PD-1 Expression by Lymph Node and Intratumoral Regulatory T Cells Is Associated with Lymph Node Metastasis in Pancreatic Cancer
<p>CD4<sup>+</sup> T cells are the predominant T cell subset in pancreatic ductal adenocarcinoma (PDAC)-draining lymph nodes. (<b>A</b>) Representative flow cytometric gating strategy for the identification of T cells. Number indicates percentage of population per gate. SSC, side scatter; FSC, forward scatter. (<b>B</b>) Quantification of CD3<sup>+</sup> T cells among all leucocytes (CD45<sup>+</sup>). (<b>C</b>) CD4<sup>+</sup> Tconv cells (Tconv; CD3<sup>+</sup>CD4<sup>+</sup>’not Treg’), regulatory T cells (Treg; CD3<sup>+</sup>CD4<sup>+</sup>CD8<sup>-</sup>CD25<sup>+</sup>CD127<sup>-</sup>FOXP3<sup>+</sup>) and CD8<sup>+</sup> T cells (CD8<sup>+</sup>; CD3<sup>+</sup>CD4<sup>-</sup>CD8<sup>+</sup>) as a percentage of CD3<sup>+</sup> T cells in lymph nodes of the indicated location from patients with PDAC. (<b>D</b>) Ratio of CD4<sup>+</sup> Tconv to Treg and (<b>E</b>) CD8<sup>+</sup> T cells to Treg in lymph nodes. IAC, interaortocaval: lymph node around the abdominal aorta; HDL, hepatoduodenal ligament: lymph node along the hepatic artery and bile duct; PH, pancreatic head: lymph node from the posterior aspect of the pancreatic head. Each point represents data from one patient. Data, median. One-way ANOVA.</p> "> Figure 2
<p>Central and transitionally memory T cells constitute the predominant T cell differentiation stages in PDAC-draining lymph nodes. (<b>A</b>) Representative flow plots (top) and frequency (below) of T cell differentiation stage in lymph nodes of the indicated location for CD4<sup>+</sup> and (<b>B</b>) CD8<sup>+</sup> T cells. Tn, naïve (CD45RA<sup>+</sup>CCR7<sup>+</sup>CD28<sup>+</sup>CD95<sup>-</sup>); Tscm, stem cell memory (CD45RA<sup>+</sup>CCR7<sup>+</sup>CD28<sup>+</sup>CD95<sup>+</sup>); Tcm, central memory (CD45RA<sup>-</sup>CCR7<sup>+</sup>CD28<sup>+</sup>); Ttm, transitionally memory (CD45RA<sup>-</sup>CCR7<sup>-</sup>CD28<sup>+</sup>); Tem, effector memory (CD45RA<sup>-</sup>CCR7<sup>-</sup>CD28<sup>-</sup>); Tte, terminal effector (CD45RA<sup>+</sup>CCR7<sup>-</sup>CD28<sup>-</sup>). IAC, interaortocaval; HDL, hepatoduodenal ligament; PH, pancreatic head. Each point represents data from one patient. Data, median. One-way ANOVA.</p> "> Figure 3
<p>Lymph node CD4<sup>+</sup> and CD8<sup>+</sup> T cells display a similar degree of activation independent of distance from the tumor. (<b>A</b>) Quantification of the expression of the activation markers CD69 (left), ICOS (middle) and CD137 (right) on CD4<sup>+</sup> (top) and CD8<sup>+</sup> T cells (bottom). (<b>B</b>) Quantification of CD107a (left) expression and IFNγ (right) secretion by stimulated CD4<sup>+</sup> (top) and CD8<sup>+</sup> T cells (bottom). IAC, interaortocaval; HDL, hepatoduodenal ligament; PH, pancreatic head. Each point represents data from one patient. Data, median. One-way ANOVA.</p> "> Figure 4
<p>Treg cells in PDAC-draining lymph nodes express PD-1 and PD-L1. (<b>A</b>) Quantification of the expression of LAG-3 and (<b>B</b>) TIM-3 on CD4<sup>+</sup> (left) and CD8<sup>+</sup> T cells (right). (<b>C</b>) Quantification of the expression of CTLA-4, (<b>D</b>) PD-1 and (<b>E</b>) PD-L1 on CD4<sup>+</sup> Tconv cells (Tconv; left), regulatory T cells (Treg; middle) and CD8<sup>+</sup> T cells (CD8<sup>+</sup>; right). IAC, interaortocaval; HDL, hepatoduodenal ligament; PH, pancreatic head. Each point represents data from one patient. Data, median. One-way ANOVA. * <span class="html-italic">p</span> < 0.05.</p> "> Figure 5
<p>PD-1-expressing lymph node T cells are associated with node-positive PDAC. (<b>A</b>) Quantification of the expression of PD-1 on CD4<sup>+</sup> Tconv cells (Tconv), (<b>B</b>) regulatory T cells (Treg) and <b>(C)</b> CD8<sup>+</sup> T cells (CD8<sup>+</sup>) based on nodal stage (N-, negative; N+, positive). IAC, interaortocaval; HDL, hepatoduodenal ligament; PH, pancreatic head. Each point represents data from one patient. Data, median. Unpaired <span class="html-italic">t</span>-test. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> ≤ 0.01.</p> "> Figure 6
<p>PD-1 expression by intratumoral Treg cells correlates with node-positive PDAC. (<b>A</b>) Representative flow cytometric gating strategy for the identification of T cells in blood (top) and PDAC (bottom). Number indicates percentage of population per gate. SSC, side scatter; FSC, forward scatter. (<b>B</b>) CD4<sup>+</sup> Tconv cells (Tconv; CD3<sup>+</sup>CD4<sup>+</sup>CD8<sup>-</sup>FOXP3<sup>-</sup>), regulatory T cells (Treg; CD3<sup>+</sup>CD4<sup>+</sup>CD8<sup>-</sup>FOXP3<sup>+</sup>) and CD8<sup>+</sup> T cells (CD8<sup>+</sup>; CD3<sup>+</sup>CD4<sup>-</sup>CD8<sup>+</sup>) as a percentage of CD3<sup>+</sup> T cells in blood and tumor from 16 patients with PDAC. (<b>C</b>) Percentages of PD-1 expression of indicated T cell subset in blood and PDAC. (<b>D</b>) Quantification of the expression of PD-1 on blood (top) and tumor-infiltrating T cells (PDAC, bottom) based on nodal stage (N-, negative; N+, positive). Each point represents data from one patient. Data, median. Unpaired <span class="html-italic">t</span>-test. **** <span class="html-italic">p</span> ≤ 0.0001, *** <span class="html-italic">p</span> ≤ 0.001, * <span class="html-italic">p</span> < 0.05.</p> ">
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. CD4+ T Cells Are the Predominant T Cell Subset in PDAC-Draining Lymph Nodes
2.2. Central and Transitionally Memory T Cells Constitute the Predominant T Cell Differentiation Stages in PDAC-Draining Lymph Nodes
2.3. Lymph Node CD4+ and CD8+ T Cells Display a Similar Degree of Activation Independent of Distance from the Tumor
2.4. Treg Cells in PDAC-Draining Lymph Nodes Express PD-1 and PD-L1
2.5. PD-1-Expressing Lymph Node T Cells Are Associated with Node-Positive PDAC
2.6. PD-1 Expression by Intratumoral Treg Cells Correlates with Node-Positive PDAC
3. Discussion
4. Materials and Methods
4.1. Patient Samples
4.2. Flow Cytometry and Antibodies
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef]
- Allen, P.J.; Kuk, D.; Castillo, C.F.-D.; Basturk, O.; Wolfgang, C.L.; Cameron, J.L.; Lillemoe, K.D.; Ferrone, C.R.; Morales-Oyarvide, V.; He, J.; et al. Multi-institutional Validation Study of the American Joint Commission on Cancer (8th Edition) Changes for T and N Staging in Patients with Pancreatic Adenocarcinoma. Ann. Surg. 2017, 265, 185–191. [Google Scholar] [CrossRef] [Green Version]
- Kanda, M.; Fujii, T.; Nagai, S.; Kodera, Y.; Kanzaki, A.; Sahin, T.T.; Hayashi, M.; Yamada, S.; Sugimoto, H.; Nomoto, S.; et al. Pattern of Lymph Node Metastasis Spread in Pancreatic Cancer. Pancreas 2011, 40, 951–955. [Google Scholar] [CrossRef]
- Royal, R.E.; Levy, C.; Turner, K.; Mathur, A.; Hughes, M.; Kammula, U.S.; Sherry, R.M.; Topalian, S.L.; Yang, J.C.; Lowy, I.; et al. Phase 2 Trial of Single Agent Ipilimumab (Anti-CTLA-4) for Locally Advanced or Metastatic Pancreatic Adenocarcinoma. J. Immunother. 2010, 33, 828–833. [Google Scholar] [CrossRef] [PubMed]
- Brahmer, J.R.; Tykodi, S.S.; Chow, L.Q.; Hwu, W.-J.; Topalian, S.L.; Hwu, P.; Drake, C.G.; Camacho, L.H.; Kauh, J.; Odunsi, K.; et al. Safety and Activity of Anti–PD-L1 Antibody in Patients with Advanced Cancer. N. Engl. J. Med. 2012, 366, 2455–2465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patnaik, A.; Kang, S.P.; Rasco, D.; Papadopoulos, K.P.; Elassaiss-Schaap, J.; Beeram, M.; Drengler, R.; Chen, C.; Smith, L.; Espino, G.; et al. Phase I Study of Pembrolizumab (MK-3475; Anti-PD-1 Monoclonal Antibody) in Patients with Advanced Solid Tumors. Clin. Cancer Res. 2015, 21, 4286–4293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fransen, M.F.; Schoonderwoerd, M.; Knopf, P.; Camps, M.G.; Hawinkels, L.J.; Kneilling, M.; van Hall, T.; Ossendorp, F. Tumor-draining lymph nodes are pivotal in PD-1/PD-L1 checkpoint therapy. JCI Insight 2018, 3, e124507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balli, D.; Rech, A.J.; Stanger, B.Z.; Vonderheide, R.H. Immune Cytolytic Activity Stratifies Molecular Subsets of Human Pancreatic Cancer. Clin. Cancer Res. 2016, 23, 3129–3138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shibuya, K.C.; Goel, V.K.; Xiong, W.; Sham, J.G.; Pollack, S.M.; Leahy, A.M.; Whiting, S.H.; Yeh, M.M.; Yee, C.; Riddell, S.R.; et al. Pancreatic Ductal Adenocarcinoma Contains an Effector and Regulatory Immune Cell Infiltrate that Is Altered by Multimodal Neoadjuvant Treatment. PLoS ONE 2014, 9, e96565. [Google Scholar] [CrossRef]
- Daley, D.; Zambirinis, C.P.; Seifert, L.; Akkad, N.; Mohan, N.; Werba, G.; Barilla, R.; Torres-Hernandez, A.; Hundeyin, M.; Raj, V.; et al. γδ T Cells Support Pancreatic Oncogenesis by Restraining αβ T Cell Activation. Cell 2016, 166, 1485–1499.e15. [Google Scholar] [CrossRef] [Green Version]
- Poschke, I.; Faryna, M.; Bergmann, F.; Flossdorf, M.; Lauenstein, C.; Hermes, J.; Hinz, U.; Hank, T.; Ehrenberg, R.; Volkmar, M.; et al. Identification of a tumor-reactive T-cell repertoire in the immune infiltrate of patients with resectable pancreatic ductal adenocarcinoma. Oncoimmunology 2016, 5, e1240859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stromnes, I.M.; Hulbert, A.; Pierce, R.H.; Greenberg, P.D.; Hingorani, S.R. T-cell Localization, Activation, and Clonal Expansion in Human Pancreatic Ductal Adenocarcinoma. Cancer Immunol. Res. 2017, 5, 978–991. [Google Scholar] [CrossRef] [Green Version]
- Carstens, J.L.; De Sampaio, P.C.; Yang, D.; Barua, S.; Wang, H.; Rao, A.; Allison, J.; LeBleu, V.S.; Kalluri, R. Spatial computation of intratumoral T cells correlates with survival of patients with pancreatic cancer. Nat. Commun. 2017, 8, 15095. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Xu, X.; Guo, S.; Zhang, C.; Tang, Y.; Tian, Y.; Ni, B.; Lu, B.; Wang, H. An Increased Abundance of Tumor-Infiltrating Regulatory T Cells Is Correlated with the Progression and Prognosis of Pancreatic Ductal Adenocarcinoma. PLoS ONE 2014, 9, e91551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Y.; Du, Z.; Yang, F.; Di, Y.; Li, J.; Zhou, Z.; Pillarisetty, V.G.; Fu, D. FOXP3+ Lymphocyte Density in Pancreatic Cancer Correlates with Lymph Node Metastasis. PLoS ONE 2014, 9, e106741. [Google Scholar] [CrossRef] [PubMed]
- Liyanage, U.K.; Moore, T.T.; Joo, H.-G.; Tanaka, Y.; Herrmann, V.; Doherty, G.M.; Drebin, J.A.; Strasberg, S.M.; Eberlein, T.J.; Goedegebuure, P.S.; et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J. Immunol. 2002, 169, 2756–2761. [Google Scholar] [CrossRef] [PubMed]
- Soares, K.C.; Rucki, A.A.; Wu, A.A.; Olino, K.; Xiao, Q.; Chai, Y.; Wamwea, A.; Bigelow, E.; Lutz, E.; Liu, L.; et al. PD-1/PD-L1 blockade together with vaccine therapy facilitates effector T-cell infiltration into pancreatic tumors. J. Immunother. 2015, 38, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nomi, T.; Sho, M.; Akahori, T.; Hamada, K.; Kubo, A.; Kanehiro, H.; Nakamura, S.; Enomoto, K.; Yagita, H.; Azuma, M.; et al. Clinical Significance and Therapeutic Potential of the Programmed Death-1 Ligand/Programmed Death-1 Pathway in Human Pancreatic Cancer. Clin. Cancer Res. 2007, 13, 2151–2157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahnke, Y.D.; Brodie, T.M.; Sallusto, F.; Roederer, M.; Lugli, E. The who’s who of T-cell differentiation: Human memory T-cell subsets. Eur. J. Immunol. 2013, 43, 2797–2809. [Google Scholar] [CrossRef] [PubMed]
- Anderson, A.C.; Joller, N.; Kuchroo, V.K. Lag-3, Tim-3, and TIGIT: Co-inhibitory Receptors with Specialized Functions in Immune Regulation. Immunity 2016, 44, 989–1004. [Google Scholar] [CrossRef] [Green Version]
- Baitsch, L.; Baumgaertner, P.; Devevre, E.; Raghav, S.K.; Legat, A.; Barba, L.; Wieckowski, S.; Bouzourene, H.; Deplancke, B.; Romero, P.; et al. Exhaustion of tumor-specific CD8+ T cells in metastases from melanoma patients. J. Clin. Investig. 2011, 121, 2350–2360. [Google Scholar] [CrossRef] [Green Version]
- Shu, S.; Cochran, A.J.; Huang, R.-R.; Morton, D.L.; Maecker, H.T. Immune responses in the draining lymph nodes against cancer: Implications for immunotherapy. Cancer Metastasis Rev. 2006, 25, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Sho, M.; Murakami, Y.; Motoi, F.; Satoi, S.; Matsumoto, I.; Kawai, M.; Honda, G.; Uemura, K.; Yanagimoto, H.; Kurata, M.; et al. Postoperative prognosis of pancreatic cancer with para-aortic lymph node metastasis: A multicenter study on 822 patients. J. Gastroenterol. 2014, 50, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Gros, A.; Robbins, P.F.; Yao, X.; Li, Y.F.; Turcotte, S.; Tran, E.; Wunderlich, J.R.; Mixon, A.; Farid, S.; Dudley, M.E.; et al. PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors. J. Clin. Investig. 2014, 124, 2246–2259. [Google Scholar] [CrossRef] [PubMed]
- Gros, A.; Tran, E.; Parkhurst, M.R.; Ilyas, S.; Pasetto, A.; Groh, E.M.; Robbins, P.F.; Yossef, R.; Garcia-Garijo, A.; Fajardo, C.A.; et al. Recognition of human gastrointestinal cancer neoantigens by circulating PD-1+ lymphocytes. J. Clin. Investig. 2019, 129, 4992–5004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, M.C.B.; Goedegebuure, P.S.; Belt, B.A.; Flaherty, B.; Sankpal, N.; Gillanders, W.E.; Eberlein, T.J.; Hsieh, C.-S.; Linehan, D.C. Disruption of CCR5-dependent homing of regulatory T cells inhibits tumor growth in a murine model of pancreatic cancer. J. Immunol. 2009, 182, 1746–1755. [Google Scholar] [CrossRef] [PubMed]
- Heeren, A.M.; Koster, B.D.; Samuels, S.; Ferns, D.M.; Chondronasiou, D.; Kenter, G.G.; Jordanova, E.S.; De Gruijl, T.D. High and Interrelated Rates of PD-L1+CD14+ Antigen-Presenting Cells and Regulatory T Cells Mark the Microenvironment of Metastatic Lymph Nodes from Patients with Cervical Cancer. Cancer Immunol. Res. 2014, 3, 48–58. [Google Scholar] [CrossRef] [Green Version]
- Deng, L.; Zhang, H.; Luan, Y.; Zhang, J.; Xing, Q.; Dong, S.; Wu, X.; Liu, M.; Wang, S. Accumulation of Foxp3+ T Regulatory Cells in Draining Lymph Nodes Correlates with Disease Progression and Immune Suppression in Colorectal Cancer Patients. Clin. Cancer Res. 2010, 16, 4105–4112. [Google Scholar] [CrossRef] [Green Version]
- Ikenaga, N.; Ohuchida, K.; Mizumoto, K.; Cui, L.; Kayashima, T.; Morimatsu, K.; Moriyama, T.; Nakata, K.; Fujita, H.; Tanaka, M. CD10+ Pancreatic Stellate Cells Enhance the Progression of Pancreatic Cancer. Gastroenterology 2010, 139, 1041–1051.e8. [Google Scholar] [CrossRef]
- De Monte, L.; Woermann, S.; Brunetto, E.; Heltai, S.; Magliacane, G.; Reni, M.; Paganoni, A.M.; Recalde, H.; Mondino, A.; Falconi, M.; et al. Basophil Recruitment into Tumor-Draining Lymph Nodes Correlates with Th2 Inflammation and Reduced Survival in Pancreatic Cancer Patients. Cancer Res. 2016, 76, 1792–1803. [Google Scholar] [CrossRef] [Green Version]
- Halvorsen, E.C.; Mahmoud, S.M.; Bennewith, K.L. Emerging roles of regulatory T cells in tumour progression and metastasis. Cancer Metastasis Rev. 2014, 33, 1025–1041. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.; Zhang, W.; Strasner, A.; Grivennikov, S.; Cheng, J.Q.; Hoffman, R.M.; Karin, M. Tumour-infiltrating regulatory T cells stimulate mammary cancer metastasis through RANKL–RANK signalling. Nature 2011, 470, 548–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, J.-E.; Hajdu, C.H.; Liot, C.; Miller, G.; Dustin, M.L.; Bar-Sagi, D. Crosstalk between Regulatory T Cells and Tumor-Associated Dendritic Cells Negates Anti-tumor Immunity in Pancreatic Cancer. Cell Rep. 2017, 20, 558–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reyes, C.M.; Teller, S.; Muckenhuber, A.; Konukiewitz, B.; Safak, O.; Weichert, W.; Friess, H.; Ceyhan, G.O.; Demir, I.E. Neoadjuvant Therapy Remodels the Pancreatic Cancer Microenvironment via Depletion of Protumorigenic Immune Cells. Clin. Cancer Res. 2019, 26, 220–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Principe, D.R.; Narbutis, M.; Kumar, S.; Park, A.; Viswakarma, N.; Dorman, M.J.; Kamath, S.D.; Grippo, P.J.; Fishel, M.L.; Hwang, R.F.; et al. Long-Term Gemcitabine Treatment Reshapes the Pancreatic Tumor Microenvironment and Sensitizes Murine Carcinoma to Combination Immunotherapy. Cancer Res. 2020, 80, 3101–3115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winograd, R.; Byrne, K.T.; Evans, R.A.; Odorizzi, P.M.; Meyer, A.R.L.; Bajor, D.L.; Clendenin, C.; Stanger, B.Z.; Furth, E.E.; Wherry, E.J.; et al. Induction of T-cell Immunity Overcomes Complete Resistance to PD-1 and CTLA-4 Blockade and Improves Survival in Pancreatic Carcinoma. Cancer Immunol. Res. 2015, 3, 399–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, Y.D.; Jiang, X.; Sullivan, K.M.; Jalikis, F.G.; Smythe, K.S.; Abbasi, A.; Vignali, M.; Park, J.O.; Daniel, S.K.; Pollack, S.M.; et al. Mobilization of CD8+ T Cells via CXCR4 Blockade Facilitates PD-1 Checkpoint Therapy in Human Pancreatic Cancer. Clin. Cancer Res. 2019, 25, 3934–3945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isaji, S.; Murata, Y.; Kishiwada, M. New Japanese Classification of Pancreatic Cancer. In Pancreatic Cancer; Neoptolemos, J., Urrutia, R., Abbruzzese, J., Büchler, M., Eds.; Springer: New York, NY, USA, 2018; pp. 1021–1037. [Google Scholar]
- Seifert, A.M.; Reiche, C.; Heiduk, M.; Tannert, A.; Meinecke, A.-C.; Baier, S.; Von Renesse, J.; Kahlert, C.; Distler, M.; Welsch, T.; et al. Detection of pancreatic ductal adenocarcinoma with galectin-9 serum levels. Oncogene 2020, 39, 3102–3113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seifert, A.M.; Eymer, A.; Heiduk, M.; Wehner, R.; Tunger, A.; von Renesse, J.; Decker, R.; Aust, D.E.; Welsch, T.; Reissfelder, C.; et al. PD-1 Expression by Lymph Node and Intratumoral Regulatory T Cells Is Associated with Lymph Node Metastasis in Pancreatic Cancer. Cancers 2020, 12, 2756. https://doi.org/10.3390/cancers12102756
Seifert AM, Eymer A, Heiduk M, Wehner R, Tunger A, von Renesse J, Decker R, Aust DE, Welsch T, Reissfelder C, et al. PD-1 Expression by Lymph Node and Intratumoral Regulatory T Cells Is Associated with Lymph Node Metastasis in Pancreatic Cancer. Cancers. 2020; 12(10):2756. https://doi.org/10.3390/cancers12102756
Chicago/Turabian StyleSeifert, Adrian M., Annabel Eymer, Max Heiduk, Rebekka Wehner, Antje Tunger, Janusz von Renesse, Rahel Decker, Daniela E. Aust, Thilo Welsch, Christoph Reissfelder, and et al. 2020. "PD-1 Expression by Lymph Node and Intratumoral Regulatory T Cells Is Associated with Lymph Node Metastasis in Pancreatic Cancer" Cancers 12, no. 10: 2756. https://doi.org/10.3390/cancers12102756
APA StyleSeifert, A. M., Eymer, A., Heiduk, M., Wehner, R., Tunger, A., von Renesse, J., Decker, R., Aust, D. E., Welsch, T., Reissfelder, C., Weitz, J., Schmitz, M., & Seifert, L. (2020). PD-1 Expression by Lymph Node and Intratumoral Regulatory T Cells Is Associated with Lymph Node Metastasis in Pancreatic Cancer. Cancers, 12(10), 2756. https://doi.org/10.3390/cancers12102756