Emerin Phosphorylation during the Early Phase of the Oxidative Stress Response Influences Emerin–BAF Interaction and BAF Nuclear Localization
<p>ROS generating agents affect emerin migration in SDS-PAGE. In (<b>a</b>–<b>c</b>), the time course and sample treatment is indicated over the Western blot image. Stress (STRESS) indicates the time (30 min) during which cells underwent stressing stimulus. Red arrowheads indicate H<sub>2</sub>O<sub>2</sub> or menadione addition to the growth medium or cellular treatment with UV irradiation. Recovering (RECOVERING) indicates the time after replacement of growth medium (blue arrowheads) to remove H<sub>2</sub>O<sub>2</sub> or menadione or PBSX1 replacement with growth medium, in the case of UV irradiation. Sample collection at different time-points is indicated by black arrows. Time (time) is indicated in minutes during the stress (10′, 20′, and 30′) and in minutes (30′) and hours (4 and 24 h) during the recovery. “C” indicates untreated cells (T<sup>0</sup>). “Unt. Cells” indicates untreated cells subjected only to growth medium replacement and harvested after 30 min, 4 h, and 24 h of recovering (30′, 4 h, and 24 h). (<b>a</b>) Western blotting analysis of lamin A/C, emerin, P21, gamma-H2AX, and beta-tubulin performed on protein lysates isolated from HeLa cells treated with 200 μM H<sub>2</sub>O<sub>2</sub>. Arrowhead indicates emerin upper band. (<b>b</b>) Western blotting analysis of lamin A/C, emerin, P21, gamma-H2AX (γ-H2AX), and β tubulin performed on protein lysates isolated from HeLa cells treated with 200 μM menadione. Two different exposures (short exp. and long exp.) of emerin immunolabeled bands are shown. Emerin upper band is indicated by arrowheads. (<b>c</b>) Western blotting analysis of lamin A/C, emerin, P21, gamma-H2AX (γ-H2AX), and β-tubulin performed on protein lysates isolated from HeLa cells treated with UV irradiation. Arrowhead indicates emerin upper band. In (<b>a</b>–<b>c</b>), the densitometric analysis of immunolabeled bands (logarithmic scale) is reported at the bottom of each panel. Red: upper emerin band; light blue: p21; blue: gamma-H2AX. Data are the means of three independent experiments.</p> "> Figure 2
<p>Emerin phosphorylation increase during the oxidative stress response. (<b>a</b>) Staurosporine affects the molecular weight of emerin molecular weight during oxidative stress. The experimental workflow showing the initial treatments (black arrowhead for staurosporine, red arrowhead for H<sub>2</sub>O<sub>2</sub>), and sample harvesting (black arrow) are indicated. Western blotting performed on protein lysates isolated from untreated HeLa cells (-), HeLa cells treated with H<sub>2</sub>O<sub>2</sub> (H<sub>2</sub>O<sub>2</sub>) (+), and HeLa cells treated with staurosporine (Stau.), alone or in combination with H<sub>2</sub>O<sub>2</sub>, are shown. Lamin A/C, emerin, P21, gamma-H2AX (γ-H2AX) and actin immunological bands are shown. The upper (phosphorylated) emerin band is indicated (emerin u.b., red arrow). (<b>b</b>) Okadaic Acid favors the accumulation of the upper emerin band during the oxidative stress response. The experimental workflow showing start of treatment, (black arrowhead for Okadaic Acid, red arrowhead for H<sub>2</sub>O<sub>2</sub>), and sample collection (black harrow) are indicated. Western blotting was performed on protein lysates isolated from untreated HeLa or HeLa cells treated with H<sub>2</sub>O<sub>2</sub> (H<sub>2</sub>O<sub>2</sub>) and Okadaic Acid (O.A.), either alone or in combination as shown. Lamin A/C, emerin, p21, gamma-H2AX (γ-H2AX), and actin immunoblotted bands are shown. Emerin phosphorylated (upper) band is indicated (emerinu.b, red arrow). (<b>c</b>) OSMI-1, a specific inhibitor of the O-GlcNAc transferase, affects the molecular weight of emerin during the oxidative stress response. The top of the panel shows the experimental workflow. Treatment start (black arrowhead for OSMI-1, red arrowhead for H<sub>2</sub>O<sub>2</sub>) and samples collection (black arrow) are indicated. Western blots of protein lysates isolated from untreated HeLa cells or HeLa cells treated with H<sub>2</sub>O<sub>2</sub> (H<sub>2</sub>O<sub>2</sub>) or with OSMI-1 (OSMI-1), alone or in combination, are shown. Lamin A/C, emerin, p21, gamma-H2AX (γ-H2AX) and actin bands are shown. The red arrow indicates the upper (phosphorylated) emerin band. (<b>d</b>) Inhibition of both protein dephosphorylation and <span class="html-italic">O</span>-GlcNAcilation favors emerin phosphorylation during the oxidative stress response. The experimental procedure is reported. Treatment, (black arrowhead for OSMI-1, black arrow for O.A. and red arrowhead for H<sub>2</sub>O<sub>2</sub>) and sample collection are indicated. Western blotting analysis of protein lysates isolated from HeLa cells treated with H<sub>2</sub>O<sub>2</sub> (H<sub>2</sub>O<sub>2</sub>), H<sub>2</sub>O<sub>2</sub> plus OSMI-1, H<sub>2</sub>O<sub>2</sub> plus O.A., or a combination of all treatments (H<sub>2</sub>O<sub>2</sub> + O.A. + OSMI-1) is shown. Lamin A/C, emerin, P21, gamma-H2AX (γ-H2AX), and actin bands are shown. The red arrow indicates the phosphorylated emerin band. In (<b>a–d</b>), densitometric analysis of immunolabeled bands is reported at the bottom of the panel. Statistically significant difference (Student’s t-test), with respect to H<sub>2</sub>O<sub>2</sub>-treated cell values, is indicated. Red: emerin upper band; light blue: P21; blue: gamma-H2AX.</p> "> Figure 3
<p>BAF nuclear localization and interaction with emerin is affected during the oxidative stress response. (<b>a</b>) Emerin and endogenous-BAF localization in H<sub>2</sub>O<sub>2</sub>-treated HeLa cells. Emerin (red) and endogenous-BAF (green) localization in control (untreated) and treated cells (+H<sub>2</sub>O<sub>2</sub> (30′)). DNA was counterstained with DAPI (DAPI). Merge of fluorescence signals are shown (merge). In (i) (control) and (ii) (+H<sub>2</sub>O<sub>2</sub>), enlargements of respective nuclei are indicated by squares. BAF nuclear periphery distribution observed in untreated and treated cells is indicated by white arrowheads. Graphs indicate the fluorescence intensity profile along the white arrows. Bar: 20 μm. (<b>b</b>) His-tagged BAF localization in control and H<sub>2</sub>O<sub>2</sub>-treated HeLa cells. His-tag immunological staining (green) in control (untreated) and H<sub>2</sub>O<sub>2</sub>-treated cells merged with DAPI is shown. Enlarged images show nuclei (arrowheads). A portion of the nuclear His-BAF staining (green) has been converted to grayscale, and further enlarged, to better demonstrate the difference in His-BAF nuclear distribution observed in control (i) vs. treated cells (ii). The fluorescence intensity profile (white arrows) is reported (graphs). Bar: 20 μm. (<b>c</b>) BAF expression during the oxidative stress response. BAF, lamin A/C, emerin, P21, and gamma-H2AX (γ-H2AX) protein levels in untreated HeLa cells (-) or HeLa cells treated (+) with H<sub>2</sub>O<sub>2</sub> (200 μM) for 30 min and allowed to recover for 24 h. Cells were harvested and lysed at the indicated times (black arrows). Actin was evaluated as a protein loading control. Densitometric analysis of immunolabeled bands is reported. (<b>d</b>) Emerin–BAF proximity ligation assay performed in untreated and H<sub>2</sub>O<sub>2</sub>-treated HeLa cells. Complex formation was measured using a rabbit anti-BAF antibody and a mouse anti-emerin antibody. In situ PLA is indicated by the red signal of the rolling cycle amplification products. Nuclei (blue) were counterstained with DAPI. Two different focal planes (a and a’) are shown. The graph indicates the average of positive nuclear spots per nucleus. Scale bars: 20 µm.</p> "> Figure 4
<p>Emerin depletion affects the DNA-damage response. Western blot analysis of human skin fibroblasts from a healthy donor (Control) and an EDMD1 patient (EDMD1/emerin-null) subjected to H<sub>2</sub>O<sub>2</sub> treatment. Experimental procedure and sample collection are indicated over each Western blot panel. Stress (STRESS) indicates the time (30 min) during which cells underwent stressing stimulus. Red arrowhead indicates H<sub>2</sub>O<sub>2</sub> addition to the growth medium. “Recovering” indicates the time after replacement of growth medium (blue arrowheads). Sample collection at the different timepoint is indicated by black arrows. Time is indicated in minutes during the stress (10′, 20′, and 30′) and in minutes (30′) and hours (4 and 24 h) during the recovery. “C” indicates untreated cells before treatment. “Unt. Cells” indicates untreated cells subjected to growth medium replacement and harvested after 30 min, 4 h and 24 h of recovering. Lamin A/C, emerin, p21, gamma-H2AX (γ-H2AX), emerin, and actin bands are shown. Densitometric analysis of p21 and gamma-H2AX (γ-H2AX) bands normalized to control and EDMD1 untreated cells is reported. The red arrow indicates the phosphorylated emerin band. Statistical differences (Student’s t-test) between control and treated EDMD1 cells are indicated.</p> "> Figure 5
<p>Prelamin A processing defects or lamin A/C silencing affect emerin expression. (<b>a</b>) Western blotting of human skin fibroblasts from a healthy donor (cont.) and HGPS patient (HGPS). Lamin A, progerin and lamin C were detected using a goat polyclonal anti-lamin A/C antibody. Emerin staining at predicted molecular weight is observed in control cells while in HGPS cells an additional emerin band is detected (arrowhead). (<b>b</b>) Total lysates from untreated HeLa cells (unt.) or HeLa cells treated with mevinolin (mev.) were subjected to prelamin A (prelamin A), lamin A/C, and emerin immunoblotting. Prelamin A band, detected by the anti-lamin A/C antibody is indicated by an asterisk (*). The upper (phosphorylated) emerin band observed in mevinolin treated cells is indicated by an arrowhead. (<b>c</b>) Emerin detection in HEK293 cells transiently expressing Flag-tagged prelamin A constructs. Total lysates of untransfected (unt.) HEK293 cells or HEK293 cells expressing wild-type prelamin A (LA-WT), non-farnesylated prelamin A (LA-C661M), farnesylatedand carboxymethylated prelamin A (LA-L647R), or progerin (LA-∆50) were probed with antibodies specific for FLAG (FLAG) and emerin (two different exposure, short and long, are shown). The upper (phosphorylated) emerin band is indicated by an arrowhead. (<b>d</b>) Total lysates from untreated HeLa cells (cont.) or HeLa cells subjected to CRISPR/Cas9 genome editing for the <span class="html-italic">LMNA</span> (LMNA −/−) or <span class="html-italic">ZMPSTE24</span> (ZMPSTE24 −/−) gene deletion were probed with antibodies specific for lamin A/C and emerin. The upper (phosphorylated) emerin band is indicated by an arrowhead. In (<b>a–d</b>), actin was evaluated as a protein loading control. The densitometric analysis of immunolabeled bands is shown. Statistical differences (Student’s t-test) between control cells and cells bearing prelamin A processing defects or depleted in lamin A/C, are indicated.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Cultures, Transfection and Treatments
2.2. Western Blotting and Immunoprecipitation
2.3. Immunofluorescence and Proximity Ligation Assay
2.4. Antibodies
3. Results
3.1. ROS Generating Agents Affect Emerin Molecular Weight
3.2. Emerin Phosphorylation Increase Molecular Weight during the Early Phase of the Oxidative Stress Response
3.3. Emerin Interaction with BAF Is Affected during the Oxidative Stress Response
3.4. EDMD1 Cells Are More Sensitive to ROS-Induced DNA Damage
3.5. Emerin Is Also Affected in Various LaminA Deficiency Conditions
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef] [Green Version]
- Cui, H.; Kong, Y.; Zhang, H. Oxidative Stress, Mitochondrial Dysfunction, and Aging. J. Signal Transduct. 2011, 2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caron, M.; Auclair, M.; Donadille, B.; Béréziat, V.; Guerci, B.; Laville, M.; Narbonne, H.; Bodemer, C.; Lascols, O.; Capeau, J.; et al. Human lipodystrophies linked to mutations in A-type lamins and to HIV protease inhibitor therapy are both associated with prelamin A accumulation, oxidative stress and premature cellular senescence. Cell Death Differ. 2007, 14, 1759–1767. [Google Scholar] [CrossRef] [PubMed]
- Viteri, G.; Chung, Y.W.; Stadtman, E.R. Effect of progerin on the accumulation of oxidized proteins in fibroblasts from Hutchinson Gilford progeria patients. Mech. Ageing Dev. 2009, 131, 2–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peinado, J.R.; Quiros, P.M.; Pulido, M.R.; Mariño, G.; Martínez-Chantar, M.L.; Vázquez-Martínez, R.; Freije, J.M.P.; Lopez-Otin, C.; Malagón, M.M. Proteomic profiling of adipose tissue from Zmpste24−/− mice, a model of lipodystrophy and premature aging, reveals major changes in mitochondrial function and vimentin processing. Mol. Cell. Proteom. 2011, 10. [Google Scholar] [CrossRef] [Green Version]
- Mateos, J.; De La Fuente, A.; Lesende-Rodríguez, I.; Pernas, P.F.; Arufe, M.C.; Blanco, F.J.; Blanco, F.J. Lamin A deregulation in human mesenchymal stem cells promotes an impairment in their chondrogenic potential and imbalance in their response to oxidative stress. Stem Cell Res. 2013, 11, 1137–1148. [Google Scholar] [CrossRef] [Green Version]
- Maraldi, N.M.; Squarzoni, S.; Sabatelli, P.; Capanni, C.; Mattioli, E.; Ognibene, A.; Lattanzi, G. Laminopathies: Involvement of structural nuclear proteins in the pathogenesis of an increasing number of human diseases. J. Cell. Physiol. 2005, 203, 319–327. [Google Scholar] [CrossRef]
- Burke, B.; Stewart, C.L. The nuclear lamins: Flexibility in function. Nat. Rev. Mol. Cell Biol. 2012, 14, 13–24. [Google Scholar] [CrossRef]
- Maraldi, N.M.; Mattioli, E.; Lattanzi, G.; Columbaro, M.; Capanni, C.; Camozzi, D.; Squarzoni, S.; Manzoli, F.A. Prelamin A processing and heterochromatin dynamics in laminopathies. Adv. Enzym. Regul. 2007, 47, 154–167. [Google Scholar] [CrossRef]
- De Sandre-Giovannoli, A. Lamin a Truncation in Hutchinson-Gilford Progeria. Science 2003, 300, 2055. [Google Scholar] [CrossRef]
- Eriksson, M.; Brown, W.T.; Gordon, L.B.; Glynn, M.W.; Singer, J.; Scott, L.; Erdos, M.R.; Robbins, C.M.; Moses, T.Y.; Berglund, P.; et al. Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome. Nature 2003, 423, 293–298. [Google Scholar] [CrossRef] [Green Version]
- Navarro, C.; Cadiñanos, J.; De Sandre-Giovannoli, A.; Bernard, R.; Courrier, S.; Boccaccio, I.; Boyer, A.; Kleijer, W.J.; Wagner, A.; Giuliano, F.; et al. Loss of ZMPSTE24 (FACE-1) causes autosomal recessive restrictive dermopathy and accumulation of Lamin A precursors. Hum. Mol. Genet. 2005, 14, 1503–1513. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.K.; Fryns, J.-P.; Auchus, R.J.; Garg, A. Zinc metalloproteinase, ZMPSTE24, is mutated in mandibuloacral dysplasia. Hum. Mol. Genet. 2003, 12, 1995–2001. [Google Scholar] [CrossRef] [PubMed]
- Filesi, I.; Gullotta, F.; Lattanzi, G.; D’Apice, M.R.; Capanni, C.; Nardone, A.M.; Columbaro, M.; Scarano, G.; Mattioli, E.; Sabatelli, P.; et al. Alterations of nuclear envelope and chromatin organization in mandibuloacral dysplasia, a rare form of laminopathy. Physiol. Genom. 2005, 23, 150–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sieprath, T.; Corne, T.; Nooteboom, M.; Grootaert, C.; Rajkovic, A.; Buysschaert, B.; Robijns, J.; Broers, J.L.; Ramaekers, F.C.; Koopman, W.J.; et al. Sustained accumulation of prelamin A and depletion of lamin A/C both cause oxidative stress and mitochondrial dysfunction but induce different cell fates. Nucleus 2015, 6, 236–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muchir, A.; Van Engelen, B.G.; Lammens, M.; Mislow, J.M.; McNally, E.; Schwartz, K.; Bonne, G. Nuclear envelope alterations in fibroblasts from LGMD1B patients carrying nonsense Y259X heterozygous or homozygous mutation in lamin A/C gene. Exp. Cell Res. 2003, 291, 352–362. [Google Scholar] [CrossRef] [PubMed]
- Bione, S.; Maestrini, E.; Rivella, S.; Mancini, M.; Regis, S.; Romeo, G.; Toniolo, D. Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy. Nat. Genet. 1994, 8, 323–327. [Google Scholar] [CrossRef]
- Samson, C.; Petitalot, A.; Celli, F.; Herrada, I.; Ropars, V.; Le Du, M.-H.; Nhiri, N.; Jacquet, E.; Arteni, A.-A.; Buendia, B.; et al. Structural analysis of the ternary complex between lamin A/C, BAF and emerin identifies an interface disrupted in autosomal recessive progeroid diseases. Nucleic Acids Res. 2018, 46, 10460–10473. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Flannery, A.R.; Cai, H.; Ko, E.; Cao, K. Nuclear localization signal deletion mutants of lamin A and progerin reveal insights into lamin A processing and emerin targeting. Nucleus 2014, 5, 66–74. [Google Scholar] [CrossRef] [Green Version]
- Capanni, C.; Del Coco, R.; Mattioli, E.; Camozzi, D.; Columbaro, M.; Schena, E.; Merlini, L.; Squarzoni, S.; Maraldi, N.M.; Lattanzi, G. Emerin-prelamin A interplay in human fibroblasts. Biol. Cell 2009, 101, 541–554. [Google Scholar] [CrossRef]
- Jamin, A.; Wiebe, M. Barrier to Autointegration Factor (BANF1): Interwoven roles in nuclear structure, genome integrity, innate immunity, stress responses and progeria. Curr. Opin. Cell Biol. 2015, 34, 61–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bengtsson, L.; Wilson, K.L. Barrier-to-Autointegration Factor Phosphorylation on Ser-4 Regulates Emerin Binding to Lamin a In Vitro and Emerin Localization In Vivo. Mol. Biol. Cell 2006, 17, 1154–1163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berk, J.M.; Simon, D.N.; Jenkins-Houk, C.R.; Westerbeck, J.W.; Grønning-Wang, L.M.; Carlson, C.R.; Wilson, K.L. The molecular basis of emerin-emerin and emerin-BAF interactions. J. Cell Sci. 2014, 127, 3956–3969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berk, J.M.; Maitra, S.; Dawdy, A.W.; Shabanowitz, J.; Hunt, D.F.; Wilson, K.L. O-linked β-n-acetylglucosamine (o-glcnac) regulates emerin binding to barrier to autointegration factor (baf) in a chromatin- and lamin b-enriched “niche”. J. Biol. Chem. 2013, 288, 30192–30209. [Google Scholar] [CrossRef] [Green Version]
- Capanni, C.; Cenni, V.; Haraguchi, T.; Squarzoni, S.; Schüchner, S.; Ogris, E.; Novelli, G.; Maraldi, N.; Lattanzi, G. Lamin A precursor induces barrier-to-autointegration factor nuclear localization. Cell Cycle 2010, 9, 2600–2610. [Google Scholar] [CrossRef] [Green Version]
- Loi, M.; Cenni, V.; Duchi, S.; Squarzoni, S.; Lopez-Otin, C.; Foisner, R.; Lattanzi, G.; Capanni, C. Barrier-to-Autointegration Factor (BAF) involvement in prelamin A-related chromatin organization changes. Oncotarget 2015, 7, 15662–15677. [Google Scholar] [CrossRef]
- Park, C.H.; Ryu, H.G.; Kim, S.-H.; Lee, D.; Song, H.; Kim, K.-T. Presumed pseudokinase VRK3 functions as a BAF kinase. Biochim. Biophys. Acta (BBA) Bioenerg. 2015, 1853, 1738–1748. [Google Scholar] [CrossRef] [Green Version]
- Mattioli, E.; Andrenacci, D.; Mai, A.; Valente, S.; Robijns, J.; De Vos, W.H.; Capanni, C.; Lattanzi, G. Statins and Histone Deacetylase Inhibitors Affect Lamin A/C - Histone Deacetylase 2 Interaction in Human Cells. Front. Cell Dev. Biol. 2019, 7, 6. [Google Scholar] [CrossRef]
- Houthaeve, G.; Xiong, R.; Robijns, J.; Luyckx, B.; Beulque, Y.; Brans, T.; Campsteijn, C.; Samal, S.K.; Stremersch, S.; De Smedt, S.C.; et al. Targeted Perturbation of Nuclear Envelope Integrity with Vapor Nanobubble-Mediated Photoporation. ACS Nano 2018, 12, 7791–7802. [Google Scholar] [CrossRef]
- Ran, F.A.; Hsu, P.; Wright, J.; Agarwala, V.; A Scott, D.; Zhang, F. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 2013, 8, 2281–2308. [Google Scholar] [CrossRef] [Green Version]
- Ye, B.; Hou, N.; Xiao, L.; Xu, Y.; Xu, H.; Li, F. Dynamic monitoring of oxidative DNA double-strand break and repair in cardiomyocytes. Cardiovasc. Pathol. 2015, 25, 93–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zlatanou, A.; Despras, E.; Braz-Petta, T.; Boubakour-Azzouz, I.; Pouvelle, C.; Stewart, G.S.; Nakajima, S.; Yasui, A.; Ishchenko, A.A.; Kannouche, P.L. The hMsh2-hMsh6 Complex Acts in Concert with Monoubiquitinated PCNA and Pol η in Response to Oxidative DNA Damage in Human Cells. Mol. Cell 2011, 43, 649–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortiz-Meoz, R.; Jiang, J.; Lazarus, M.B.; Orman, M.; Janetzko, J.; Fan, C.; Duveau, D.Y.; Tan, Z.-W.; Thomas, C.J.; Walker, S. A Small Molecule That Inhibits OGT Activity in Cells. ACS Chem. Biol. 2015, 10, 1392–1397. [Google Scholar] [CrossRef] [PubMed]
- Cadet, J.; Douki, T.; Ravanat, J.-L. Oxidatively Generated Damage to Cellular DNA by UVB and UVA Radiation, Photochem. Photobiol. 2014, 91, 140–155. [Google Scholar] [CrossRef] [PubMed]
- Slupphaug, G.; Kavli, B.; E Krokan, H. The interacting pathways for prevention and repair of oxidative DNA damage. Mutat. Res. Mol. Mech. Mutagen. 2003, 531, 231–251. [Google Scholar] [CrossRef]
- Moldovan, G.-L.; Pfander, B.; Jentsch, S. PCNA, the Maestro of the Replication Fork. Cell 2007, 129, 665–679. [Google Scholar] [CrossRef] [Green Version]
- Tifft, K.E.; Bradbury, K.A.; Wilson, K.L. Tyrosine phosphorylation of nuclear-membrane protein emerin by Src, Abl and other kinases. J. Cell Sci. 2009, 122, 3780–3790. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, M.A.; Warley, A.; Roberts, R.; Ehler, E.; Ellis, J.A. Identification of an emerin–β-catenin complex in the heart important for intercalated disc architecture and β-catenin localisation. Cell. Mol. Life Sci. 2009, 67, 781–796. [Google Scholar] [CrossRef]
- Cartegni, L.; Di Barletta, M.R.; Barresi, R.; Squarzoni, S.; Sabatelli, P.; Maraldi, N.; Mora, M.; Di Blasi, C.; Cornelio, F.; Merlini, L.; et al. Heart-specific localization of emerin: New insights into Emery-Dreifuss muscular dystrophy. Hum. Mol. Genet. 1997, 6, 2257–2264. [Google Scholar] [CrossRef] [Green Version]
- De Queiroz, R.M.; Madan, R.; Chien, J.; Dias, W.; Slawson, C. Changes in O-Linked N-Acetylglucosamine (O-GlcNAc) Homeostasis Activate the p53 Pathway in Ovarian Cancer Cells. J. Biol. Chem. 2016, 291, 18897–18914. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.Y.; Kim, Y.S.; Kim, M.; Choi, M.Y.; Roh, G.S.; Lee, D.H.; Kim, H.J.; Kang, S.S.; Cho, G.J.; Shin, J.K.; et al. Metformin inhibits cervical cancer cell proliferation via decreased ampk o-glcnacylation. Anim. Cells Syst. 2019, 23, 302–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cenni, V.; Capanni, C.; Mattioli, E.; Schena, E.; Squarzoni, S.; Bacalini, M.G.; Garagnani, P.; Salvioli, S.; Franceschi, C.; Lattanzi, G. Lamin A involvement in ageing processes. Ageing Res. Rev. 2020, 101073. [Google Scholar] [CrossRef] [PubMed]
- De Oca, R.M.; Andreassen, P.R.; Wilson, K.L. Barrier-to-Autointegration Factor influences specific histone modifications. Nucleus 2011, 2, 580–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Oca, R.M.; Shoemaker, C.J.; Gucek, M.; Cole, R.N.; Wilson, K.L. Barrier-to-Autointegration Factor Proteome Reveals Chromatin-Regulatory Partners. PLoS ONE 2009, 4, e7050. [Google Scholar] [CrossRef] [Green Version]
- Bar, D.Z.; Davidovich, M.; Lamm, A.; Zer, H.; Wilson, K.L.; Gruenbaum, Y. BAF-1 mobility is regulated by environmental stresses. Mol. Biol. Cell 2014, 25, 1127–1136. [Google Scholar] [CrossRef] [PubMed]
- Guilluy, C.; Osborne, L.D.; Van Landeghem, L.; Sharek, L.; Superfine, R.; Garcia-Mata, R.; Burridge, K. Isolated nuclei adapt to force and reveal a mechanotransduction pathway in the nucleus. Nature 2014, 16, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Essawy, N.; Samson, C.; Petitalot, A.; Moog, S.; Bigot, A.; Herrada, I.; Marcelot, A.; Arteni, A.-A.; Coirault, C.; Zinn-Justin, S. An Emerin LEM-Domain Mutation Impairs Cell Response to Mechanical Stress. Cells 2019, 8, 570. [Google Scholar] [CrossRef] [Green Version]
- Savio, M.; Coppa, T.; Cazzalini, O.; Perucca, P.; Necchi, D.; Nardo, T.; Stivala, L.A.; Prosperi, E. Degradation of p21CDKN1A after DNA damage is independent of type of lesion, and is not required for DNA repair. DNA Repair 2009, 8, 778–785. [Google Scholar] [CrossRef]
- Gioia, U.; Francia, S.; Cabrini, M.; Brambillasca, S.; Michelini, F.; Jones-Weinert, C.W.; Daddadifagagna, F. Pharmacological boost of DNA damage response and repair by enhanced biogenesis of DNA damage response RNAs. Sci. Rep. 2019, 9, 6460. [Google Scholar] [CrossRef] [Green Version]
- Moser, B.; Basílio, J.; Gotzmann, J.; Brachner, A.; Foisner, R. Comparative Interactome Analysis of Emerin, MAN1 and LEM2 Reveals a Unique Role for LEM2 in Nucleotide Excision Repair. Cells 2020, 9, 463. [Google Scholar] [CrossRef] [Green Version]
- El-Mahdy, M.A.; Zhu, Q.; Wang, Q.-E.; Wani, G.; Prætorius-Ibba, M.; Wani, A.A. Cullin 4A-mediated Proteolysis of DDB2 Protein at DNA Damage Sites Regulatesin VivoLesion Recognition by XPC. J. Biol. Chem. 2006, 281, 13404–13411. [Google Scholar] [CrossRef] [Green Version]
- Sugasawa, K.; Okuda, Y.; Saijo, M.; Nishi, R.; Matsuda, N.; Chu, G.; Mori, T.; Iwai, S.; Tanaka, K.; Tanaka, K.; et al. UV-Induced Ubiquitylation of XPC Protein Mediated by UV-DDB-Ubiquitin Ligase Complex. Cell 2005, 121, 387–400. [Google Scholar] [CrossRef] [Green Version]
- Bolderson, E.; Burgess, J.T.; Li, J.; Gandhi, N.S.; Boucher, D.; Croft, L.V.; Beard, S.; Plowman, J.J.; Suraweera, A.; Adams, M.N.; et al. Barrier-to-autointegration factor 1 (Banf1) regulates poly [ADP-ribose] polymerase 1 (PARP1) activity following oxidative DNA damage. Nat. Commun. 2019, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Capanni, C.; Del Coco, R.; Squarzoni, S.; Columbaro, M.; Mattioli, E.; Camozzi, D.; Rocchi, A.; Scotlandi, K.; Maraldi, N.; Foisner, R.; et al. Prelamin A is involved in early steps of muscle differentiation. Exp. Cell Res. 2008, 314, 3628–3637. [Google Scholar] [CrossRef]
- Malińska, D.; Kudin, A.P.; Bejtka, M.; Kunz, W.S. Changes in mitochondrial reactive oxygen species synthesis during differentiation of skeletal muscle cells. Mitochondrion 2012, 12, 144–148. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cenni, V.; Squarzoni, S.; Loi, M.; Mattioli, E.; Lattanzi, G.; Capanni, C. Emerin Phosphorylation during the Early Phase of the Oxidative Stress Response Influences Emerin–BAF Interaction and BAF Nuclear Localization. Cells 2020, 9, 1415. https://doi.org/10.3390/cells9061415
Cenni V, Squarzoni S, Loi M, Mattioli E, Lattanzi G, Capanni C. Emerin Phosphorylation during the Early Phase of the Oxidative Stress Response Influences Emerin–BAF Interaction and BAF Nuclear Localization. Cells. 2020; 9(6):1415. https://doi.org/10.3390/cells9061415
Chicago/Turabian StyleCenni, Vittoria, Stefano Squarzoni, Manuela Loi, Elisabetta Mattioli, Giovanna Lattanzi, and Cristina Capanni. 2020. "Emerin Phosphorylation during the Early Phase of the Oxidative Stress Response Influences Emerin–BAF Interaction and BAF Nuclear Localization" Cells 9, no. 6: 1415. https://doi.org/10.3390/cells9061415
APA StyleCenni, V., Squarzoni, S., Loi, M., Mattioli, E., Lattanzi, G., & Capanni, C. (2020). Emerin Phosphorylation during the Early Phase of the Oxidative Stress Response Influences Emerin–BAF Interaction and BAF Nuclear Localization. Cells, 9(6), 1415. https://doi.org/10.3390/cells9061415