J.W.; Alvarez, J.V. Epigenetic silencing of tumor suppressor Par-4 promotes chemoresistance in recurrent breast cancer. J. Clin. Investig. 2018, 128, 4413–4428. [Google Scholar] [CrossRef]
- Clark, A.M.; Ponniah, K.; Warden, M.S.; Raitt, E.M.; Smith, B.G.; Pascal, S.M. Tetramer formation by the caspase-activated fragment of the Par-4 tumor suppressor. FEBS J. 2019, 286, 4060–4073. [Google Scholar] [CrossRef]
- Katoch, A.; Jamwal, V.L.; Faheem, M.M.; Kumar, S.; Senapati, S.; Yadav, G.; Gandhi, S.G.; Goswami, A. Overlapping targets exist between the Par-4 and miR-200c axis which regulate EMT and proliferation of pancreatic cancer cells. Transl. Oncol. 2021, 14, 100879. [Google Scholar] [CrossRef]
- Sonawane, V.; Ghosalkar, J.; Achrekar, S.; Joshi, K. Ketorolac modulates Rac-1/HIF-1alpha/DDX3/beta-catenin signalling via a tumor suppressor prostate apoptosis response-4 (Par-4) in renal cell carcinoma. Sci. Rep. 2023, 13, 5659. [Google Scholar] [CrossRef]
- Pandey, S.; Raut, K.K.; Clark, A.M.; Baudin, A.; Djemr, I.L.; Libich, D.S.; Ponniah, K.; Pascal, S.M. Enhancing the conformational stability of the cl-Par-4 tumor suppressor via site-directed mutagenesis. Biomolecules 2023, 13, 667. [Google Scholar] [CrossRef]
- Raut, K.K.; Pandey, S.; Kharel, G.; Pascal, S.M. Evidence of direct interaction between cisplatin and the caspase-cleaved prostate apoptosis response-4 tumor suppressor. Protein Sci. 2024, 33, e4867. [Google Scholar] [CrossRef] [PubMed]
- Fan, P.; Abderrahman, B.; Chai, T.S.; Yerrum, S.; Jordan, V.C. Targeting peroxisome proliferator-activated receptor γ to increase estrogen-induced apoptosis in estrogen-deprived breast cancer cells. Mol. Cancer Ther. 2018, 17, 2732–2745. [Google Scholar] [CrossRef] [PubMed]
- Augimeri, G.; Giordano, C.; Gelsomino, L.; Plastina, P.; Barone, I.; Catalano, S.; Andò, S.; Bonofiglio, D. The role of PPARγ ligands in breast cancer: From basic research to clinical studies. Cancers 2020, 12, 2623. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Quiles, M.; Broekema, M.F.; Kalkhoven, E. PPARgamma in metabolism, immunity, and cancer: Unified and diverse mechanisms of action. Front. Endocrinol. 2021, 12, 624112. [Google Scholar] [CrossRef]
- Wagner, N.; Wagner, K.D. Peroxisome proliferator-activated receptors and the hallmarks of cancer. Cells 2022, 11, 2432. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Pan, Y.; Zhao, X.; Wu, S.; Li, F.; Wang, Y.; Liu, B.; Zhang, Y.; Gao, X.; Wang, Y.; et al. Peroxisome proliferator-activated receptors: A key link between lipid metabolism and cancer progression. Clin. Nutr. 2024, 43, 332–345. [Google Scholar] [CrossRef]
Target | Forward Primer (5′-3′) | Reverse Primer (5′-3′) |
---|---|---|
Mouse Par-4 | AGAATGAAGCTGCGACCCTC | ATCTTCTGGGGCACTGGTTG |
Mouse PPARγ1 | GTCTCGGTTGAGGGGAC | TGTCAACCATGGTAATTTCAGT |
Mouse GAPDH | AAATGGTGAAGGTCGGTGTG | TGAATTTGCCGTGAGTGGAG |
Fragment | Forward Primer (5′-3′) | Reverse Primer (5′-3′) |
---|---|---|
1 | GAGTGGTACCGTAAGCAACATTTATTG | GAGCCTCGAGAACAGCATAAAACAGAG |
2 | GAGTGGTACCGTAAGCAACATTTATTG | GAGCCTCGAGTTTAACAAGAATTCTTA |
3 | GAGTGGTACCTTTTACATTCTAGACAC | GAGCCTCGAGAACAGCATAAAACAGAG |
4 | GAGTGGTACCTTTTACATTCTAGACAC | GAGCCTCGAGGGTCTAAATATCAGTCA |
5 | GAGTGGTACCCATCATTTGGACTACTG | GAGCCTCGAGGCCTTTGCCCTTTTTGG |
6 | GAGTGGTACCGCTCTTTTAAAGTCCAC | GAGCCTCGAGAGGTCCAAAATGTTACT |
7 | GAGTGGTACCGATAGATAAACAAATTT | GAGCCTCGAGGTACAGTAGTTGGAATT |
7 + 8 | GAGTGGTACCGATAGATAAACAAATTT | GAGCCTCGAGAACAGCATAAAACAGAG |
Primer Pair Designation | Forward Primer (5′-3′) | Reverse Primer (5′-3′) |
---|---|---|
6 | GCTCTTTTAAAGTCCACAAGTCACTG | GGAAAACTCTGGCTTCTTGCTTAA |
7 | ATGTGTGATTAGGAGTTTCAACCAAA | GAATTACCAGAGCAGAGATTGTTCA |
Mouse Negative Control Primer Set 2 | Proprietary Sequence | Proprietary Sequence |
Mouse Positive Control Primer Set (GAPDH) | Proprietary Sequence | Proprietary Sequence |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sledziona, J.; Burikhanov, R.; Araujo, N.; Jiang, J.; Hebbar, N.; Rangnekar, V.M. The Tumor Suppressor Par-4 Regulates Adipogenesis by Transcriptional Repression of PPARγ. Cells 2024, 13, 1495. https://doi.org/10.3390/cells13171495
Sledziona J, Burikhanov R, Araujo N, Jiang J, Hebbar N, Rangnekar VM. The Tumor Suppressor Par-4 Regulates Adipogenesis by Transcriptional Repression of PPARγ. Cells. 2024; 13(17):1495. https://doi.org/10.3390/cells13171495
Chicago/Turabian StyleSledziona, James, Ravshan Burikhanov, Nathalia Araujo, Jieyun Jiang, Nikhil Hebbar, and Vivek M. Rangnekar. 2024. "The Tumor Suppressor Par-4 Regulates Adipogenesis by Transcriptional Repression of PPARγ" Cells 13, no. 17: 1495. https://doi.org/10.3390/cells13171495
APA StyleSledziona, J., Burikhanov, R., Araujo, N., Jiang, J., Hebbar, N., & Rangnekar, V. M. (2024). The Tumor Suppressor Par-4 Regulates Adipogenesis by Transcriptional Repression of PPARγ. Cells, 13(17), 1495. https://doi.org/10.3390/cells13171495