AXL Inactivation Inhibits Mesothelioma Growth and Migration via Regulation of p53 Expression
<p>AXL overexpression and survival analysis in mesothelioma. (<b>A</b>) TCGA gene expression profiling data analysis on 87 mesotheliomas shows that AXL expression is higher in mesothelioma patient samples compared to other tumor types. (<b>B</b>) Survival analysis of TCGA mesothelioma dataset demonstrates that AXL expression level is significantly correlated with overall survival of mesothelioma patients (<span class="html-italic">p</span> < 0.0001).</p> "> Figure 2
<p>AXL regulates p53 protein expression. (<b>A</b>) Immunoblotting evaluation of the expression of AXL, p53, and p21 in MESO924, MESO296, MESO428, and JMN1B cells at 96 h post-infection with lentiviral <span class="html-italic">AXL</span> shRNA. Actin stains show equivalence of lane loading. Expression quantitations of AXL, p53, p21, and actin are normalized to control infections using empty vector pLKO. (<b>B</b>) Immunoblotting shows dose-dependent AXL inhibition of p53 expression in COS-7 cells 48 h after cotransfection of <span class="html-italic">TP53</span> (1 µg) with varying amounts of <span class="html-italic">AXL</span>. pCMV6 (1 µg) vector lane is a control, and MESO924 is a positive control for AXL expression. Protein expression quantitations are normalized to control transfections using empty vector pCMV6. (<b>C</b>) Immunoblotting shows dose-dependent AXL inhibition of p53 expression in 293T cells 48 h after transfection with varying amounts of <span class="html-italic">AXL</span>. pCMV6 (1 µg) vector lane is a control. GAPDH stain is a loading control. Expression quantitations of AXL and p53 are normalized to control transfections using empty vector pCMV6. The whole blot (uncropped blots) show in the <a href="#app1-cancers-12-02757" class="html-app">Figure S3</a>.</p> "> Figure 3
<p>AXL/p53 Immunoprecipitations followed by AXL and p53 immunoblotting in mesothelioma cell lines (MESO924, MESO257, and MESO428) do not show interaction between AXL and p53. The whole blot (uncropped blots) show in the <a href="#app1-cancers-12-02757" class="html-app">Figure S3</a>.</p> "> Figure 4
<p>AXL colocalization with p53 in the nucleus. (<b>A</b>) Nuclear localization of AXL and p53 was evaluated in MESO257 by immunoblotting. Poly (ADP-ribose) polymerase (PARP) is a nuclear localization control, and GAPDH is a cytoplasmic control. The whole blot (uncropped blots) show in the <a href="#app1-cancers-12-02757" class="html-app">Figure S3</a>. (<b>B</b>) Cell distribution of AXL and p53 in MESO257 and MESO428 by immunofluorescence staining. The green stain represents AXL expression and red stain represents p53 expression. The color of image mergence of AXL (green) and p53 (red) stains showed orange. All the assays were performed from triplicate experiments.</p> "> Figure 5
<p>AXL negatively regulates <span class="html-italic">TP53</span> transcription. (<b>A</b>) Quantitative RT-PCR evaluations of <span class="html-italic">AXL</span> (blue bars) and <span class="html-italic">TP53</span> (green bars) transcripts at 72 h after infection of MESO924, MESO296, MESO428, and JMN1B cells with lentiviral <span class="html-italic">AXL</span> shRNA constructs. The comparative Ct (cycle threshold) method was used to determine RNA expression, which was normalized to pLKO of each cell lines in triplicate assays. Statistically significant differences are presented as * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001. (<b>B</b>) AXL expression inhibits <span class="html-italic">TP53</span> promoter activity: <span class="html-italic">TP53</span> luciferase reporter plasmid <span class="html-italic">luc-p53</span> (0.25 µg) and <span class="html-italic">Renilla</span> luciferase reporter plasmid <span class="html-italic">pTK-RL</span> (0.005 µg) were cotransfected with pcDNA3 empty vector or <span class="html-italic">AXL</span> (0.25 µg) into 293T cells. Transfected cells were harvested at 48 h, and assessed using a Dual-Luciferase Reporter Assay System. Transfection efficiencies were normalized to the <span class="html-italic">pTK-RL</span> luciferase plasmid, and <span class="html-italic">TP53</span> luciferase activities were normalized to the pCMV6 vector (100%). The data represent the mean values (± s.d.) from quadruplicate cultures. All the assays were performed from triplicate experiments. Statistically significant differences are presented as *** <span class="html-italic">p</span> < 0.001. (<b>C</b>) Chromatin immunoprecipitation-qPCR. <span class="html-italic">TP53</span> promoter was amplified by nine pairs of primers and evaluated by 1% agarose gel. Chromatin immunoprecipitation showed that AXL directly binds to the first 600 bp at the 5′ end promoter region of <span class="html-italic">TP53</span>. Mean ± S.D.; <span class="html-italic">n</span> = 3; IgG is a negative control.</p> "> Figure 6
<p>AXL regulates mesothelioma migration, invasiveness, and proliferation through p53. (<b>A</b>,<b>B</b>) R428 (1 µM) treatment or lentiviral shRNA-mediated AXL knockdown inhibited migration of MESO924, but <span class="html-italic">p53</span> shRNA knockdown attenuated antimigration effects of R428 treatment in MESO924, as assessed by in vitro wounding assays. (<b>C</b>,<b>D</b>) R428 (1 µM) treatment inhibited invasive effects of MESO924 cells, but <span class="html-italic">p53</span> shRNA knockdown attenuated anti-invasive effects of R428 treatment in MESO924, as assessed by transwell matrigel assays. Data were normalized to the empty lentivirus infections or DMSO and represent the mean values (±s.d.) of triplicate cultures. All the assays were performed from triplicate experiments. Statistically significant differences are presented as * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01. (<b>E</b>,<b>F</b>) Cell viability was evaluated by MTT assay in MESO924 at day 3 after infection with lentiviral <span class="html-italic">AXL</span> shRNA, but <span class="html-italic">p53</span> shRNA knockdown attenuated antiproliferative effects of AXL silencing or AXL kinase inhibition (R428) in MESO924. Data were normalized to the empty lentivirus infections or DMSO and represent the mean values (±s.d.) of triplicate cultures. All the assays were performed from triplicate experiments. Statistically significant differences are presented as * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001.</p> "> Figure 7
<p>Model of AXL-mediated p53 turnover and cell growth. AXL can promote cell growth and migration through signaling cascades such as AKT that can activate ubiquitin E3-ligases such as MDM2 to maintain low p53 levels. Nuclear AXL stabilizes a MDM2-MDMX-p53 complex, leading to p53 polyubiquitination and subsequent p53 degradation by nuclear or cytoplasmic proteasomes. At the same time, nuclear AXL binds to the <span class="html-italic">TP53</span> promoter to regulate the p53 transcription and expression, and p53 binds to the <span class="html-italic">AXL</span> promoter to regulate the AXL transcription and expression. This regulatory connection between AXL and p53 is a direct self-feedback regulatory loop.</p> ">
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. AXL is Overexpressed in Mesothelioma, and Correlated with Poor Survival
2.2. AXL Regulates p53 Protein Expression in Mesothelioma
2.3. No Protein Interaction is Detected between AXL and p53
2.4. AXL Colocalization with p53 in the Nucleus
2.5. AXL Negatively Regulates TP53 Transcription in Mesothelioma
2.6. AXL Regulates Mesothelioma Migration, Invasiveness, and Proliferation through p53
3. Discussion
4. Materials and Methods
4.1. Antibodies and Reagents
4.2. Mesothelioma Cell Lines and Frozen Tumor Specimens
4.3. Immunoblotting
4.4. Immunoprecipitation
4.5. Lentiviral AXL and p53 shRNA Constructs
4.6. Cell Culture and Virus Infection
4.7. Transfection
4.8. RNA Preparation and qRT-PCR
4.9. Immunofluorescence Staining
4.10. Dual Luciferase Assay
4.11. Chromatin Immunoprecipitation Assay (ChIP)
4.12. Cell Viability Analysis
4.13. In Vitro Wound Healing Assays
4.14. Cell Invasion Assays
4.15. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Travis, W.D.; Brambilla, E.; Burke, A.P.; Marx, A.; Nicholson, A.G. WHO Classification of Tumors of the Lung, Pleura, Thymus and Heart; IARC Press: Lyon, France, 2015. [Google Scholar]
- Carbone, M.; Adusumilli, P.S.; Alexander, H.R.; Baas, P., Jr.; Bardelli, F.; Bononi, A.; Bueno, R.; Felley-Bosco, E.; Galateau-Salle, F.; Jablons, D.; et al. Mesothelioma: Scientific clues for prevention, diagnosis, and therapy. CA Cancer J. Clin. 2019, 69, 402–429. [Google Scholar] [CrossRef] [Green Version]
- Chatwal, M.S.; Tanvetyanon, T. Malignant mesothelioma clinical trial combines immunotherapy drugs. Immunotherapy 2018, 10, 341–344. [Google Scholar] [CrossRef] [Green Version]
- Alley, E.W.; Lopez, J.; Santoro, A.; Morosky, A.; Saraf, S.; Piperdi, B.; van Brummelen, E. Clinical safety and activity of pembrolizumab in patients with malignant pleural mesothelioma (KEYNOTE-028): Preliminary results from a non-randomised, open-label, phase 1b trial. Lancet Oncol. 2017, 18, 623–630. [Google Scholar] [CrossRef]
- Metaxas, Y.; Rivalland, G.; Mauti, L.A.; Klingbiel, D.; Kao, S.; Schmid, S.; Nowak, A.K.; Gautschi, O.; Bartnick, T.; Hughes, B.G.; et al. Pembrolizumab as Palliative Immunotherapy in Malignant Pleural Mesothelioma. J. Thorac. Oncol. 2018, 13, 1784–1791. [Google Scholar] [CrossRef] [Green Version]
- Mansfield, A.S.; Zauderer, M.G. Nivo-lution in Mesothelioma. Clin. Cancer Res. 2019, 25, 5438–5440. [Google Scholar] [CrossRef]
- Pasello, G.; Zago, G.; Lunardi, F.; Urso, L.; Kern, I.; Vlacic, G.; Grosso, F.; Mencoboni, M.; Ceresoli, G.L.; Schiavon, M.; et al. Malignant pleural mesothelioma immune microenvironment and checkpoint expression: Correlation with clinical-pathological features and intratumor heterogeneity over time. Ann. Oncol. 2018, 29, 1258–1265. [Google Scholar] [CrossRef]
- Rosen, L.E.; Karrison, T.; Ananthanarayanan, V.; Gallan, A.J.; Adusumilli, P.S.; Alchami, F.S.; Attanoos, R.; Brcic, L.; Butnor, K.J.; Galateau-Sallé, F.; et al. Nuclear grade and necrosis predict prognosis in malignant epithelioid pleural mesothelioma: A multi-institutional study. Mod. Pathol. 2018, 31, 598–606. [Google Scholar] [CrossRef] [Green Version]
- Pelosi, G.; Papotti, M.; Righi, L.; Rossi, G.; Ferrero, S.; Bosari, S.; Calabrese, F.; Kern, I.; Maisonneuve, P.; Sonzogni, A.; et al. Pathologic Grading of Malignant Pleural Mesothelioma: An Evidence-Based Proposal. J. Thorac. Oncol. 2018, 13, 1750–1761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pezzuto, F.; Serio, G.; Fortarezza, F.; Scattone, A.; Caporusso, C.; Punzi, A.; Cavone, D.; Pennella, A.; Marzullo, A.; Vimercati, L. Prognostic Value of Ki67 Percentage, WT-1 Expression and p16/CDKN2A Deletion in Diffuse Malignant Peritoneal Mesothelioma: A Single-Centre Cohort Study. Diagnostics 2020, 10, 386. [Google Scholar] [CrossRef]
- Ou, W.B.; Corson, J.M.; Flynn, D.L.; Lu, W.P.; Wise, S.C.; Bueno, R.; Sugarbaker, D.J.; Fletcher, J.A. AXL regulates mesothelioma proliferation and invasiveness. Oncogene 2011, 30, 1643–1652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ou, W.B.; Hubert, C.; Corson, J.M.; Bueno, R.; Flynn, D.L.; Sugarbaker, D.J.; Fletcher, J.A. Targeted inhibition of multiple receptor tyrosine kinases in mesothelioma. Neoplasia 2011, 13, 12–22. [Google Scholar] [CrossRef] [Green Version]
- Husain, H.; Scur, M.; Murtuza, A.; Bui, N.; Woodward, B.; Kurzrock, R. Strategies to Overcome Bypass Mechanisms Mediating Clinical Resistance to EGFR Tyrosine Kinase Inhibition in Lung Cancer. Mol. Cancer Ther. 2017, 16, 265–272. [Google Scholar] [CrossRef] [Green Version]
- Aguilera, T.A.; Rafat, M.; Castellini, L.; Shehade, H.; Kariolis, M.S.; Hui, A.B.; Stehr, H.; von Eyben, R.; Jiang, D.; Ellies, L.G.; et al. Reprogramming the immunological microenvironment through radiation and targeting Axl. Nat. Commun. 2016, 7, 13898. [Google Scholar] [CrossRef] [Green Version]
- Ruprecht, B.; Zaal, E.A.; Zecha, J.; Wu, W.; Berkers, C.R.; Kuster, B.; Lemeer, S. Lapatinib Resistance in Breast Cancer Cells Is Accompanied by Phosphorylation-Mediated Reprogramming of Glycolysis. Cancer Res. 2017, 77, 1842–1853. [Google Scholar] [CrossRef] [Green Version]
- Holland, S.J.; Pan, A.; Franci, C.; Hu, Y.; Chang, B.; Li, W.; Duan, M.; Torneros, A.; Yu, J.; Heckrodt, T.J.; et al. R428, a selective small molecule inhibitor of Axl kinase, blocks tumor spread and prolongs survival in models of metastatic breast cancer. Cancer Res. 2010, 70, 1544–1554. [Google Scholar] [CrossRef] [Green Version]
- Okubo, T.; Saito, T.; Mitomi, H.; Takagi, T.; Torigoe, T.; Suehara, Y.; Kaneko, K.; Yao, T. p53 mutations may be involved in malignant transformation of giant cell tumor of bone through interaction with GPX1. Virchows Arch. 2013, 463, 67–77. [Google Scholar] [CrossRef]
- Oren, M.; Rotter, V. Mutant p53 gain-of-function in cancer. Cold Spring Harb. Perspect. Biol. 2010, 2, a001107. [Google Scholar] [CrossRef]
- Pitolli, C.; Wang, Y.; Mancini, M.; Shi, Y.; Melino, G.; Amelio, I. Do Mutations Turn p53 into an Oncogene? Int. J. Mol. Sci. 2019, 20, 6241. [Google Scholar] [CrossRef] [Green Version]
- Kruse, J.P.; Gu, W. Modes of p53 regulation. Cell 2009, 137, 609–622. [Google Scholar] [CrossRef] [Green Version]
- Vaughan, C.A.; Singh, S.; Windle, B.; Yeudall, W.A.; Frum, R.; Grossman, S.R.; Deb, S.P.; Deb, S. Gain-of-Function Activity of Mutant p53 in Lung Cancer through Up-Regulation of Receptor Protein Tyrosine Kinase Axl. Genes Cancer 2012, 3, 491–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boysen, J.; Sinha, S.; Price-Troska, T.; Warner, S.L.; Bearss, D.J.; Viswanatha, D.; Shanafelt, T.D.; Kay, N.E.; Ghosh, A.K. The tumor suppressor axis p53/miR-34a regulates Axl expression in B-cell chronic lymphocytic leukemia: Implications for therapy in p53-defective CLL patients. Leukemia 2014, 28, 451–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdel-Rahman, W.M.; Al-Khayyal, N.A.; Nair, V.A.; Aravind, S.R.; Saber-Ayad, M. Role of AXL in invasion and drug resistance of colon and breast cancer cells and its association with p53 alterations. World J. Gastroenterol. 2017, 23, 3440–3448. [Google Scholar] [CrossRef] [PubMed]
- Ou, W.B.; Lu, M.; Eilers, G.; Li, H.; Ding, J.; Meng, X.; Wu, Y.; He, Q.; Sheng, Q.; Zhou, H.M.; et al. Co-targeting of FAK and MDM2 triggers additive anti-proliferative effects in mesothelioma via a coordinated reactivation of p53. Br. J. Cancer 2016, 115, 1253–1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hopkins-Donaldson, S.; Belyanskaya, L.L.; Simoes-Wust, A.P.; Sigrist, B.; Kurtz, S.; Zangemeister-Wittke, U.; Stahel, R. p53-induced apoptosis occurs in the absence of p14(ARF) in malignant pleural mesothelioma. Neoplasia 2006, 8, 551–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tu, Y.; Zuo, R.; Ni, N.; Eilers, G.; Wu, D.; Pei, Y.; Nie, Z.; Wu, Y.; Wu, Y.; Ou, W.B. Activated tyrosine kinases in gastrointestinal stromal tumor with loss of KIT oncoprotein expression. Cell Cycle 2018, 17, 2577–2592. [Google Scholar] [CrossRef] [Green Version]
- Hmeljak, J.; Sanchez-Vega, F.; Hoadley, K.A.; Shih, J.; Stewart, C.; Heiman, D.; Tarpey, P.; Danilova, L.; Drill, E.; Gibb, E.A.; et al. Integrative Molecular Characterization of Malignant Pleural Mesothelioma. Cancer Discov. 2018, 8, 1548–1565. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Liu, L.; Li, H.; Eilers, G.; Kuang, Y.; Shi, S.; Yan, Z.; Li, X.; Corson, J.M.; Meng, F.; et al. Multipoint targeting of the PI3K/mTOR pathway in mesothelioma. Br. J. Cancer 2014, 110, 2479–2488. [Google Scholar] [CrossRef] [Green Version]
- Metcalf, R.A.; Welsh, J.A.; Bennett, W.P.; Seddon, M.B.; Lehman, T.A.; Pelin, K.; Linnainmaa, K.; Tammilehto, L.; Mattson, K.; Gerwin, B.I. p53 and Kirsten-ras mutations in human mesothelioma cell lines. Cancer Res. 1992, 52, 2610–2615. [Google Scholar]
- Yang, P.; Chen, W.; Li, X.; Eilers, G.; He, Q.; Liu, L.; Wu, Y.; Wu, Y.; Yu, W.; Fletcher, J.A.; et al. Downregulation of cyclin D1 sensitizes cancer cells to MDM2 antagonist Nutlin-3. Oncotarget 2016, 7, 32652–32663. [Google Scholar] [CrossRef]
- Ou, W.B.; Zhu, J.; Eilers, G.; Li, X.; Kuang, Y.; Liu, L.; Marino-Enriquez, A.; Yan, Z.; Li, H.; Meng, F.; et al. HDACi inhibits liposarcoma via targeting of the MDM2-p53 signaling axis and PTEN, irrespective of p53 mutational status. Oncotarget 2015, 6, 10510–10520. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.K.; Hung, M.C. Proteolytic cleavage, trafficking, and functions of nuclear receptor tyrosine kinases. FEBS J. 2015, 282, 3693–3721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo, H.W.; Hsu, S.C.; Ali-Seyed, M.; Gunduz, M.; Xia, W.; Wei, Y.; Bartholomeusz, G.; Shih, J.Y.; Hung, M.C. Nuclear interaction of EGFR and STAT3 in the activation of the iNOS/NO pathway. Cancer Cell 2005, 7, 575–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.C.; Lien, H.C.; Xia, W.; Chen, I.F.; Lo, H.W.; Wang, Z.; Ali-Seyed, M.; Lee, D.F.; Bartholomeusz, G.; Ou-Yang, F.; et al. Binding at and transactivation of the COX-2 promoter by nuclear tyrosine kinase receptor ErbB-2. Cancer Cell 2004, 6, 251–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunham-Ems, S.M.; Lee, Y.W.; Stachowiak, E.K.; Pudavar, H.; Claus, P.; Prasad, P.N.; Stachowiak, M.K. Fibroblast growth factor receptor-1 (FGFR1) nuclear dynamics reveal a novel mechanism in transcription control. Mol. Biol. Cell 2009, 20, 2401–2412. [Google Scholar] [CrossRef] [Green Version]
- Hsueh, Y.S.; Chang, H.H.; Shan, Y.S.; Sun, H.S.; Fletcher, J.A.; Li, C.F.; Chen, L.T. Nuclear KIT induces a NFKBIB-RELA-KIT autoregulatory loop in imatinib-resistant gastrointestinal stromal tumors. Oncogene 2019, 38, 6550–6565. [Google Scholar] [CrossRef]
- Lu, Y.; Wan, J.; Yang, Z.; Lei, X.; Niu, Q.; Jiang, L.; Passtoors, W.M.; Zang, A.; Fraering, P.C.; Wu, F. Regulated intramembrane proteolysis of the AXL receptor kinase generates an intracellular domain that localizes in the nucleus of cancer cells. FASEB J. 2017, 31, 1382–1397. [Google Scholar] [CrossRef] [Green Version]
- de Polo, A.; Luo, Z.; Gerarduzzi, C.; Chen, X.; Little, J.B.; Yuan, Z.M. AXL receptor signalling suppresses p53 in melanoma through stabilization of the MDMX-MDM2 complex. J. Mol. Cell. Biol. 2017, 9, 154–165. [Google Scholar] [CrossRef] [Green Version]
- Ou, W.B.; Ni, N.; Zuo, R.; Zhuang, W.; Zhu, M.; Kyriazoglou, A.; Wu, D.; Eilers, G.; Demetri, G.D.; Qiu, H.; et al. Cyclin D1 is a mediator of gastrointestinal stromal tumor KIT-independence. Oncogene 2019, 38, 6615–6629. [Google Scholar] [CrossRef]
- Hara, E.; Smith, R.; Parry, D.; Tahara, H.; Stone, S.; Peters, G. Regulation of p16CDKN2 expression and its implications for cell immortalization and senescence. Mol. Cell Biol. 1996, 16, 859–867. [Google Scholar] [CrossRef] [Green Version]
- Raman, V.; Martensen, S.; Reisman, D.; Evron, E.; Odenwald, W.F.; Jaffee, E.; Marks, J.; Sukumar, S. Compromised HOXA5 function can limit p53 expression in human breast tumours. Nature 2000, 405, 974–978. [Google Scholar] [CrossRef]
- Demetri, G.D.; Zenzie, B.W.; Rheinwald, J.G.; Griffin, J.D. Expression of colony-stimulating factor genes by normal human mesothelial cells and human malignant mesothelioma cells lines in vitro. Blood 1989, 74, 940–946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubin, B.P.; Singer, S.; Tsao, C.; Duensing, A.; Lux, M.L.; Ruiz, R.; Hibbard, M.K.; Chen, C.J.; Xiao, S.; Tuveson, D.A.; et al. KIT Activation Is a Ubiquitous Feature of Gastrointestinal Stromal Tumors. Cancer Res. 2001, 61, 8118–8121. [Google Scholar] [PubMed]
- Jiao, Y.; Ou, W.; Meng, F.; Zhou, H.; Wang, A. Targeting HSP90 in ovarian cancers with multiple receptor tyrosine kinase coactivation. Mol. Cancer 2011, 10, 125. [Google Scholar] [CrossRef] [Green Version]
- Malard, V.; Berenguer, F.; Prat, O.; Ruat, S.; Steinmetz, G.; Quemeneur, E. Global gene expression profiling in human lung cells exposed to cobalt. BMC Genomics 2007, 8, 147. [Google Scholar] [CrossRef] [PubMed]
- Thomazy, V.A.; Luthra, R.; Uthman, M.O.; Davies, P.J.; Medeiros, L.J. Determination of cyclin D1 and CD20 mRNA levels by real-time quantitative RT-PCR from archival tissue sections of mantle cell lymphoma and other non-Hodgkin’s lymphomas. J. Mol. Diagn. 2002, 4, 201–208. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, W.; Wang, H.; Lu, M.; Ni, X.; Bahri, N.; Zhu, S.; Chen, L.; Wu, Y.; Qiu, J.; Fletcher, J.A.; et al. AXL Inactivation Inhibits Mesothelioma Growth and Migration via Regulation of p53 Expression. Cancers 2020, 12, 2757. https://doi.org/10.3390/cancers12102757
Song W, Wang H, Lu M, Ni X, Bahri N, Zhu S, Chen L, Wu Y, Qiu J, Fletcher JA, et al. AXL Inactivation Inhibits Mesothelioma Growth and Migration via Regulation of p53 Expression. Cancers. 2020; 12(10):2757. https://doi.org/10.3390/cancers12102757
Chicago/Turabian StyleSong, Wei, Hao Wang, Minmin Lu, Xinxin Ni, Nacef Bahri, Shuihao Zhu, Limin Chen, Yuehong Wu, Jieqiong Qiu, Jonathan A. Fletcher, and et al. 2020. "AXL Inactivation Inhibits Mesothelioma Growth and Migration via Regulation of p53 Expression" Cancers 12, no. 10: 2757. https://doi.org/10.3390/cancers12102757
APA StyleSong, W., Wang, H., Lu, M., Ni, X., Bahri, N., Zhu, S., Chen, L., Wu, Y., Qiu, J., Fletcher, J. A., & Ou, W. -B. (2020). AXL Inactivation Inhibits Mesothelioma Growth and Migration via Regulation of p53 Expression. Cancers, 12(10), 2757. https://doi.org/10.3390/cancers12102757