Orthotopic Models Using New, Murine Lung Adenocarcinoma Cell Lines Simulate Human Non-Small Cell Lung Cancer Treated with Immunotherapy
<p><b>Visual inspection at necropsy and H&E staining of normal, healthy murine lung tissue and orthotopic tumors generated with monoclonal SmKPP.1 or CmKPP.1 cells.</b> At necropsy, compared to a mouse with no cancer (<b>A.1</b>,<b>A.2</b>)), visual confirmation can be made of primary tumor (left lung, (<b>B.1</b>,<b>C.1</b>), red arrows), metastases to ribs ((<b>B.1</b>,<b>C.1</b>), yellow chevrons), enlarged mediastinal lymph nodes ((<b>B.2</b>,<b>C.2</b>), red chevrons) and metastases to the left hemidiaphragm ((<b>C.1</b>,<b>C.2</b>), yellow arrow). H&E Images at 4× reveal that orthotopic tumors generated by SmKPP.1 (<b>B.3</b>) and CmKPP.1 (<b>C.3</b>) consist of dense sheets of cells surrounded by healthy lung interstitium and alveoli, which normally appears as a delicate, thin, lacy network of cells (<b>A.3</b>). H&E at 40× reveals that both SmKPP.1 (<b>B.4</b>) and CmKPP.1 (<b>C.4</b>) tumors have abundant cytoplasm and have predominantly vesicular nuclei with notable nucleoli compared to normal healthy lung tissue (<b>A.4</b>). All images are 10 μm-thick tissue sections. Scale bars: 200 µm for 4× and 20 µm for 40×.</p> "> Figure 2
<p><b>Western blot of monoclonal cell lines SmKPP.1, CmKPP.1 and LLC.</b> Both SmKPP.1 and CmKPP.1 exhibit typical tumor markers of human lung adenocarcinoma including the presence of proteins TTF-1 (40 kDA), NapA (35 kDA), and absence of p40 (40 kDA); they also demonstrate the absence of gene product p53 (53 kDA), and the presence of KRASG12D (25 kDA) and p110α (110 kDA). This is in comparison to LLC which is positive for NapA but negative for TTF-1 and p40, positive for p53, and negative for KRASG12D and p110α. PD-L1 is more strongly present in CmKPP.1 compared to SmKPP.1 and LLC. Murine testes (MT) serve as a positive control for p40, and human lung fibroblasts (HLF) serve as a positive control for PD-L1. Cell passage 22 used for SmKPP.1 and passage 16 for CmKPP.1.</p> "> Figure 3
<p><b>Immunofluorescence staining of normal, healthy murine lung tissue and orthotopic tumors generated with monoclonal SmKPP.1 or CmKPP.1 cells</b>. Images demonstrate that tumors generated by SmKPP.1 are positive for TTF-1 ((<b>B.1</b>), red), NapA ((<b>B.2</b>), red), and PD-L1 ((<b>B.3</b>), red); tumors generated by CmKPP.1 are also positive for TTF-1 ((<b>C.1</b>), red), NapA ((<b>C.2</b>), red), and PD-L1 ((<b>C.3</b>), red). Lung tissue from normal control mice without tumor exhibits a low expression of TTF-1 ((<b>A.1</b>), arrows), and the absence of NapA (<b>A.2</b>) and PD-L1 (<b>A.3</b>). All tissue slices were stained for CD31 (green, for endothelial cells, not included in the overlay for SmKPP.1 or CmKPP.1) to provide architecture and counterstained with DAPI (blue, for cellular nuclei). The scale bar represents 50 μm.</p> "> Figure 4
<p><b>µCT scan of starting tumor volume of a mouse with an orthotopic tumor generated by 125,000 SmKPP.1 cells.</b> In this representative mouse, one week after injection of SmKPP.1 cells, the left lung tumor is clearly identified (blue crosshairs) in the axial (<b>A</b>), coronal (<b>B</b>), and sagittal (<b>C</b>) planes using ITK-SNAP software, version 3.8.0. Diameters measured in each plane were then applied to a formula for the volume of an oval, the volume of this orthotopic tumor is 6.19 mm<sup>3</sup>. The scale bar represents 1.0 mm.</p> "> Figure 5
<p><b>Different concentrations of LLC, CmKPP.1 or SmKPP.1, have different survival curves.</b> (<b>A</b>) When LLC is injected at a concentration of 75,000, 125,000, or 250,000 there is no difference in survival. (<b>B</b>) In addition, when CmKPP.1 is injected at a concentration 75,000 or 125,000 there is no difference in survival. (<b>C</b>) However, when SmKPP.1 is injected at a concentration of 125,000 survival is statistically longer compared to a concentration of 250,000, <span class="html-italic">p</span> = 0.027. (<b>D</b>) Interestingly, when CmKPP.1 at 250,000 or SmKPP.1 at 1 million was injected into the flank, there was no difference in survival.</p> "> Figure 6
<p><b>Survival curves for three cohorts of mice with orthotopic tumors generated by LLC, CmKPP.1 or SmKPP.1, comparing treatment with immunotherapy to control (1XPBS).</b> Within each cohort, mice underwent weekly intraperitoneal injections of immunotherapy with anti-PD-1 on Tuesdays and anti-PD-L1 on Thursdays; control mice were injected with 1× PBS on the same days. (<b>A</b>) Survival of three control cohorts demonstrates that LLC is more aggressive than CmKPP.1 and SmKPP.1; and CmKPP.1 is more aggressive than SmKPP.1. (<b>B</b>) Survival of LLC cohort comparing immunotherapy to PBS is consistent with other data that orthotopic tumors generated by LLC most likely has primary resistance to immunotherapy. (<b>C</b>) CmKPP.1 cohort and (<b>D</b>) SmKPP.1 cohort demonstrate orthotopic tumors are initially responsive to immunotherapy when compared to PBS, but are lethal, suggesting mice develop secondary resistance.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Materials/Data Availability
2.2. Cell-Type Specific Cre-Recombinant Adenoviral Vectors
2.3. Genetically Engineered Mouse (GEM) Model of Lung Cancer
2.4. Mouse Husbandry
2.5. In Vivo Checkpoint Inhibitor Participants/Orthotopic Modeling
2.6. Cre Virus Activation and Preparation
2.7. Murine Survival Surgery
2.8. Computed Tomography
2.9. Mouse Euthanasia and Harvesting
2.10. Cell Lineage Generation, Cell Sorting, and Cell Culture
2.11. Cell Storage and Orthotopic Preparation
2.12. Tissue Preservation and Preparation
2.13. Histopathology and Immunofluorescence
2.14. Western Blot Analyses
2.15. Statistical Analysis
3. Results
3.1. New Murine Lung Cancer Cell Lines, SmKPP.1 and CmKPP.1, Are Phenotypically Stable in Culture
3.2. New Cell Lines Form Solid Adenocarcinoma Lung Tumors In Vivo
3.3. SmKPP.1 and CmKPP.1 Cells Resemble Human Lung Adenocarcinoma Gene Products and Protein Expression
3.4. In Vivo Tumor Response to Immune Checkpoint Inhibitors (ICI) Simulates Clinical Outcomes
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bertram, J.S.; Janik, P. Establishment of a cloned line of Lewis Lung Carcinoma cells adapted to cell culture. Cancer Lett. 1980, 11, 63–73. [Google Scholar] [CrossRef]
- Marks, T.A.; Woodman, R.J.; Geran, R.I.; Billups, L.H.; Madison, R.M. Characterization and responsiveness of the Madison 109 lung carcinoma to various antitumor agents. Cancer Treat. Rep. 1977, 61, 1459–1470. [Google Scholar]
- Kaneko, T.; LePage, G.A. Growth characteristics and drug responses of a murine lung carcinoma in vitro and in vivo. Cancer Res. 1978, 38, 2084–2090. [Google Scholar]
- Nettesheim, P.; Hammons, A.S. Induction of Squamous Cell Carcinoma in the Respiratory Tract of Mice2. JNCI J. Natl. Cancer Inst. 1971, 47, 697–701. [Google Scholar] [CrossRef]
- Franks, L.M.; Carbonell, A.W.; Hemmings, V.J.; Riddle, P.N. Metastasizing tumors from serum-supplemented and serum-free cell lines from a C57BL mouse lung tumor. Cancer Res. 1976, 36, 1049–1055. [Google Scholar]
- Franks, L.M.; Layton, M.G. Ultrastructural tumour differentiation and organ specificity in high and low metastatic lines from a mouse lung carcinoma. Br. J. Cancer 1984, 49, 423–429. [Google Scholar] [CrossRef]
- Kellar, A.; Egan, C.; Morris, D. Preclinical Murine Models for Lung Cancer: Clinical Trial Applications. Biomed. Res. Int. 2015, 2015, 621324. [Google Scholar] [CrossRef]
- Voskoglou-Nomikos, T.; Pater, J.L.; Seymour, L. Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models. Clin. Cancer Res. 2003, 9, 4227–4239. [Google Scholar]
- Zhang, K.; Wrzesinski, K.; Stephen, J.F.; Larsen, P.M.; Zhang, X.; Roepstorff, P. Comparative proteome analysis of three mouse lung adenocarcinoma CMT cell lines with different metastatic potential by two-dimensional gel electrophoresis and mass spectrometry. Proteomics 2008, 8, 4932–4945. [Google Scholar] [CrossRef]
- Global Burden of Disease 2019 Cancer Collaboration; Kocarnik, J.M.; Compton, K.; Dean, F.E.; Fu, W.; Gaw, B.L.; Harvey, J.D.; Henrikson, H.J.; Lu, D.; Pennini, A.; et al. Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life Years for 29 Cancer Groups From 2010 to 2019: A Systematic Analysis for the Global Burden of Disease Study 2019. JAMA Oncol. 2022, 8, 420–444. [Google Scholar] [CrossRef]
- Islami, F.; Goding Sauer, A.; Miller, K.D.; Siegel, R.L.; Fedewa, S.A.; Jacobs, E.J.; McCullough, M.L.; Patel, A.V.; Ma, J.; Soerjomataram, I.; et al. Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States. CA Cancer J. Clin. 2018, 68, 31–54. [Google Scholar] [CrossRef]
- Abdeahad, H.; Salehi, M.; Yaghoubi, A.; Aalami, A.H.; Aalami, F.; Soleimanpour, S. Previous pulmonary tuberculosis enhances the risk of lung cancer: Systematic reviews and meta-analysis. Infect. Dis. 2022, 54, 255–268. [Google Scholar] [CrossRef]
- Goldfarb, D.G.; Hall, C.B.; Choi, J.; Zeig-Owens, R.; Cohen, H.W.; Cannon, M.; Prezant, D.J.; Weiden, M.D. Association of Lung Function Decline with All-Cause and Cancer-Cause Mortality after World Trade Center Dust Exposure. Ann. Am. Thorac. Soc. 2023, 20, 1136–1143. [Google Scholar] [CrossRef]
- Zhu, Y.; Wu, Y.; Cheng, J.; Liang, H.; Chang, Q.; Lin, F.; Li, D.; Zhou, X.; Chen, X.; Pan, P.; et al. Ambient air pollution, lifestyle, and genetic predisposition on all-cause and cause-specific mortality: A prospective cohort study. Sci. Total Environ. 2024, 933, 173120. [Google Scholar] [CrossRef]
- Banks, E.; Yazidjoglou, A.; Brown, S.; Nguyen, M.; Martin, M.; Beckwith, K.; Daluwatta, A.; Campbell, S.; Joshy, G. Electronic cigarettes and health outcomes: Umbrella and systematic review of the global evidence. Med. J. Aust. 2023, 218, 267–275. [Google Scholar] [CrossRef]
- Tsolakos, N.; Haswell, L.E.; Miazzi, F.; Bishop, E.; Antoranz, A.; Pliaka, V.; Minia, A.; Alexopoulos, L.G.; Gaca, M.; Breheny, D. Comparative toxicological assessment of cigarettes and new category products via an in vitro multiplex proteomics platform. Toxicol. Rep. 2024, 12, 492–501. [Google Scholar] [CrossRef]
- Herzog, C.; Jones, A.; Evans, I.; Raut, J.R.; Zikan, M.; Cibula, D.; Wong, A.; Brenner, H.; Richmond, R.C.; Widschwendter, M. Cigarette Smoking and E-cigarette Use Induce Shared DNA Methylation Changes Linked to Carcinogenesis. Cancer Res. 2024, 84, 1898–1914. [Google Scholar] [CrossRef]
- Alberg, A.J.; Ford, J.G.; Samet, J.M. Epidemiology of lung cancer: ACCP evidence-based clinical practice guidelines (2nd edition). Chest 2007, 132, 29s–55s. [Google Scholar] [CrossRef]
- Travis, W.D.; Brambilla, E.; Nicholson, A.G.; Yatabe, Y.; Austin, J.H.M.; Beasley, M.B.; Chirieac, L.R.; Dacic, S.; Duhig, E.; Flieder, D.B.; et al. The 2015 World Health Organization Classification of Lung Tumors: Impact of Genetic, Clinical and Radiologic Advances Since the 2004 Classification. J. Thorac. Oncol. 2015, 10, 1243–1260. [Google Scholar] [CrossRef]
- Solis, L.M.; Behrens, C.; Raso, M.G.; Lin, H.Y.; Kadara, H.; Yuan, P.; Galindo, H.; Tang, X.; Lee, J.J.; Kalhor, N.; et al. Histologic patterns and molecular characteristics of lung adenocarcinoma associated with clinical outcome. Cancer 2012, 118, 2889–2899. [Google Scholar] [CrossRef]
- Papageorgiou, A.; Stravoravdi, P.; Sahpazidou, D.; Natsis, K.; Chrysogelou, E.; Toliou, T. Effect of navelbine on inhibition of tumor growth, cellular differentiation and estrogen receptor status on Lewis lung carcinoma. Chemotherapy 2000, 46, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Herbst, R.S.; Takeuchi, H.; Teicher, B.A. Paclitaxel/carboplatin administration along with antiangiogenic therapy in non-small-cell lung and breast carcinoma models. Cancer Chemother. Pharmacol. 1998, 41, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Scagliotti, G.V.; Parikh, P.; von Pawel, J.; Biesma, B.; Vansteenkiste, J.; Manegold, C.; Serwatowski, P.; Gatzemeier, U.; Digumarti, R.; Zukin, M.; et al. Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J. Clin. Oncol. 2008, 26, 3543–3551. [Google Scholar] [CrossRef] [PubMed]
- Yatabe, Y.; Dacic, S.; Borczuk, A.C.; Warth, A.; Russell, P.A.; Lantuejoul, S.; Beasley, M.B.; Thunnissen, E.; Pelosi, G.; Rekhtman, N.; et al. Best Practices Recommendations for Diagnostic Immunohistochemistry in Lung Cancer. J. Thorac. Oncol. 2019, 14, 377–407. [Google Scholar] [CrossRef] [PubMed]
- Bingle, C.D. Thyroid transcription factor-1. Int. J. Biochem. Cell Biol. 1997, 29, 1471–1473. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, T.; Hosono, Y.; Yanagisawa, K.; Takahashi, T. NKX2-1/TTF-1: An enigmatic oncogene that functions as a double-edged sword for cancer cell survival and progression. Cancer Cell 2013, 23, 718–723. [Google Scholar] [CrossRef] [PubMed]
- Zhan, P.; Qian, Q.; Wan, B.; Yan, T.D.; Yu, L.-K. Prognostic value of TTF-1 expression in patients with non-small cell lung cancer: A meta-analysis. Transl. Cancer Res. 2013, 2, 25–32. [Google Scholar]
- Brasch, F.; Ochs, M.; Kahne, T.; Guttentag, S.; Schauer-Vukasinovic, V.; Derrick, M.; Johnen, G.; Kapp, N.; Muller, K.M.; Richter, J.; et al. Involvement of napsin A in the C- and N-terminal processing of surfactant protein B in type-II pneumocytes of the human lung. J. Biol. Chem. 2003, 278, 49006–49014. [Google Scholar] [CrossRef] [PubMed]
- Ordóñez, N.G. Napsin A expression in lung and kidney neoplasia: A review and update. Adv. Anat. Pathol. 2012, 19, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Ueno, T.; Elmberger, G.; Weaver, T.E.; Toi, M.; Linder, S. The aspartic protease napsin A suppresses tumor growth independent of its catalytic activity. Lab. Investig. 2008, 88, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Crum, C.P.; McKeon, F.D. p63 in epithelial survival, germ cell surveillance, and neoplasia. Annu. Rev. Pathol. 2010, 5, 349–371. [Google Scholar] [CrossRef] [PubMed]
- Nobre, A.R.; Albergaria, A.; Schmitt, F. p40: A p63 isoform useful for lung cancer diagnosis—A review of the physiological and pathological role of p63. Acta Cytol. 2013, 57, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Bishop, J.A.; Teruya-Feldstein, J.; Westra, W.H.; Pelosi, G.; Travis, W.D.; Rekhtman, N. p40 (ΔNp63) is superior to p63 for the diagnosis of pulmonary squamous cell carcinoma. Mod. Pathol. 2012, 25, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Nonaka, D. A study of ΔNp63 expression in lung non-small cell carcinomas. Am. J. Surg. Pathol. 2012, 36, 895–899. [Google Scholar] [CrossRef] [PubMed]
- Hammerman, P.S.; Lawrence, M.S.; Voet, D.; Jing, R.; Cibulskis, K.; Sivachenko, A.; Stojanov, P.; McKenna, A.; Lander, E.S.; Gabriel, S.; et al. Comprehensive genomic characterization of squamous cell lung cancers. Nature 2012, 489, 519–525. [Google Scholar] [CrossRef]
- Ladanyi, M.; Pao, W. Lung adenocarcinoma: Guiding EGFR-targeted therapy and beyond. Mod. Pathol. 2008, 21 (Suppl. S2), S16–S22. [Google Scholar] [CrossRef] [PubMed]
- Rodenhuis, S.; van de Wetering, M.L.; Mooi, W.J.; Evers, S.G.; van Zandwijk, N.; Bos, J.L. Mutational activation of the K-ras oncogene. A possible pathogenetic factor in adenocarcinoma of the lung. N. Engl. J. Med. 1987, 317, 929–935. [Google Scholar] [CrossRef] [PubMed]
- Slebos, R.J.; Kibbelaar, R.E.; Dalesio, O.; Kooistra, A.; Stam, J.; Meijer, C.J.; Wagenaar, S.S.; Vanderschueren, R.G.; van Zandwijk, N.; Mooi, W.J.; et al. K-ras oncogene activation as a prognostic marker in adenocarcinoma of the lung. N. Engl. J. Med. 1990, 323, 561–565. [Google Scholar] [CrossRef] [PubMed]
- Samuels, Y.; Wang, Z.; Bardelli, A.; Silliman, N.; Ptak, J.; Szabo, S.; Yan, H.; Gazdar, A.; Powell, S.M.; Riggins, G.J.; et al. High Frequency of Mutations of the PIK3CA Gene in Human Cancers. Science 2004, 304, 554. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.-G.; Chang, Y.-L.; Yu, C.-J.; Yang, P.-C.; Shih, J.-Y. The Role of PIK3CA Mutations among Lung Adenocarcinoma Patients with Primary and Acquired Resistance to EGFR Tyrosine Kinase Inhibition. Sci. Rep. 2016, 6, 35249. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Chen, J.Q.; Liu, C.; Malu, S.; Creasy, C.; Tetzlaff, M.T.; Xu, C.; McKenzie, J.A.; Zhang, C.; Liang, X.; et al. Loss of PTEN Promotes Resistance to T Cell-Mediated Immunotherapy. Cancer Discov. 2016, 6, 202–216. [Google Scholar] [CrossRef]
- Harpole, D.H., Jr.; Herndon, J.E., 2nd; Wolfe, W.G.; Iglehart, J.D.; Marks, J.R. A prognostic model of recurrence and death in stage I non-small cell lung cancer utilizing presentation, histopathology, and oncoprotein expression. Cancer Res. 1995, 55, 51–56. [Google Scholar]
- Horio, Y.; Takahashi, T.; Kuroishi, T.; Hibi, K.; Suyama, M.; Niimi, T.; Shimokata, K.; Yamakawa, K.; Nakamura, Y.; Ueda, R.; et al. Prognostic significance of p53 mutations and 3p deletions in primary resected non-small cell lung cancer. Cancer Res. 1993, 53, 1–4. [Google Scholar]
- Kan, Z.; Jaiswal, B.S.; Stinson, J.; Janakiraman, V.; Bhatt, D.; Stern, H.M.; Yue, P.; Haverty, P.M.; Bourgon, R.; Zheng, J.; et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 2010, 466, 869–873. [Google Scholar] [CrossRef]
- Borghaei, H.; Paz-Ares, L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 373, 1627–1639. [Google Scholar] [CrossRef]
- Paz-Ares, L.; Luft, A.; Vicente, D.; Tafreshi, A.; Gümüş, M.; Mazières, J.; Hermes, B.; Çay Şenler, F.; Csőszi, T.; Fülöp, A.; et al. Pembrolizumab plus Chemotherapy for Squamous Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 379, 2040–2051. [Google Scholar] [CrossRef]
- Garon, E.B.; Hellmann, M.D.; Rizvi, N.A.; Carcereny, E.; Leighl, N.B.; Ahn, M.J.; Eder, J.P.; Balmanoukian, A.S.; Aggarwal, C.; Horn, L.; et al. Five-Year Overall Survival for Patients With Advanced Non-Small-Cell Lung Cancer Treated with Pembrolizumab: Results From the Phase I KEYNOTE-001 Study. J. Clin. Oncol. 2019, 37, 2518–2527. [Google Scholar] [CrossRef]
- Middleton, G.; Brock, K.; Savage, J.; Mant, R.; Summers, Y.; Connibear, J.; Shah, R.; Ottensmeier, C.; Shaw, P.; Lee, S.-M.; et al. Pembrolizumab in patients with non-small-cell lung cancer of performance status 2 (PePS2): A single arm, phase 2 trial. Lancet Respir. Med. 2020, 8, 895–904. [Google Scholar] [CrossRef]
- Li, H.Y.; McSharry, M.; Bullock, B.; Nguyen, T.T.; Kwak, J.; Poczobutt, J.M.; Sippel, T.R.; Heasley, L.E.; Weiser-Evans, M.C.; Clambey, E.T.; et al. The Tumor Microenvironment Regulates Sensitivity of Murine Lung Tumors to PD-1/PD-L1 Antibody Blockade. Cancer Immunol Res 2017, 5, 767–777. [Google Scholar] [CrossRef]
- Feng, Y.; Yan, S.; Lam, S.K.; Ko, F.C.F.; Chen, C.; Khan, M.; Ho, J.C.-M. IL-9 stimulates an anti-tumor immune response and facilitates immune checkpoint blockade in the CMT167 mouse model. Lung Cancer 2022, 174, 14–26. [Google Scholar] [CrossRef]
- Bullock, B.L.; Kimball, A.K.; Poczobutt, J.M.; Neuwelt, A.J.; Li, H.Y.; Johnson, A.M.; Kwak, J.W.; Kleczko, E.K.; Kaspar, R.E.; Wagner, E.K.; et al. Tumor-intrinsic response to IFNγ shapes the tumor microenvironment and anti-PD-1 response in NSCLC. Life Sci. Alliance 2019, 2, e201900328. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, K.D.; Proost, N.; Brouns, I.; Adriaensen, D.; Song, J.Y.; Berns, A. Cell of origin of small cell lung cancer: Inactivation of Trp53 and Rb1 in distinct cell types of adult mouse lung. Cancer Cell 2011, 19, 754–764. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, K.D.; Song, J.Y.; Kwon, M.C.; Proost, N.; Zevenhoven, J.; Berns, A. Multiple cells-of-origin of mutant K-Ras-induced mouse lung adenocarcinoma. Proc. Natl. Acad. Sci. USA 2014, 111, 4952–4957. [Google Scholar] [CrossRef]
- Jonkers, J.; Meuwissen, R.; van der Gulden, H.; Peterse, H.; van der Valk, M.; Berns, A. Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat. Genet. 2001, 29, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Sheen, M.R.; Marotti, J.D.; Allegrezza, M.J.; Rutkowski, M.; Conejo-Garcia, J.R.; Fiering, S. Constitutively activated PI3K accelerates tumor initiation and modifies histopathology of breast cancer. Oncogenesis 2016, 5, e267. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Liu, Y.; Kim, J.L.; Kim, E.Y.; Kim, E.Q.; Jansen, A.; Li, K.; Chan, M.; Keenan, B.T.; Conejo-Garcia, J.; et al. Effect of cyclical intermittent hypoxia on Ad5CMVCre induced solitary lung cancer progression and spontaneous metastases in the KrasG12D+; p53fl/fl; myristolated p110fl/fl ROSA-gfp mouse. PLoS ONE 2019, 14, e0212930. [Google Scholar] [CrossRef] [PubMed]
- Scarlett, U.K.; Rutkowski, M.R.; Rauwerdink, A.M.; Fields, J.; Escovar-Fadul, X.; Baird, J.; Cubillos-Ruiz, J.R.; Jacobs, A.C.; Gonzalez, J.L.; Weaver, J.; et al. Ovarian cancer progression is controlled by phenotypic changes in dendritic cells. J. Exp. Med. 2012, 209, 495–506. [Google Scholar] [CrossRef] [PubMed]
- Ferone, G.; Song, J.Y.; Sutherland, K.D.; Bhaskaran, R.; Monkhorst, K.; Lambooij, J.P.; Proost, N.; Gargiulo, G.; Berns, A. SOX2 Is the Determining Oncogenic Switch in Promoting Lung Squamous Cell Carcinoma from Different Cells of Origin. Cancer Cell 2016, 30, 519–532. [Google Scholar] [CrossRef] [PubMed]
- Yushkevich, P.A.; Piven, J.; Hazlett, H.C.; Smith, R.G.; Ho, S.; Gee, J.C.; Gerig, G. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage 2006, 31, 1116–1128. [Google Scholar] [CrossRef] [PubMed]
- Kawamoto, T. Use of a new adhesive film for the preparation of multi-purpose fresh-frozen sections from hard tissues, whole-animals, insects and plants. Arch. Histol. Cytol. 2003, 66, 123–143. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Student. The Probable Error of a Mean. Biometrika 1908, 6, 1–25. [Google Scholar] [CrossRef]
- Almeida, J.L.; Korch, C.T. Authentication of Human and Mouse Cell Lines by Short Tandem Repeat (STR) DNA Genotype Analysis. In Assay Guidance Manual Bethesda (MD); Eli Lilly & Company and the National Center for Advancing Translational Sciences: Bethesda, MD, USA, 2004. [Google Scholar]
- Beumer, T.L.; Roepers-Gajadien, H.L.; Gademan, I.S.; van Buul, P.P.; Gil-Gomez, G.; Rutgers, D.H.; de Rooij, D.G. The role of the tumor suppressor p53 in spermatogenesis. Cell Death Differ. 1998, 5, 669–677. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Hua, Y.; Qiu, H.; Hao, J.; Zou, K.; Li, Z.; Hu, S.; Guo, P.; Chen, M.; Sui, S.; et al. PD-L1 promotes tumor growth and progression by activating WIP and beta-catenin signaling pathways and predicts poor prognosis in lung cancer. Cell Death Dis. 2020, 11, 506. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef] [PubMed]
- Poczobutt, J.M.; Gijon, M.; Amin, J.; Hanson, D.; Li, H.; Walker, D.; Weiser-Evans, M.; Lu, X.; Murphy, R.C.; Nemenoff, R.A. Eicosanoid profiling in an orthotopic model of lung cancer progression by mass spectrometry demonstrates selective production of leukotrienes by inflammatory cells of the microenvironment. PLoS ONE 2013, 8, e79633. [Google Scholar] [CrossRef] [PubMed]
- Judd, J.; Abdel Karim, N.; Khan, H.; Naqash, A.R.; Baca, Y.; Xiu, J.; VanderWalde, A.M.; Mamdani, H.; Raez, L.E.; Nagasaka, M.; et al. Characterization of KRAS Mutation Subtypes in Non-small Cell Lung Cancer. Mol. Cancer Ther. 2021, 20, 2577–2584. [Google Scholar] [CrossRef] [PubMed]
- Julian, C.; Pal, N.; Gershon, A.; Evangelista, M.; Purkey, H.; Lambert, P.; Shi, Z.; Zhang, Q. Overall survival in patients with advanced non-small cell lung cancer with KRAS G12C mutation with or without STK11 and/or KEAP1 mutations in a real-world setting. BMC Cancer 2023, 23, 352. [Google Scholar] [CrossRef] [PubMed]
- Ghimessy, A.; Radeczky, P.; Laszlo, V.; Hegedus, B.; Renyi-Vamos, F.; Fillinger, J.; Klepetko, W.; Lang, C.; Dome, B.; Megyesfalvi, Z. Current therapy of KRAS-mutant lung cancer. Cancer Metastasis Rev. 2020, 39, 1159–1177. [Google Scholar] [CrossRef] [PubMed]
- Sisler, D.J.; Hinz, T.K.; Le, A.T.; Kleczko, E.K.; Nemenoff, R.A.; Heasley, L.E. Evaluation of KRAS(G12C) inhibitor responses in novel murine KRAS(G12C) lung cancer cell line models. Front. Oncol. 2023, 13, 1094123. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yang, L.; Wang, Y.; Wang, L.; Chen, G.; Zhang, L.; Wang, D. Integrative analysis of TP53 mutations in lung adenocarcinoma for immunotherapies and prognosis. BMC Bioinform. 2023, 24, 155. [Google Scholar] [CrossRef] [PubMed]
- Vassella, E.; Langsch, S.; Dettmer, M.S.; Schlup, C.; Neuenschwander, M.; Frattini, M.; Gugger, M.; Schafer, S.C. Molecular profiling of lung adenosquamous carcinoma: Hybrid or genuine type? Oncotarget 2015, 6, 23905–23916. [Google Scholar] [CrossRef] [PubMed]
- Vandal, G.; Geiling, B.; Dankort, D. Ras effector mutant expression suggest a negative regulator inhibits lung tumor formation. PLoS ONE 2014, 9, e84745. [Google Scholar] [CrossRef]
- Nolan, K.; Verzosa, G.; Cleaver, T.; Tippimanchai, D.; DePledge, L.N.; Wang, X.-J.; Young, C.; Le, A.; Doebele, R.; Li, H.; et al. Development of syngeneic murine cell lines for use in immunocompetent orthotopic lung cancer models. Cancer Cell Int. 2020, 20, 417. [Google Scholar] [CrossRef] [PubMed]
- Kerr, K.M. Pulmonary adenocarcinomas: Classification and reporting. Histopathology 2009, 54, 12–27. [Google Scholar] [CrossRef] [PubMed]
- Jian, Z.; Tomizawa, Y.; Yanagitani, N.; Iijima, H.; Sano, T.; Nakajima, T. Papillary adenocarcinoma of the lung is a more advanced adenocarcinoma than bronchioloalveolar carcinoma that is composed of two distinct histological subtypes. Pathol. Int. 2005, 55, 619–625. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Hou, J.; Liu, Z.; Yu, H.; Sun, W.; Xiong, J.; Liao, Z.; Zhou, F.; Xie, C.; Zhou, Y. Gene therapy with tumor-specific promoter mediated suicide gene plus IL-12 gene enhanced tumor inhibition and prolonged host survival in a murine model of Lewis lung carcinoma. J. Transl. Med. 2011, 9, 39. [Google Scholar] [CrossRef] [PubMed]
- Saito, R.A.; Watabe, T.; Horiguchi, K.; Kohyama, T.; Saitoh, M.; Nagase, T.; Miyazono, K. Thyroid transcription factor-1 inhibits transforming growth factor-beta-mediated epithelial-to-mesenchymal transition in lung adenocarcinoma cells. Cancer Res. 2009, 69, 2783–2791. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Sanz, M.; Simón-Marín, R.; Hilario, E. Morphological Characterization of Lewis Lung Carcinoma (3LL). A Light and Electron Microscopic Study. Tumori J. 1989, 75, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Stankevicius, V.; Vasauskas, G.; Bulotiene, D.; Butkyte, S.; Jarmalaite, S.; Rotomskis, R.; Suziedelis, K. Gene and miRNA expression signature of Lewis lung carcinoma LLC1 cells in extracellular matrix enriched microenvironment. BMC Cancer 2016, 16, 789. [Google Scholar] [CrossRef] [PubMed]
- Schultz, R.; Ruiz, P.; Chirigos, M.; Heine, U.; Nelson-Rees, W. Establishment and characterization of a cell line derived from a spontaneous murine lung carcinoma (M109). Vitr. Cell. Dev. Biol. Plant 1977, 13, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Layton, M.G.; Franks, L.M. Heterogeneity in a spontaneous mouse lung carcinoma: Selection and characterisation of stable metastatic variants. Br. J. Cancer 1984, 49, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Wankhede, D.; Bontoux, C.; Grover, S.; Hofman, P. Prognostic Role of KRAS G12C Mutation in Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. Diagnostics 2023, 13, 3043. [Google Scholar] [CrossRef] [PubMed]
- Roman, M.; Baraibar, I.; Lopez, I.; Nadal, E.; Rolfo, C.; Vicent, S.; Gil-Bazo, I. KRAS oncogene in non-small cell lung cancer: Clinical perspectives on the treatment of an old target. Mol. Cancer 2018, 17, 33. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.; Pereira, F.; Reis, C.; Oliveira, M.J.; Sousa, M.J.; Preto, A. Crucial Role of Oncogenic KRAS Mutations in Apoptosis and Autophagy Regulation: Therapeutic Implications. Cells 2022, 11, 2183. [Google Scholar] [CrossRef] [PubMed]
- Blagih, J.; Zani, F.; Chakravarty, P.; Hennequart, M.; Pilley, S.; Hobor, S.; Hock, A.K.; Walton, J.B.; Morton, J.P.; Gronroos, E.; et al. Cancer-Specific Loss of p53 Leads to a Modulation of Myeloid and T Cell Responses. Cell Rep. 2020, 30, 481–496.e486. [Google Scholar] [CrossRef] [PubMed]
- Le Roux, O.; Everitt, J.I.; Counter, C.M. p53 dosage can impede KrasG12D- and KrasQ61R-mediated tumorigenesis. PLoS ONE 2024, 19, e0292189. [Google Scholar] [CrossRef] [PubMed]
- Chaft, J.E.; Arcila, M.E.; Paik, P.K.; Lau, C.; Riely, G.J.; Pietanza, M.C.; Zakowski, M.F.; Rusch, V.; Sima, C.S.; Ladanyi, M.; et al. Coexistence of PIK3CA and other oncogene mutations in lung adenocarcinoma-rationale for comprehensive mutation profiling. Mol. Cancer Ther. 2012, 11, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Kemp, S.B.; Cheng, N.; Markosyan, N.; Sor, R.; Kim, I.K.; Hallin, J.; Shoush, J.; Quinones, L.; Brown, N.V.; Bassett, J.B.; et al. Efficacy of a Small-Molecule Inhibitor of KrasG12D in Immunocompetent Models of Pancreatic Cancer. Cancer Discov. 2023, 13, 298–311. [Google Scholar] [CrossRef] [PubMed]
- Knox, J.E.; Burnett, G.L.; Weller, C.; Jiang, L.; Zhang, D.; Vita, N.; Marquez, A.; Seamon, K.J.; Gould, A.; Menard, M. Abstract ND03: Discovery of RMC-9805, an oral, covalent tri-complex KRASG12D (ON) inhibitor. Cancer Res. 2024, 84, ND03. [Google Scholar] [CrossRef]
- Jiang, L.; Menard, M.; Weller, C.; Wang, Z.; Burnett, L.; Aronchik, I.; Steele, S.; Flagella, M.; Zhao, R.; Evans, J.W.W. RMC-9805, a first-in-class, mutant-selective, covalent and oral KRASG12D (ON) inhibitor that induces apoptosis and drives tumor regression in preclinical models of KRASG12D cancers. Cancer Res. 2023, 83, 526. [Google Scholar] [CrossRef]
- Menard, M.J.; Chow, C.; Chen, K.; Blaj, C.; Shifrin, N.T.; Courtney, H.; Nasholm, N.M.; Pham, A.; Kumamoto, A.; Ganesh, S. RMC-9805, a first-in-class, mutant-selective, covalent and orally bioavailable KRASG12D (ON) inhibitor, promotes cancer-associated neoantigen recognition and synergizes with immunotherapy in preclinical models. Cancer Res. 2023, 83, 3475. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.; Li, J.; Niu, M.-M.; Zhou, Y.; Qu, Y. Discovery of potent and noncovalent KRASG12D inhibitors: Structure-based virtual screening and biological evaluation. Front. Pharmacol. 2022, 13, 1094887. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Jiang, T.; Liang, T.; Cai, L.; Zhang, L.; Xu, X.; Zhao, Y.; Lan, X.; Zhang, X.; Liu, M. GFH375 (VS-7375): An oral, selective KRAS G12D (ON/OFF) inhibitor with potent anti-tumor efficacy. Cancer Res. 2024, 84, 3318. [Google Scholar] [CrossRef]
- Wu, Y.Y.; Wu, H.C.; Wu, J.E.; Huang, K.Y.; Yang, S.C.; Chen, S.X.; Tsao, C.J.; Hsu, K.F.; Chen, Y.L.; Hong, T.M. The dual PI3K/mTOR inhibitor BEZ235 restricts the growth of lung cancer tumors regardless of EGFR status, as a potent accompanist in combined therapeutic regimens. J. Exp. Clin. Cancer Res. 2019, 38, 282. [Google Scholar] [CrossRef] [PubMed]
- Spoerke, J.M.; O’Brien, C.; Huw, L.; Koeppen, H.; Fridlyand, J.; Brachmann, R.K.; Haverty, P.M.; Pandita, A.; Mohan, S.; Sampath, D.; et al. Phosphoinositide 3-kinase (PI3K) pathway alterations are associated with histologic subtypes and are predictive of sensitivity to PI3K inhibitors in lung cancer preclinical models. Clin. Cancer Res. 2012, 18, 6771–6783. [Google Scholar] [CrossRef] [PubMed]
- Glaviano, A.; Foo, A.S.C.; Lam, H.Y.; Yap, K.C.H.; Jacot, W.; Jones, R.H.; Eng, H.; Nair, M.G.; Makvandi, P.; Geoerger, B.; et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol. Cancer 2023, 22, 138. [Google Scholar] [CrossRef] [PubMed]
- Pilard, C.; Ancion, M.; Delvenne, P.; Jerusalem, G.; Hubert, P.; Herfs, M. Cancer immunotherapy: It’s time to better predict patients’ response. Br. J. Cancer 2021, 125, 927–938. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knott, E.P.; Kim, E.Y.; Kim, E.Q.; Freire, R.; Medina, J.A.; Wang, Y.; Chen, C.-B.; Wu, C.; Wangpaichitr, M.; Conejo-Garcia, J.R.; et al. Orthotopic Models Using New, Murine Lung Adenocarcinoma Cell Lines Simulate Human Non-Small Cell Lung Cancer Treated with Immunotherapy. Cells 2024, 13, 1120. https://doi.org/10.3390/cells13131120
Knott EP, Kim EY, Kim EQ, Freire R, Medina JA, Wang Y, Chen C-B, Wu C, Wangpaichitr M, Conejo-Garcia JR, et al. Orthotopic Models Using New, Murine Lung Adenocarcinoma Cell Lines Simulate Human Non-Small Cell Lung Cancer Treated with Immunotherapy. Cells. 2024; 13(13):1120. https://doi.org/10.3390/cells13131120
Chicago/Turabian StyleKnott, Eric P., Emily Y. Kim, Edison Q. Kim, Rochelle Freire, Justin A. Medina, Yujie Wang, Cheng-Bang Chen, Chunjing Wu, Medhi Wangpaichitr, Jose R. Conejo-Garcia, and et al. 2024. "Orthotopic Models Using New, Murine Lung Adenocarcinoma Cell Lines Simulate Human Non-Small Cell Lung Cancer Treated with Immunotherapy" Cells 13, no. 13: 1120. https://doi.org/10.3390/cells13131120
APA StyleKnott, E. P., Kim, E. Y., Kim, E. Q., Freire, R., Medina, J. A., Wang, Y., Chen, C. -B., Wu, C., Wangpaichitr, M., Conejo-Garcia, J. R., & Lim, D. C. (2024). Orthotopic Models Using New, Murine Lung Adenocarcinoma Cell Lines Simulate Human Non-Small Cell Lung Cancer Treated with Immunotherapy. Cells, 13(13), 1120. https://doi.org/10.3390/cells13131120