The Proteasome and Cul3-Dependent Protein Ubiquitination Is Required for Gli Protein-Mediated Activation of Gene Expression in the Hedgehog Pathway
<p>Proteasome inhibition downregulates the Hedgehog pathway. (<b>A</b>) mRNA levels of Hh target genes <span class="html-italic">Gli1</span> and <span class="html-italic">Patched</span> 1 (<span class="html-italic">Ptch1</span>) were analyzed by RT-qPCR in NIH-3T3 cells. Cells were serum-starved and treated with proteasome inhibitors as indicated (Bort.—bortezomib) for 24 h. Pathway activity was stimulated with Smo agonist (SAG) 200 nM. Error bars represent the standard deviation (SD) from four replicates. <span class="html-italic">p</span>-value: *** <span class="html-italic">p</span> < 0.001. (<b>B</b>) mRNA levels of Hh target genes <span class="html-italic">Gli1</span> and <span class="html-italic">Ptch1</span> were analyzed by RT-qPCR in serum-starved NIH-3T3 cells expressing constitutively active Gli2 mutant Gli2(P1-6A) treated with proteasome inhibitors for 6 or 24 h as indicated. Error bars represent SD from four replicates. <span class="html-italic">p</span>-value: *** <span class="html-italic">p</span> < 0.001. (<b>C</b>) Luciferase reporter assay was performed in serum-starved NIH-3T3 cells treated with proteasome inhibitors as indicated (Bort.—bortezomib). Pathway activity was stimulated as in <a href="#cells-13-01496-f001" class="html-fig">Figure 1</a>A. Error bars represent SD from three replicates except MG-132 10 µM 24 h (n = 2). <span class="html-italic">p</span>-value: *** <span class="html-italic">p</span> < 0.001, ** <span class="html-italic">p</span> < 0.01. (<b>D</b>) Luciferase reporter assay was performed in serum-starved NIH-3T3 cells expressing constitutively active Gli2 mutant Gli2(P1-6A) treated with proteasome inhibitors for 12 or 24 h as indicated. Error bars represent SD from three replicates. <span class="html-italic">p</span>-value: *** <span class="html-italic">p</span> < 0.001, ** <span class="html-italic">p</span> < 0.01. (<b>E</b>) Luciferase reporter assay was performed in serum-starved NIH-3T3 cells expressing constitutively active Gli2 mutant Gli2(P1-6A) after 24 h treatment with proteasome inhibitor epoxomicin as indicated. Error bars represent SD from three replicates. <span class="html-italic">p</span>-value: *** <span class="html-italic">p</span> < 0.001. ns: non-significant.</p> "> Figure 1 Cont.
<p>Proteasome inhibition downregulates the Hedgehog pathway. (<b>A</b>) mRNA levels of Hh target genes <span class="html-italic">Gli1</span> and <span class="html-italic">Patched</span> 1 (<span class="html-italic">Ptch1</span>) were analyzed by RT-qPCR in NIH-3T3 cells. Cells were serum-starved and treated with proteasome inhibitors as indicated (Bort.—bortezomib) for 24 h. Pathway activity was stimulated with Smo agonist (SAG) 200 nM. Error bars represent the standard deviation (SD) from four replicates. <span class="html-italic">p</span>-value: *** <span class="html-italic">p</span> < 0.001. (<b>B</b>) mRNA levels of Hh target genes <span class="html-italic">Gli1</span> and <span class="html-italic">Ptch1</span> were analyzed by RT-qPCR in serum-starved NIH-3T3 cells expressing constitutively active Gli2 mutant Gli2(P1-6A) treated with proteasome inhibitors for 6 or 24 h as indicated. Error bars represent SD from four replicates. <span class="html-italic">p</span>-value: *** <span class="html-italic">p</span> < 0.001. (<b>C</b>) Luciferase reporter assay was performed in serum-starved NIH-3T3 cells treated with proteasome inhibitors as indicated (Bort.—bortezomib). Pathway activity was stimulated as in <a href="#cells-13-01496-f001" class="html-fig">Figure 1</a>A. Error bars represent SD from three replicates except MG-132 10 µM 24 h (n = 2). <span class="html-italic">p</span>-value: *** <span class="html-italic">p</span> < 0.001, ** <span class="html-italic">p</span> < 0.01. (<b>D</b>) Luciferase reporter assay was performed in serum-starved NIH-3T3 cells expressing constitutively active Gli2 mutant Gli2(P1-6A) treated with proteasome inhibitors for 12 or 24 h as indicated. Error bars represent SD from three replicates. <span class="html-italic">p</span>-value: *** <span class="html-italic">p</span> < 0.001, ** <span class="html-italic">p</span> < 0.01. (<b>E</b>) Luciferase reporter assay was performed in serum-starved NIH-3T3 cells expressing constitutively active Gli2 mutant Gli2(P1-6A) after 24 h treatment with proteasome inhibitor epoxomicin as indicated. Error bars represent SD from three replicates. <span class="html-italic">p</span>-value: *** <span class="html-italic">p</span> < 0.001. ns: non-significant.</p> "> Figure 2
<p>The specificity of the Hedgehog pathway downregulation up proteasome inhibition. (<b>A</b>) mRNA levels of Hh target genes <span class="html-italic">Gli1</span> and <span class="html-italic">Hes1</span> were analyzed after 24 h treatment with 20 nM proteasome inhibitor epoxomicin (Epox) in serum-starved wild-type (WT) or cilia-depleted NIH-3T3 cells expressing dominant negative Kif3a (DN Kif3a) and Gli2(P1-6A) constitutively active mutant. Error bars represent SD from three replicates. <span class="html-italic">p</span>-value: *** <span class="html-italic">p</span> < 0.001, ** <span class="html-italic">p</span> < 0.01, * <span class="html-italic">p</span> < 0.05. (<b>B</b>) mRNA level of Hh target gene <span class="html-italic">Gli1</span> was analyzed in serum-starved WT NIH-3T3 or Sufu knockout (KO) cells as in panel A. Error bars represent SD from three replicates. <span class="html-italic">p</span>-value: ** <span class="html-italic">p</span> < 0.01. (<b>C</b>) Relative nuclear localization of stably expressed Gli2(P1-6A) was analyzed in the NIH-3T3 cell line after 24 h treatment with proteasome inhibitor epoxomicin (Epox). Results are represented as violin plots of the log<sub>10</sub>-transformed ratio of HA-staining fluorescent intensity within the nucleus to the surrounding cytoplasm. Nuclei per condition n > 200. Statistical analysis was performed using Student’s <span class="html-italic">t</span>-test (<span class="html-italic">p</span>-value: *** <span class="html-italic">p</span> < 0.001). Representative images of Gli2(P1-6A) nuclear localization are shown below the graph. DAPI was used as a nuclear stain. Scale bar, 5 µm. (<b>D</b>) mRNA level of Hh target gene <span class="html-italic">Gli1</span> was analyzed in serum-starved WT NIH-3T3 and Gli3 KO cells as in panel A. Pathway activity was stimulated as in <a href="#cells-13-01496-f001" class="html-fig">Figure 1</a>A. Error bars represent SD from three replicates except Control NIH-3T3 treated with DMSO and epoxomicin (n = 2). <span class="html-italic">p</span>-value: *** <span class="html-italic">p</span> < 0.001, ** <span class="html-italic">p</span> < 0.01, * <span class="html-italic">p</span> < 0.05. (<b>E</b>) mRNA levels of Hh target genes <span class="html-italic">Gli1</span> and <span class="html-italic">Hes1</span> were analyzed in serum-starved NIH-3T3 Gli2 KO cells as in panel A. Pathway activity was stimulated as in <a href="#cells-13-01496-f001" class="html-fig">Figure 1</a>A. Error bars represent SD from three replicates. <span class="html-italic">p</span>-value: *** <span class="html-italic">p</span> < 0.001, * <span class="html-italic">p</span> < 0.05. (<b>F</b>) mRNA levels of Hh target genes <span class="html-italic">Gli1</span> and <span class="html-italic">Ptch1</span> were analyzed in serum-starved NIH-3T3 stably expressing an exogenous copy of HA-tagged mouse Gli1 (HA-mGli1) as in panel A. Endogenous Gli1 was distinguished using primers against its 3′UTR. Error bars represent SD from three replicates. <span class="html-italic">p</span>-value: **** <span class="html-italic">p</span> < 0.0001, *** <span class="html-italic">p</span> < 0.001, ** <span class="html-italic">p</span> < 0.01. (<b>G</b>) mRNA level of Hh target gene <span class="html-italic">Gli1</span> was analyzed in serum-starved WT NIH-3T3 or DN Kif3a expressing cells upon Gli1 KO as in panel A. Error bars represent SD from three replicates. <span class="html-italic">p</span>-value: **** <span class="html-italic">p</span> < 0.0001, ** <span class="html-italic">p</span> < 0.01. (<b>H</b>) mRNA level of Hh target gene <span class="html-italic">Gli1</span> was analyzed in serum-starved WT NIH-3T3 or Gli2/Gli3 double KO (Gli2/3 KO) as in panel A. Pathway activity was stimulated as in <a href="#cells-13-01496-f001" class="html-fig">Figure 1</a>A. Error bars represent SD from three replicates. <span class="html-italic">p</span>-value: ** <span class="html-italic">p</span> < 0.01, * <span class="html-italic">p</span> < 0.05. (<b>I</b>) mRNA level of Hh target gene <span class="html-italic">Gli1</span> was analyzed in serum-starved HA-mGli1 NIH-3T3 or Gli2/3 KO cells as in panel A. Pathway activity was stimulated as in <a href="#cells-13-01496-f001" class="html-fig">Figure 1</a>A. Endogenous Gli1 was distinguished as in panel F. Error bars represent SD from three replicates. <span class="html-italic">p</span>-value: ** <span class="html-italic">p</span> < 0.01, * <span class="html-italic">p</span> < 0.05. (<b>J</b>) mRNA levels of Gli1 were analyzed in WT NIH-3T3 cell line upon Gli1 KO, Gli1/2 double KO, and Gli1/3 double KO as in panel A. Error bars represent SD from three replicates. <span class="html-italic">p</span>-value: *** <span class="html-italic">p</span> < 0.001, ** <span class="html-italic">p</span> < 0.01, * <span class="html-italic">p</span> < 0.05. ns: non-significant.</p> "> Figure 2 Cont.
<p>The specificity of the Hedgehog pathway downregulation up proteasome inhibition. (<b>A</b>) mRNA levels of Hh target genes <span class="html-italic">Gli1</span> and <span class="html-italic">Hes1</span> were analyzed after 24 h treatment with 20 nM proteasome inhibitor epoxomicin (Epox) in serum-starved wild-type (WT) or cilia-depleted NIH-3T3 cells expressing dominant negative Kif3a (DN Kif3a) and Gli2(P1-6A) constitutively active mutant. Error bars represent SD from three replicates. <span class="html-italic">p</span>-value: *** <span class="html-italic">p</span> < 0.001, ** <span class="html-italic">p</span> < 0.01, * <span class="html-italic">p</span> < 0.05. (<b>B</b>) mRNA level of Hh target gene <span class="html-italic">Gli1</span> was analyzed in serum-starved WT NIH-3T3 or Sufu knockout (KO) cells as in panel A. Error bars represent SD from three replicates. <span class="html-italic">p</span>-value: ** <span class="html-italic">p</span> < 0.01. (<b>C</b>) Relative nuclear localization of stably expressed Gli2(P1-6A) was analyzed in the NIH-3T3 cell line after 24 h treatment with proteasome inhibitor epoxomicin (Epox). Results are represented as violin plots of the log<sub>10</sub>-transformed ratio of HA-staining fluorescent intensity within the nucleus to the surrounding cytoplasm. Nuclei per condition n > 200. Statistical analysis was performed using Student’s <span class="html-italic">t</span>-test (<span class="html-italic">p</span>-value: *** <span class="html-italic">p</span> < 0.001). Representative images of Gli2(P1-6A) nuclear localization are shown below the graph. DAPI was used as a nuclear stain. Scale bar, 5 µm. (<b>D</b>) mRNA level of Hh target gene <span class="html-italic">Gli1</span> was analyzed in serum-starved WT NIH-3T3 and Gli3 KO cells as in panel A. Pathway activity was stimulated as in <a href="#cells-13-01496-f001" class="html-fig">Figure 1</a>A. Error bars represent SD from three replicates except Control NIH-3T3 treated with DMSO and epoxomicin (n = 2). <span class="html-italic">p</span>-value: *** <span class="html-italic">p</span> < 0.001, ** <span class="html-italic">p</span> < 0.01, * <span class="html-italic">p</span> < 0.05. (<b>E</b>) mRNA levels of Hh target genes <span class="html-italic">Gli1</span> and <span class="html-italic">Hes1</span> were analyzed in serum-starved NIH-3T3 Gli2 KO cells as in panel A. Pathway activity was stimulated as in <a href="#cells-13-01496-f001" class="html-fig">Figure 1</a>A. Error bars represent SD from three replicates. <span class="html-italic">p</span>-value: *** <span class="html-italic">p</span> < 0.001, * <span class="html-italic">p</span> < 0.05. (<b>F</b>) mRNA levels of Hh target genes <span class="html-italic">Gli1</span> and <span class="html-italic">Ptch1</span> were analyzed in serum-starved NIH-3T3 stably expressing an exogenous copy of HA-tagged mouse Gli1 (HA-mGli1) as in panel A. Endogenous Gli1 was distinguished using primers against its 3′UTR. Error bars represent SD from three replicates. <span class="html-italic">p</span>-value: **** <span class="html-italic">p</span> < 0.0001, *** <span class="html-italic">p</span> < 0.001, ** <span class="html-italic">p</span> < 0.01. (<b>G</b>) mRNA level of Hh target gene <span class="html-italic">Gli1</span> was analyzed in serum-starved WT NIH-3T3 or DN Kif3a expressing cells upon Gli1 KO as in panel A. Error bars represent SD from three replicates. <span class="html-italic">p</span>-value: **** <span class="html-italic">p</span> < 0.0001, ** <span class="html-italic">p</span> < 0.01. (<b>H</b>) mRNA level of Hh target gene <span class="html-italic">Gli1</span> was analyzed in serum-starved WT NIH-3T3 or Gli2/Gli3 double KO (Gli2/3 KO) as in panel A. Pathway activity was stimulated as in <a href="#cells-13-01496-f001" class="html-fig">Figure 1</a>A. Error bars represent SD from three replicates. <span class="html-italic">p</span>-value: ** <span class="html-italic">p</span> < 0.01, * <span class="html-italic">p</span> < 0.05. (<b>I</b>) mRNA level of Hh target gene <span class="html-italic">Gli1</span> was analyzed in serum-starved HA-mGli1 NIH-3T3 or Gli2/3 KO cells as in panel A. Pathway activity was stimulated as in <a href="#cells-13-01496-f001" class="html-fig">Figure 1</a>A. Endogenous Gli1 was distinguished as in panel F. Error bars represent SD from three replicates. <span class="html-italic">p</span>-value: ** <span class="html-italic">p</span> < 0.01, * <span class="html-italic">p</span> < 0.05. (<b>J</b>) mRNA levels of Gli1 were analyzed in WT NIH-3T3 cell line upon Gli1 KO, Gli1/2 double KO, and Gli1/3 double KO as in panel A. Error bars represent SD from three replicates. <span class="html-italic">p</span>-value: *** <span class="html-italic">p</span> < 0.001, ** <span class="html-italic">p</span> < 0.01, * <span class="html-italic">p</span> < 0.05. ns: non-significant.</p> "> Figure 3
<p>E3 ubiquitin ligase screening. (<b>A</b>) Table of ubiquitin ligases or ubiquitin ligase complex components selected for CRISPR/Cas9 mediated screen. (<b>B</b>) CRISPR/Cas9 screen in serum-starved NIH-3T3 reporter cell line with GFP under Gli-responsive promoter. The effect of gene KO on the Hh pathway was analyzed by flow cytometry as a fraction of GFP-positive cells. Two sgRNAs per gene were used. Pathway activity was stimulated as in <a href="#cells-13-01496-f001" class="html-fig">Figure 1</a>A. (<b>C</b>) CRISPR/Cas9 screen in serum-starved NIH-3T3 cells expressing constitutively active HA-tagged Gli2(P1-6A) mutant. Protein levels of HA-Gli2(P1-6A) and Gli1 were analyzed upon KO of indicated genes. Non-targeting sgRNA (NT) and sgRNAs against Gli2 and Sufu were used as controls. Tubulin was used as a loading control. Relative increase/decrease of Gli2 and Gli1 protein levels normalized to tubulin and compared to NT samples is shown below the respective bands [<a href="#B17-cells-13-01496" class="html-bibr">17</a>,<a href="#B36-cells-13-01496" class="html-bibr">36</a>,<a href="#B37-cells-13-01496" class="html-bibr">37</a>].</p> "> Figure 4
<p>Inhibition of the cullin family of E3 ubiquitin ligases downregulates Hh pathway activity. (<b>A</b>) mRNA level of Hh target gene <span class="html-italic">Gli1</span> was analyzed in serum-starved NIH-3T3 expressing constitutively active Gli2(P1-6A) mutant after 24 h treatment with cullin inhibitor MLN4924 (MLN) as indicated. Error bars represent SD from three replicates. Error bars represent SD from three replicates. <span class="html-italic">p</span>-value: *** <span class="html-italic">p</span> < 0.001. (<b>B</b>) Protein levels of HA-tagged Gli2(P1-6A), Gli1, Gli3R, and PARP/cleaved PARP were analyzed in serum-starved NIH-3T3 expressing constitutively active Gli2(P1-6A) mutant after 24 h treatment with 0.94 µM cullin inhibitor (MLN) or 20 nM proteasome inhibitor epoxomicin (Epox). Tubulin was used as a loading control. Gli2 and Gli1 mean protein levels normalized to tubulin and relative to non-treated control are shown below the respective bands. (<b>C</b>) mRNA level of Hh target gene <span class="html-italic">Gli1</span> was analyzed in serum-starved WT or cilia-less NIH-3T3 cells expressing DN Kif3a mutant after 24 h treatment with 0.94 µM MLN. Error bars represent SD from three replicates. <span class="html-italic">p</span>-value: ** <span class="html-italic">p</span> < 0.01, * <span class="html-italic">p</span> < 0.05. (<b>D</b>) mRNA level of Hh target gene <span class="html-italic">Gli1</span> was analyzed in serum-starved NIH-3T3 expressing constitutively active Gli2(P1-6A) mutant upon KO of <span class="html-italic">Cul1</span> or <span class="html-italic">Cul3</span>. Non-targeting sgRNA was used as a control. Error bars represent SD from three replicates. <span class="html-italic">p</span>-value: *** <span class="html-italic">p</span> < 0.001, * <span class="html-italic">p</span> < 0.05. (<b>E</b>) mRNA level of Hh target gene <span class="html-italic">Gli1</span> was analyzed in serum-starved cilia-less DN Kif3a NIH-3T3 cells expressing constitutively active Gli2(P1-6A) mutant upon KO of <span class="html-italic">Cul3</span> and <span class="html-italic">Rbx1</span> genes. Non-targeting sgRNA was used as a control. <span class="html-italic">p</span>-value: *** <span class="html-italic">p</span> < 0.001. ns: non-significant.</p> "> Figure 5
<p>CRISPR/Cas9 screening of Cul3 interacting partners. (<b>A</b>) mRNA level of Hh target gene <span class="html-italic">Gli1</span> was analyzed in serum-starved NIH-3T3 expressing constitutively active Gli2(P1-6A) mutant upon KO of indicated genes. Non-targeting sgRNA was used as a control. Error bars represent SD from three replicates. (<b>B</b>) mRNA level of Hh target gene <span class="html-italic">Gli1</span> was analyzed in serum-starved NIH-3T3 expressing constitutively active Gli2(P1-6A) mutant upon KO of the <span class="html-italic">Kctd3</span> gene. Non-targeting sgRNA was used as a control. Error bars represent SD from four replicates. <span class="html-italic">p</span>-value: * <span class="html-italic">p</span> < 0.05. (<b>C</b>) mRNA level of Hh target gene <span class="html-italic">Gli1</span> was analyzed in serum-starved WT NIH-3T3 upon KO of the <span class="html-italic">Btbd9</span> gene. Pathway activity was stimulated as in <a href="#cells-13-01496-f001" class="html-fig">Figure 1</a>A. Non-targeting sgRNA was used as a control. Error bars represent SD from Control (n = 4) and Btbd9 sg2 (n = 6). <span class="html-italic">p</span>-value: ** <span class="html-italic">p</span> < 0.01. (<b>D</b>) mRNA level of Hh target gene <span class="html-italic">Gli1</span> was analyzed in serum-starved cilia-less DN Kif3a NIH-3T3 cells expressing constitutively active Gli2(P1-6A) mutant upon single or double KO of <span class="html-italic">Btbd9</span> and <span class="html-italic">Kctd3</span> genes. Non-targeting sgRNA was used as a control. Error bars represent SD from three replicates. <span class="html-italic">p</span>-value: *** <span class="html-italic">p</span> < 0.001, ** <span class="html-italic">p</span> < 0.01, * <span class="html-italic">p</span> < 0.05.</p> "> Figure 5 Cont.
<p>CRISPR/Cas9 screening of Cul3 interacting partners. (<b>A</b>) mRNA level of Hh target gene <span class="html-italic">Gli1</span> was analyzed in serum-starved NIH-3T3 expressing constitutively active Gli2(P1-6A) mutant upon KO of indicated genes. Non-targeting sgRNA was used as a control. Error bars represent SD from three replicates. (<b>B</b>) mRNA level of Hh target gene <span class="html-italic">Gli1</span> was analyzed in serum-starved NIH-3T3 expressing constitutively active Gli2(P1-6A) mutant upon KO of the <span class="html-italic">Kctd3</span> gene. Non-targeting sgRNA was used as a control. Error bars represent SD from four replicates. <span class="html-italic">p</span>-value: * <span class="html-italic">p</span> < 0.05. (<b>C</b>) mRNA level of Hh target gene <span class="html-italic">Gli1</span> was analyzed in serum-starved WT NIH-3T3 upon KO of the <span class="html-italic">Btbd9</span> gene. Pathway activity was stimulated as in <a href="#cells-13-01496-f001" class="html-fig">Figure 1</a>A. Non-targeting sgRNA was used as a control. Error bars represent SD from Control (n = 4) and Btbd9 sg2 (n = 6). <span class="html-italic">p</span>-value: ** <span class="html-italic">p</span> < 0.01. (<b>D</b>) mRNA level of Hh target gene <span class="html-italic">Gli1</span> was analyzed in serum-starved cilia-less DN Kif3a NIH-3T3 cells expressing constitutively active Gli2(P1-6A) mutant upon single or double KO of <span class="html-italic">Btbd9</span> and <span class="html-italic">Kctd3</span> genes. Non-targeting sgRNA was used as a control. Error bars represent SD from three replicates. <span class="html-italic">p</span>-value: *** <span class="html-italic">p</span> < 0.001, ** <span class="html-italic">p</span> < 0.01, * <span class="html-italic">p</span> < 0.05.</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Molecular Cloning
2.2. Cell Culture
2.3. Luciferase Assay
2.4. Viral Transduction
2.5. CRISPR/Cas9 Mutagenesis
2.6. Flow Cytometry
2.7. SDS-PAGE and Western Blot
2.8. Nuclear-Cytosolic Fractionation
2.9. TurboID Proximity Labeling and Mass Spectrometry
2.10. Proteomic Data Analysis
2.11. Real-Time qPCR
2.12. Immunostaining and Fluorescent Microscopy
2.13. Data Analysis
3. Results
3.1. Proteasome Inhibition Downregulates Hh Signaling
3.2. All Three Gli Proteins Are Sensitive to Proteasome Inhibitors
3.3. Interactome of Gli2 Changes upon Proteasome Inhibition
3.4. Identification of Ubiquitin Ligase Responsible for Proteasome-Dependent Activation of Gli Proteins
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Niewiadomski, P.; Niedziółka, S.M.; Markiewicz, Ł.; Uśpieński, T.; Baran, B.; Chojnowska, K. Gli Proteins: Regulation in Development and Cancer. Cells 2019, 8, 147. [Google Scholar] [CrossRef]
- Hsia, E.Y.C.; Gui, Y.; Zheng, X. Regulation of Hedgehog Signaling by Ubiquitination. Front. Biol. 2015, 10, 203–220. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.L.; Chinchilla, P.; Fombonne, J.; Ho, L.; Guix, C.; Keen, J.H.; Mehlen, P.; Riobo, N.A. Patched-1 Proapoptotic Activity Is Downregulated by Modification of K1413 by the E3 Ubiquitin-Protein Ligase Itchy Homolog. Mol. Cell. Biol. 2014, 34, 3855. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhou, Z.; Yao, X.; Chen, P.; Sun, M.; Su, M.; Chang, C.; Yan, J.; Jiang, J.; Zhang, Q. Hedgehog Signaling Downregulates Suppressor of Fused through the HIB/SPOP-Crn Axis in Drosophila. Cell Res. 2014, 24, 595. [Google Scholar] [CrossRef] [PubMed]
- Raducu, M.; Fung, E.; Serres, S.; Infante, P.; Barberis, A.; Fischer, R.; Bristow, C.; Thézénas, M.; Finta, C.; Christianson, J.C.; et al. SCF (Fbxl17) Ubiquitylation of Sufu Regulates Hedgehog Signaling and Medulloblastoma Development. EMBO J. 2016, 35, 1400. [Google Scholar] [CrossRef]
- Tempe, D.; Casas, M.; Karaz, S.; Blanchet-Tournier, M.-F.; Concordet, J.-P. Multisite Protein Kinase A and Glycogen Synthase Kinase 3 Phosphorylation Leads to Gli3 Ubiquitination by SCF TrCP. Mol. Cell. Biol. 2006, 26, 4316–4326. [Google Scholar] [CrossRef]
- Wen, X.; Lai, C.K.; Evangelista, M.; Hongo, J.-A.; de Sauvage, F.J.; Scales, S.J. Kinetics of Hedgehog-Dependent Full-Length Gli3 Accumulation in Primary Cilia and Subsequent Degradation. Mol. Cell. Biol. 2010, 30, 1910–1922. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, L.; Wang, B.; Ou, C.Y.; Chien, C.T.; Jiang, J. A Hedgehog-Induced BTB Protein Modulates Hedgehog Signaling by Degrading Ci/Gli Transcription Factor. Dev. Cell 2006, 10, 719–729. [Google Scholar] [CrossRef]
- Kent, D.; Bush, E.W.; Hooper, J.E. Roadkill Attenuates Hedgehog Responses through Degradation of Cubitus Interruptus. Development 2006, 133, 2001–2010. [Google Scholar] [CrossRef]
- Di Marcotullio, L.; Ferretti, E.; Greco, A.; De Smaele, E.; Po, A.; Sico, M.A.; Alimandi, M.; Giannini, G.; Maroder, M.; Screpanti, I.; et al. Numb Is a Suppressor of Hedgehog Signalling and Targets Gli1 for Itch-Dependent Ubiquitination. Nat. Cell Biol. 2006, 8, 1415–1423. [Google Scholar] [CrossRef]
- Di Marcotullio, L.; Greco, A.; Mazzà, D.; Canettieri, G.; Pietrosanti, L.; Infante, P.; Coni, S.; Moretti, M.; De Smaele, E.; Ferretti, E.; et al. Numb Activates the E3 Ligase Itch to Control Gli1 Function through a Novel Degradation Signal. Oncogene 2011, 30, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Di Marcotullio, L.; Ferretti, E.; Greco, A.; De Smaele, E.; Screpanti, I.; Gulino, A. Multiple Ubiquitin-Dependent Processing Pathways Regulate Hedgehog/Gli Signaling: Implications for Cell Development and Tumorigenesis. Cell Cycle 2007, 6, 390–393. [Google Scholar] [CrossRef] [PubMed]
- Sanjana, N.E.; Shalem, O.; Zhang, F. Improved Vectors and Genome-Wide Libraries for CRISPR Screening. Nat. Methods 2014, 11, 783. [Google Scholar] [CrossRef] [PubMed]
- Shalem, O.; Sanjana, N.E.; Hartenian, E.; Shi, X.; Scott, D.A.; Mikkelsen, T.S.; Heckl, D.; Ebert, B.L.; Root, D.E.; Doench, J.G.; et al. Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells. Science 2014, 343, 84. [Google Scholar] [CrossRef] [PubMed]
- Doench, J.G.; Fusi, N.; Sullender, M.; Hegde, M.; Vaimberg, E.W.; Donovan, K.F.; Smith, I.; Tothova, Z.; Wilen, C.; Orchard, R.; et al. Optimized SgRNA Design to Maximize Activity and Minimize Off-Target Effects of CRISPR-Cas9. Nat. Biotechnol. 2016, 34, 184–191. [Google Scholar] [CrossRef]
- Sanson, K.R.; Hanna, R.E.; Hegde, M.; Donovan, K.F.; Strand, C.; Sullender, M.E.; Vaimberg, E.W.; Goodale, A.; Root, D.E.; Piccioni, F.; et al. Optimized Libraries for CRISPR-Cas9 Genetic Screens with Multiple Modalities. Nat. Commun. 2018, 9, 5416. [Google Scholar] [CrossRef]
- Niedziółka, S.M.; Datta, S.; Uśpieński, T.; Baran, B.; Skarżyńska, W.; Humke, E.W.; Rohatgi, R.; Niewiadomski, P. The Exocyst Complex and Intracellular Vesicles Mediate Soluble Protein Trafficking to the Primary Cilium. Commun. Biol. 2024, 7, 213. [Google Scholar] [CrossRef]
- Baran, B.; Kosieradzka, K.; Skarzynska, W.; Niewiadomski, P. MRCKα/β Positively Regulates Gli Protein Activity. Cell. Signal. 2023, 107, 110666. [Google Scholar] [CrossRef]
- Branon, T.C.; Bosch, J.A.; Sanchez, A.D.; Udeshi, N.D.; Svinkina, T.; Carr, S.A.; Feldman, J.L.; Perrimon, N.; Ting, A.Y. Efficient Proximity Labeling in Living Cells and Organisms with TurboID. Nat. Biotechnol. 2018, 36, 880. [Google Scholar] [CrossRef]
- Niewiadomski, P.; Kong, J.H.; Ahrends, R.; Ma, Y.; Humke, E.W.; Khan, S.; Teruel, M.N.; Novitch, B.G.; Rohatgi, R. Gli Protein Activity Is Controlled by Multisite Phosphorylation in Vertebrate Hedgehog Signaling. Cell Rep. 2014, 6, 168–181. [Google Scholar] [CrossRef]
- Huangfu, D.; Liu, A.; Rakeman, A.S.; Murcia, N.S.; Niswander, L.; Anderson, K.V. Hedgehog Signalling in the Mouse Requires Intraflagellar Transport Proteins. Nature 2003, 426, 83–87. [Google Scholar] [CrossRef]
- Zeng, H.; Jia, J.; Liu, A. Coordinated Translocation of Mammalian Gli Proteins and Suppressor of Fused to the Primary Cilium. PLoS ONE 2010, 5, e15900. [Google Scholar] [CrossRef]
- Tukachinsky, H.; Lopez, L.V.; Salic, A. A Mechanism for Vertebrate Hedgehog Signaling: Recruitment to Cilia and Dissociation of SuFu-Gli Protein Complexes. J. Cell Biol. 2010, 191, 415–428. [Google Scholar] [CrossRef] [PubMed]
- Niewiadomski, P.; Zhujiang, A.; Youssef, M.; Waschek, J.A. Interaction of PACAP with Sonic Hedgehog Reveals Complex Regulation of the Hedgehog Pathway by PKA. Cell. Signal. 2013, 25, 2222–2230. [Google Scholar] [CrossRef] [PubMed]
- Barzi, M.; Berenguer, J.; Menendez, A.; Alvarez-Rodriguez, R.; Pons, S. Sonic-Hedgehog-Mediated Proliferation Requires the Localization of PKA to the Cilium Base. J. Cell Sci. 2010, 123, 62–69. [Google Scholar] [CrossRef]
- Corbit, K.C.; Aanstad, P.; Singla, V.; Norman, A.R.; Stainier, D.Y.R.; Reiter, J.F. Vertebrate Smoothened Functions at the Primary Cilium. Nature 2005, 437, 1018–1021. [Google Scholar] [CrossRef] [PubMed]
- Rohatgi, R.; Scott, M.P. Patching the Gaps in Hedgehog Signalling. Nat. Cell Biol. 2007, 9, 1005–1009. [Google Scholar] [CrossRef] [PubMed]
- Bangs, F.; Anderson, K.V. Primary Cilia and Mammalian Hedgehog Signaling. Cold Spring Harb. Perspect. Biol. 2017, 9, a028175. [Google Scholar] [CrossRef]
- Kasahara, K.; Kawakami, Y.; Kiyono, T.; Yonemura, S.; Kawamura, Y.; Era, S.; Matsuzaki, F.; Goshima, N.; Inagaki, M. Ubiquitin-Proteasome System Controls Ciliogenesis at the Initial Step of Axoneme Extension. Nat. Commun. 2014, 5, 5081. [Google Scholar] [CrossRef]
- Markiewicz, Ł.; Uśpieński, T.; Baran, B.; Niedziółka, S.M.; Niewiadomski, P. Xpo7 Negatively Regulates Hedgehog Signaling by Exporting Gli2 from the Nucleus. Cell Signal 2021, 80, 109907. [Google Scholar] [CrossRef]
- Steg, A.D.; Burke, M.R.; Amm, H.M.; Katre, A.A.; Dobbin, Z.C.; Jeong, D.H.; Landen, C.N. Proteasome Inhibition Reverses Hedgehog Inhibitor and Taxane Resistance in Ovarian Cancer. Oncotarget 2014, 5, 7065–7080. [Google Scholar] [CrossRef]
- Hatayama, M.; Aruga, J. Gli Protein Nuclear Localization Signal. Vitam. Horm. 2012, 88, 73–89. [Google Scholar] [CrossRef]
- Han, Y.; Xiong, Y.; Shi, X.; Wu, J.; Zhao, Y.; Jiang, J. Regulation of Gli Ciliary Localization and Hedgehog Signaling by the PY-NLS/Karyopherin-Β2 Nuclear Import System. PLoS Biol. 2017, 15, e2002063. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Li, Y. Evidence for the Direct Involvement of {beta}TrCP in Gli3 Protein Processing. Proc. Natl. Acad. Sci. USA 2006, 103, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, N.; Thiyagarajan, S.; Elcheva, I.; Saleem, M.; Dlugosz, A.; Mukhtar, H.; Spiegelman, V.S. Gli2 Is Targeted for Ubiquitination and Degradation by Beta-TrCP Ubiquitin Ligase. J. Biol. Chem. 2006, 281, 19320–19326. [Google Scholar] [CrossRef] [PubMed]
- Breslow, D.K.; Hoogendoorn, S.; Kopp, A.R.; Morgens, D.W.; Vu, B.K.; Kennedy, M.C.; Han, K.; Li, A.; Hess, G.T.; Bassik, M.C.; et al. A CRISPR-Based Screen for Hedgehog Signaling Provides Insights into Ciliary Function and Ciliopathies. Nat. Genet. 2018, 50, 460–471. [Google Scholar] [CrossRef] [PubMed]
- Pusapati, G.V.; Kong, J.H.; Patel, B.B.; Krishnan, A.; Sagner, A.; Kinnebrew, M.; Briscoe, J.; Aravind, L.; Rohatgi, R. CRISPR Screens Uncover Genes That Regulate Target Cell Sensitivity to the Morphogen Sonic Hedgehog. Dev. Cell 2018, 44, 113–129. [Google Scholar] [CrossRef] [PubMed]
- Alpi, A.F.; Chaugule, V.; Walden, H. Mechanism and Disease Association of E2-Conjugating Enzymes: Lessons from UBE2T and UBE2L3. Biochem. J. 2016, 473, 3401. [Google Scholar] [CrossRef]
- Ma, X.; Qi, W.; Yang, F.; Pan, H. UBE2L3 Promotes Lung Adenocarcinoma Invasion and Metastasis through the GSK-3β/Snail Signaling Pathway. Am. J. Transl. Res. 2022, 14, 4549. [Google Scholar]
- Cui, Z.; Sun, S.; Li, J.; Li, J.; Sha, T.; He, J.; Zuo, L. UBE2L3 Promotes Squamous Cell Carcinoma Progression in the Oral Cavity and Hypopharynx via Activating the NF-ΚB Signaling by Increasing IκBα Degradation. Cell Biol. Int. 2022, 46, 806–818. [Google Scholar] [CrossRef]
- Mauro, D.; Manou-Stathopoulou, S.; Rivellese, F.; Sciacca, E.; Goldmann, K.; Tsang, V.; Lucey-Clayton, I.; Pagani, S.; Alam, F.; Pyne, D.; et al. UBE2L3 Regulates TLR7-Induced B Cell Autoreactivity in Systemic Lupus Erythematosus. J. Autoimmun. 2023, 136, 103023. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Wang, Y.; Lu, Q.; Chen, J.; Zhang, J.; Liu, T.; Lv, N.; Luo, S. SPOP Suppresses Tumorigenesis by Regulating Hedgehog/Gli2 Signaling Pathway in Gastric Cancer. J. Exp. Clin. Cancer Res. 2014, 33, 75. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.J. Ubiquitin Signaling in the NF-ΚB Pathway. Nat. Cell Biol. 2005, 7, 758. [Google Scholar] [CrossRef] [PubMed]
- Park, H.B.; Kim, J.W.; Baek, K.H. Regulation of Wnt Signaling through Ubiquitination and Deubiquitination in Cancers. Int. J. Mol. Sci. 2020, 21, 3904. [Google Scholar] [CrossRef]
- Umberger, P.A.; Ogden, S.K. SPOP and CUL3 Modulate the Sonic Hedgehog Signal Response Through Controlled Degradation of GLI Family Transcription Factors. Front. Cell Dev. Biol. 2021, 9, 710295. [Google Scholar] [CrossRef]
- Wang, C.; Pan, Y.; Wang, B. Suppressor of Fused and Spop Regulate the Stability, Processing and Function of Gli2 and Gli3 Full-Length Activators but Not Their Repressors. Development 2010, 137, 2001–2009. [Google Scholar] [CrossRef]
- Habeck, G.; Schweiggert, J. Proteolytic Control in Ciliogenesis: Temporal Restriction or Early Initiation? BioEssays 2022, 44, 2200087. [Google Scholar] [CrossRef]
- Chen, M.H.; Wilson, C.W.; Li, Y.J.; Law, K.K.L.; Lu, C.S.; Gacayan, R.; Zhang, X.; Hui, C.C.; Chuang, P.T. Cilium-Independent Regulation of Gli Protein Function by Sufu in Hedgehog Signaling Is Evolutionarily Conserved. Genes Dev. 2009, 23, 1910–1928. [Google Scholar] [CrossRef]
- Yue, S.; Chen, Y.; Cheng, S.Y. Hedgehog Signaling Promotes the Degradation of Tumor Suppressor Sufu through the Ubiquitin-Proteasome Pathway. Oncogene 2009, 28, 492–499. [Google Scholar] [CrossRef]
- Varjosalo, M.; Li, S.P.; Taipale, J. Divergence of Hedgehog Signal Transduction Mechanism between Drosophila and Mammals. Dev. Cell 2006, 10, 177–186. [Google Scholar] [CrossRef]
- Kandel, R.; Jung, J.; Neal, S. Proteotoxic Stress and the Ubiquitin Proteasome System. Semin. Cell Dev. Biol. 2024, 156, 107–120. [Google Scholar] [CrossRef]
- Schulman, B.A.; Wade Harper, J. Ubiquitin-like Protein Activation by E1 Enzymes: The Apex for Downstream Signalling Pathways. Nat. Rev. Mol. Cell Biol. 2009, 10, 319. [Google Scholar] [CrossRef] [PubMed]
- Stewart, M.D.; Ritterhoff, T.; Klevit, R.E.; Brzovic, P.S. E2 Enzymes: More than Just Middle Men. Cell Res. 2016, 26, 423–440. [Google Scholar] [CrossRef]
- Li, W.; Bengtson, M.H.; Ulbrich, A.; Matsuda, A.; Reddy, V.A.; Orth, A.; Chanda, S.K.; Batalov, S.; Joazeiro, C.A.P. Genome-Wide and Functional Annotation of Human E3 Ubiquitin Ligases Identifies MULAN, a Mitochondrial E3 That Regulates the Organelle’s Dynamics and Signaling. PLoS ONE 2008, 3, e1487. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Sui, J.; Zhang, F.; Zhang, C. Cullin Family Proteins and Tumorigenesis: Genetic Association and Molecular Mechanisms. J. Cancer 2015, 6, 233. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Pei, X.H.; Yan, J.; Yan, F.; Cappell, K.M.; Whitehurst, A.W.; Xiong, Y. CUL9 Mediates the Functions of the 3M Complex and Ubiquitylates Survivin to Maintain Genome Integrity. Mol. Cell 2014, 54, 805. [Google Scholar] [CrossRef]
- Canettieri, G.; Di Marcotullio, L.; Greco, A.; Coni, S.; Antonucci, L.; Infante, P.; Pietrosanti, L.; De Smaele, E.; Ferretti, E.; Miele, E.; et al. Histone Deacetylase and Cullin3-RENKCTD11ubiquitin Ligase Interplay Regulates Hedgehog Signalling through Gli Acetylation. Nat. Cell Biol. 2010, 12, 132–142. [Google Scholar] [CrossRef]
- de Smaele, E.; di Marcotullio, L.; Moretti, M.; Pelloni, M.; Occhione, M.A.; Infante, P.; Cucchi, D.; Greco, A.; Pietrosanti, L.; Todorovic, J.; et al. Identification and Characterization of KCASH2 and KCASH3, 2 Novel Cullin3 Adaptors Suppressing Histone Deacetylase and Hedgehog Activity in Medulloblastoma. Neoplasia 2011, 13, 374. [Google Scholar] [CrossRef]
- Spiombi, E.; Angrisani, A.; Fonte, S.; De Feudis, G.; Fabretti, F.; Cucchi, D.; Izzo, M.; Infante, P.; Miele, E.; Po, A.; et al. KCTD15 Inhibits the Hedgehog Pathway in Medulloblastoma Cells by Increasing Protein Levels of the Oncosuppressor KCASH2. Oncogenesis 2019, 8, 1–11. [Google Scholar] [CrossRef]
- Di Fiore, A.; Bellardinelli, S.; Pirone, L.; Russo, R.; Angrisani, A.; Terriaca, G.; Bowen, M.; Bordin, F.; Besharat, Z.M.; Canettieri, G.; et al. KCTD1 Is a New Modulator of the KCASH Family of Hedgehog Suppressors. Neoplasia 2023, 43, 100926–101476. [Google Scholar] [CrossRef]
- DeAndrade, M.P.; Zhang, L.; Doroodchi, A.; Yokoi, F.; Cheetham, C.C.; Chen, H.X.; Roper, S.N.; Sweatt, J.D.; Li, Y. Enhanced Hippocampal Long-Term Potentiation and Fear Memory in Btbd9 Mutant Mice. PLoS ONE 2012, 7, e35518. [Google Scholar] [CrossRef] [PubMed]
- Lyu, S.; Doroodchi, A.; Xing, H.; Sheng, Y.; DeAndrade, M.P.; Yang, Y.; Johnson, T.L.; Clemens, S.; Yokoi, F.; Miller, M.A.; et al. BTBD9 and Dopaminergic Dysfunction in the Pathogenesis of Restless Legs Syndrome. Brain Struct. Funct. 2020, 225, 1743. [Google Scholar] [CrossRef] [PubMed]
- Lyu, S.; Xing, H.; Liu, Y.; Girdhar, P.; Yokoi, F.; Li, Y. Further Studies on the Role of BTBD9 in the Cerebellum, Sleep-like Behaviors and the Restless Legs Syndrome. Neuroscience 2022, 505, 78. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Wang, A.; Zhao, Y.; Zhang, X.; Yuan, X.; Li, N.; Xu, C.; Wang, S.; Zhu, Y.; Zhu, J.; et al. Integrative Proteome and Ubiquitinome Analyses Reveal the Substrates of BTBD9 and Its Underlying Mechanism in Sleep Regulation. ACS Omega 2022, 7, 11839–11852. [Google Scholar] [CrossRef]
- Chen, S.Y.; Oliveira, H.R.; Schenkel, F.S.; Pedrosa, V.B.; Melka, M.G.; Brito, L.F. Using Imputed Whole-Genome Sequence Variants to Uncover Candidate Mutations and Genes Affecting Milking Speed and Temperament in Holstein Cattle. J. Dairy Sci. 2020, 103, 10383–10398. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Z.; Ye, S.; He, Y.; Huang, S.; Yuan, X.; Chen, Z.; Zhang, H.; Li, J. Genome-Wide Association Study for Reproductive Traits in a Duroc Pig Population. Animals 2019, 9, 732. [Google Scholar] [CrossRef]
- Alazami, A.M.; Patel, N.; Shamseldin, H.E.; Anazi, S.; Al-Dosari, M.S.; Alzahrani, F.; Hijazi, H.; Alshammari, M.; Aldahmesh, M.A.; Salih, M.A.; et al. Accelerating Novel Candidate Gene Discovery in Neurogenetic Disorders via Whole-Exome Sequencing of Prescreened Multiplex Consanguineous Families. Cell. Rep. 2015, 10, 148–161. [Google Scholar] [CrossRef]
- Trujillano, D.; Bertoli-Avella, A.M.; Kumar Kandaswamy, K.; Weiss, M.E.; Köster, J.; Marais, A.; Paknia, O.; Schröder, R.; Garcia-Aznar, J.M.; Werber, M.; et al. Clinical Exome Sequencing: Results from 2819 Samples Reflecting 1000 Families. Eur. J. Hum. Genet. 2017, 25, 176–182. [Google Scholar] [CrossRef]
- Faqeih, E.A.; Almannai, M.; Saleh, M.M.; AlWadei, A.H.; Samman, M.M.; Alkuraya, F.S. Phenotypic Characterization of KCTD3-Related Developmental Epileptic Encephalopathy. Clin. Genet. 2018, 93, 1081–1086. [Google Scholar] [CrossRef]
- Geng, F.; Wenzel, S.; Tansey, W.P. Ubiquitin and Proteasomes in Transcription. Annu. Rev. Biochem. 2012, 81, 177. [Google Scholar] [CrossRef]
- Lipford, J.R.; Smith, G.T.; Chi, Y.; Deshaies, R.J. A Putative Stimulatory Role for Activator Turnover in Gene Expression. Nature 2005, 438, 113–116. [Google Scholar] [CrossRef]
- Muratani, M.; Kung, C.; Shokat, K.M.; Tansey, W.P. The F Box Protein Dsg1/Mdm30 Is a Transcriptional Coactivator That Stimulates Gal4 Turnover and Cotranscriptional MRNA Processing. Cell 2005, 120, 887–899. [Google Scholar] [CrossRef]
- Ang, K.; Ee, G.; Ang, E.; Koh, E.; Siew, W.L.; Chan, Y.M.; Nur, S.; Tan, Y.S.; Lehming, N. Mediator Acts Upstream of the Transcriptional Activator Gal4. PLoS Biol. 2012, 10, e1001290. [Google Scholar] [CrossRef] [PubMed]
- Jaenicke, L.A.; von Eyss, B.; Carstensen, A.; Wolf, E.; Xu, W.; Greifenberg, A.K.; Geyer, M.; Eilers, M.; Popov, N. Ubiquitin-Dependent Turnover of MYC Antagonizes MYC/PAF1C Complex Accumulation to Drive Transcriptional Elongation. Mol. Cell 2016, 61, 54–67. [Google Scholar] [CrossRef] [PubMed]
- Reid, G.; Hübner, M.R.; Métivier, R.; Brand, H.; Denger, S.; Manu, D.; Beaudouin, J.; Ellenberg, J.; Gannon, F. Cyclic, Proteasome-Mediated Turnover of Unliganded and Liganded ERα on Responsive Promoters Is an Integral Feature of Estrogen Signaling. Mol. Cell 2003, 11, 695–707. [Google Scholar] [CrossRef] [PubMed]
- Kaluz, S.; Kaluzová, M.; Stanbridge, E.J. Proteasomal Inhibition Attenuates Transcriptional Activity of Hypoxia-Inducible Factor 1 (HIF-1) via Specific Effect on the HIF-1α C-Terminal Activation Domain. Mol. Cell. Biol. 2006, 26, 5895. [Google Scholar] [CrossRef]
- Zhou, H.; Spaeth, J.M.; Kim, N.H.; Xu, A.; Friez, M.J.; Schwartz, C.E.; Boyer, T.G. MED12 Mutations Link Intellectual Disability Syndromes with Dysregulated GLI3-Dependent Sonic Hedgehog Signaling. Proc. Natl. Acad. Sci. USA 2012, 109, 19763–19768. [Google Scholar] [CrossRef]
- Tsanev, R.; Tiigimägi, P.; Michelson, P.; Metsis, M.; Østerlund, T.; Kogerman, P. Identification of the Gene Transcription Repressor Domain of Gli3. FEBS Lett. 2009, 583, 224. [Google Scholar] [CrossRef]
- Nishiguchi, K.M.; Tearle, R.G.; Liu, Y.P.; Oh, E.C.; Miyake, N.; Benaglio, P.; Harper, S.; Koskiniemi-Kuendig, H.; Venturini, G.; Sharon, D.; et al. Whole Genome Sequencing in Patients with Retinitis Pigmentosa Reveals Pathogenic DNA Structural Changes and NEK2 as a New Disease Gene. Proc. Natl. Acad. Sci. USA 2013, 110, 16139–16144. [Google Scholar] [CrossRef]
- Wilkes, D.; McDermott, D.A.; Basson, C.T. Clinical Phenotypes and Molecular Genetic Mechanisms of Carney Complex. Lancet Oncology 2005, 6, 501–508. [Google Scholar] [CrossRef]
- Chen, Y.; Yue, S.; Xie, L.; Pu, X.H.; Jin, T.; Cheng, S.Y. Dual Phosphorylation of Suppressor of Fused (Sufu) by PKA and GSK3β Regulates Its Stability and Localization in the Primary Cilium. J. Biol. Chem. 2011, 286, 13502. [Google Scholar] [CrossRef] [PubMed]
- Lauth, M.; Bergström, Å.; Shimokawa, T.; Toftgård, R. Inhibition of GLI-Mediated Transcription and Tumor Cell Growth by Small-Molecule Antagonists. Proc. Natl. Acad. Sci. USA 2007, 104, 8455. [Google Scholar] [CrossRef] [PubMed]
- Calcaterra, A.; Iovine, V.; Botta, B.; Quaglio, D.; D’Acquarica, I.; Ciogli, A.; Iazzetti, A.; Alfonsi, R.; Lospinoso Severini, L.; Infante, P.; et al. Chemical, Computational and Functional Insights into the Chemical Stability of the Hedgehog Pathway Inhibitor GANT61. J. Enzyme Inhib. Med. Chem. 2018, 33, 349. [Google Scholar] [CrossRef]
- Infante, P.; Mori, M.; Alfonsi, R.; Ghirga, F.; Aiello, F.; Toscano, S.; Ingallina, C.; Siler, M.; Cucchi, D.; Po, A.; et al. Gli1/ DNA Interaction Is a Druggable Target for Hedgehog-dependent Tumors. EMBO J. 2015, 34, 200–217. [Google Scholar] [CrossRef] [PubMed]
- Infante, P.; Malfanti, A.; Quaglio, D.; Balducci, S.; De Martin, S.; Bufalieri, F.; Mastrotto, F.; Basili, I.; Garofalo, M.; Lospinoso Severini, L.; et al. Glabrescione B Delivery by Self-Assembling Micelles Efficiently Inhibits Tumor Growth in Preclinical Models of Hedgehog-Dependent Medulloblastoma. Cancer Lett. 2021, 499, 220–231. [Google Scholar] [CrossRef]
- Maresca, L.; Crivaro, E.; Migliorini, F.; Anichini, G.; Giammona, A.; Pepe, S.; Poggialini, F.; Vagaggini, C.; Giannini, G.; Sestini, S.; et al. Targeting GLI1 and GLI2 with Small Molecule Inhibitors to Suppress GLI-Dependent Transcription and Tumor Growth. Pharmacol. Res. 2023, 195, 106858. [Google Scholar] [CrossRef]
Name | Manufacturer | Catalog Number | Application (Dilution) |
---|---|---|---|
Primary antibodies | |||
Anti-Gli2 | R&D Systems (Minnneapolis, MN, USA) | AF3635 | WB (1:1000) |
Anti-Gli1 | Cell Signaling Technologies (Danvers, MA, USA) | 2643 | WB (1:1000) |
Anti-Gli3 | R&D Systems (Minnneapolis, MN, USA) | AF3690 | WB (1:1000) |
Anti-HA | BioLegend (San Diego, CA, USA) | IF, WB (1:1000) | |
Anti-PARP | Cell Signaling Technologies (Danvers, MA, USA) | 9532 | WB (1:1000) |
Anti-GAPDH | Thermo Fisher (Waltham, MA, USA) | PA1-988 | WB (1:1000) |
Anti-α-tubulin | Sigma (Darmstadt, Germany) | T6199 | WB (1:1000) |
Anti-acetylated tubulin | Sigma (Darmstadt, Germany) | T6793 | WB (1:1000) |
Anti-Lamin A/C | Thermo Fisher (Waltham, MA, USA) | MA5–35284 | WB (1:1000) |
Anti-Arl13b | Proteintech (San Diego, CA, USA) | 17711-1-AP | IF (1:1000) |
Secondary antibodies | |||
Anti-mouse HRP | BioLegend (San Diego, CA, USA) | 405306 | WB (1:2500) |
Anti-goat HRP | Sigma (Darmstadt, Germany) | A5420 | WB (1:2500) |
Anti-rabbit HRP | BioLegend (San Diego, CA, USA) | 406401 | WB (1:2500) |
Anti-mouse Alexa-488 | Jackson Immunoresearch (West Grove, PA, USA) | 715–545-151 | IF (1:1000) |
Anti-rabbit Alexa-594 | Jackson Immunoresearch (West Grove, PA, USA) | 711–585-152 | IF (1:1000) |
Name | Sequence |
---|---|
sgRNA-Non-target | GCGAGGTATTCGGCTCCGCG |
sgRNA-Sufu | ATACCAGTACTTGACGATAG |
sgRNA2-Gli1 | GGCTGGACTCCATAGGG |
sgRNA1-Gli2 | GCTTGCGGCTCAGTCGTG |
sgRNA1-Gli3 | CCTCGACGTCTAGTGATGAG |
sgRNA2-Btbd9 | CAGCACATACAAGTTAACTT |
sgRNA2- Btbd10 | TGGGCGCTTGCTACCATGAG |
sgRNA1-Cul1 | ATTCCATTCAGCACTTTGC |
sgRNA2-Cul1 | TGCCTACCTCAATAGACAT |
sgRNA4-Cul1 | CATCAGTCCAACCAAGCCC |
sgRNA4-Cul3 | TAGAAAATGTCTACAATTT |
sgRNA5-Cul3 | ACCTAAAATCATTAACATC |
sgRNA1-Kctd3 | AGTGAGGTAAACGCTCAGCG |
sgRNA1-Klhl9 | CTTTCTACAGATCTTGC |
sgRNA2-Klhl9 | TCTGCCAGTGATTATTTCA |
sgRNA1-Rbx1 | GTTATCAACCACAATGTCCC |
sgRNA2-Rbx1 | GGCCTGACATTCGATACCTG |
sgRNA3-Rbx1 | CTCCTTGCAGTGGAATGCAG |
sgRNA4-Rbx1 | GCGGCGGCGATGGATG |
sgRNA5-Rbx1 | CCGCTGTTGGTGCCGCTGG |
sgRNA1-Stub1 | CCGCCTCCGGGTACTTG |
sgRNA2-Stub1 | CAATGCGAAGGGCACT |
sgRNA1-Ube2l3 | TCATTCACCAGTGCTATGA |
sgRNA2-Ube2l3 | ACAACCCTCCATATGATA |
sgRNA1 Myh1 | GCTGCCAGTGTATAACGCAG |
sgRNA1 Myh8 | CCAGATTATAACAAGAACCC |
sgRNA2 Myh8 | GAATCCACTTCGGTACCACG |
sgRNA2 Mov10 | CAAGACTGTCACATTAGTGG |
sgRNA1 Peak1 | AGTGCAACCTACAGCAACCT |
sgRNA2 Peak1 | CTGATGCAAAACCTAAACGC |
sgRNA1 Scyl2 | TCTGCAT CGGGTCTCACGGT |
sgRNA1 Med12 | CAAACAGTACGACCAACCGC |
sgRNA2 Med12 | CTGTTGGAAAACCTCGATTG |
sgRNA1 Nipbl | CTCCCATCTCCTTTACCTGC |
qPCR GAPDH F (Ms) | AGCCTCGTCCCGTAGACAAAAT |
qPCR GAPDH R (Ms) | CCGTGAGTGGAGTCATACTGGA |
qPCR Gli1 F (Ms) | CCAAGCCAACTTTATGTCAGGG |
qPCR Gli1 R (Ms) | AGCCCGCTTCTTTGTTAATTTGA |
qPCR Gli1 3′UTR F (Ms) | GCCTCTCCCACATACTAGAAATC |
qPCR Gli1 3′UTR R (Ms) | CATTGGATTGAACATGGCGTC |
qPCR Gli2 F (Ms) | CCCACTCCAGCCAAGTTG |
qPCR Gli2 R (Ms) | GCAGAAGTCTCCATCTCAGAG |
qPCR Hes1 F (Ms) | GGCGAAGGGCAAGAATAAATG |
qPCR Hes1 R (Ms) | GTGCTTCACAGTCATTTCCAG |
qPCR Ptch1 F (Ms) | CTGCCTGTCCTCTTATCCTTC |
qPCR Ptch1 R (Ms) | AGACCCATTGTTCGTGTGAC |
qPCR GAPDH F (Hs) | ACATCGCTCAGACACCAT |
qPCR GAPDH R (Hs) | TGTAGTTGAGGTCAATGAAGGG |
qPCR Gli1 F (Hs) | TCTGGACATACCCCACCTCCCTCTG |
qPCR Gli1 R (Hs) | ACTGCAGCTCCCCCAATTTTTCTGG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uśpieński, T.; Niewiadomski, P. The Proteasome and Cul3-Dependent Protein Ubiquitination Is Required for Gli Protein-Mediated Activation of Gene Expression in the Hedgehog Pathway. Cells 2024, 13, 1496. https://doi.org/10.3390/cells13171496
Uśpieński T, Niewiadomski P. The Proteasome and Cul3-Dependent Protein Ubiquitination Is Required for Gli Protein-Mediated Activation of Gene Expression in the Hedgehog Pathway. Cells. 2024; 13(17):1496. https://doi.org/10.3390/cells13171496
Chicago/Turabian StyleUśpieński, Tomasz, and Paweł Niewiadomski. 2024. "The Proteasome and Cul3-Dependent Protein Ubiquitination Is Required for Gli Protein-Mediated Activation of Gene Expression in the Hedgehog Pathway" Cells 13, no. 17: 1496. https://doi.org/10.3390/cells13171496
APA StyleUśpieński, T., & Niewiadomski, P. (2024). The Proteasome and Cul3-Dependent Protein Ubiquitination Is Required for Gli Protein-Mediated Activation of Gene Expression in the Hedgehog Pathway. Cells, 13(17), 1496. https://doi.org/10.3390/cells13171496