Arsenic Trioxide and (−)-Gossypol Synergistically Target Glioma Stem-Like Cells via Inhibition of Hedgehog and Notch Signaling
<p>Synergistic inhibition of viability and induction of cell death of GS-5 and 17/02 GSCs via inhibition of Hh and Notch signaling. (<b>a</b>) Morphological appearance of GS-5 24 h after treatment with solvent (DMSO), 5 µM GANT, 5 µM ATO or 7.5 µM Gos alone or in combination. Note that after ATO (upper right) single treatment more single cells (black arrows) and disintegrating spheres (white arrows) can be detected which is further enhanced by ATO/Gos combination treatment and also after GANT/Gos; scale bar: 100 µm. (<b>b</b>,<b>c</b>, left side) Box-Plots (Tukey) of MTT assay of GS-5 after treatment for 24 h with increasing concentrations of (<b>b</b>) ATO or (<b>c</b>) GANT in combination with Gos. (<b>b</b>,<b>c</b>, right side) The CI was calculated from the data obtained according to Chou et al. [<a href="#B21-cancers-11-00350" class="html-bibr">21</a>] using the non-constant ratio setting (CI > 1: antagonism; CI = 1: additive; CI < 1: synergism). The CI value is given as a single value calculated from the summary of all experiments. (<b>d</b>) Representative Dot-Plots of GS-5 after treatment for 24 h with solvent (DMSO), 2.5 µM GANT, 2.5 µM ATO or 7.5 µM Gos alone or in combination. (<b>e</b>) Stacked bar chart of GS-5 after treatment for 24 h with the drugs and concentrations as indicated. (<b>f</b>) Box-Plots (Tukey) of the percentages of dead cells (100%—An-/PI-) after treatment. The lines in the Box-Plots represents the median, the plus-symbol the mean. (<b>g</b>,<b>h</b>) Bar graph of Taqman-based gene expression analysis of (<b>g</b>) GS-5 and (<b>h</b>) 17/02 after treatment with 5 µM Gos, 2.5 µM GANT or ATO or the combination of GANT or ATO with Gos (G + Gos; A + Gos). The MTT assays were performed at least three times in 6 biological replicates. All other experiments were performed at least three times in three biological replicates. Error bars are SEM. * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01; *** <span class="html-italic">p</span> < 0.001; **** <span class="html-italic">p</span> < 0.0001 against solvent or as indicated; ° <span class="html-italic">p</span> < 0.05; °° <span class="html-italic">p</span> < 0.01; °°° <span class="html-italic">p</span> < 0.001; °°°° <span class="html-italic">p</span> < 0.0001 against GANT or ATO single treatment; # <span class="html-italic">p</span> < 0.05 against both single treatments.</p> "> Figure 1 Cont.
<p>Synergistic inhibition of viability and induction of cell death of GS-5 and 17/02 GSCs via inhibition of Hh and Notch signaling. (<b>a</b>) Morphological appearance of GS-5 24 h after treatment with solvent (DMSO), 5 µM GANT, 5 µM ATO or 7.5 µM Gos alone or in combination. Note that after ATO (upper right) single treatment more single cells (black arrows) and disintegrating spheres (white arrows) can be detected which is further enhanced by ATO/Gos combination treatment and also after GANT/Gos; scale bar: 100 µm. (<b>b</b>,<b>c</b>, left side) Box-Plots (Tukey) of MTT assay of GS-5 after treatment for 24 h with increasing concentrations of (<b>b</b>) ATO or (<b>c</b>) GANT in combination with Gos. (<b>b</b>,<b>c</b>, right side) The CI was calculated from the data obtained according to Chou et al. [<a href="#B21-cancers-11-00350" class="html-bibr">21</a>] using the non-constant ratio setting (CI > 1: antagonism; CI = 1: additive; CI < 1: synergism). The CI value is given as a single value calculated from the summary of all experiments. (<b>d</b>) Representative Dot-Plots of GS-5 after treatment for 24 h with solvent (DMSO), 2.5 µM GANT, 2.5 µM ATO or 7.5 µM Gos alone or in combination. (<b>e</b>) Stacked bar chart of GS-5 after treatment for 24 h with the drugs and concentrations as indicated. (<b>f</b>) Box-Plots (Tukey) of the percentages of dead cells (100%—An-/PI-) after treatment. The lines in the Box-Plots represents the median, the plus-symbol the mean. (<b>g</b>,<b>h</b>) Bar graph of Taqman-based gene expression analysis of (<b>g</b>) GS-5 and (<b>h</b>) 17/02 after treatment with 5 µM Gos, 2.5 µM GANT or ATO or the combination of GANT or ATO with Gos (G + Gos; A + Gos). The MTT assays were performed at least three times in 6 biological replicates. All other experiments were performed at least three times in three biological replicates. Error bars are SEM. * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01; *** <span class="html-italic">p</span> < 0.001; **** <span class="html-italic">p</span> < 0.0001 against solvent or as indicated; ° <span class="html-italic">p</span> < 0.05; °° <span class="html-italic">p</span> < 0.01; °°° <span class="html-italic">p</span> < 0.001; °°°° <span class="html-italic">p</span> < 0.0001 against GANT or ATO single treatment; # <span class="html-italic">p</span> < 0.05 against both single treatments.</p> "> Figure 2
<p>GANT and ATO-treatment in combination with Gos causes global proteomic changes affecting differentiation, cell cycle and proliferation. (<b>a</b>,<b>c</b>,<b>e</b>) Volcano Plots showing the protein ratios (in log2) as a function of the –log p-values of label-free quantification proteomics data of GS-5 after treatment for 24 h with (<b>a</b>) 5 µM Gos alone or in combination with (<b>c</b>) 2.5 µM GANT or (<b>e</b>) 2.5 µM ATO. 5008 proteins were quantified, the amount of significantly changed proteins is written above the Plot. (<b>b</b>,<b>d</b>,<b>f</b>) Bar Chart after bioinformatic analysis using the STRING-platform (string-db.com, [<a href="#B26-cancers-11-00350" class="html-bibr">26</a>]) and Revigo (revigo.irb.hr, [<a href="#B27-cancers-11-00350" class="html-bibr">27</a>]) for enriched Gene Ontology biological processes (GO:BP) and manual clustering (marked with an *) after treatment with (<b>b</b>) Gos alone, (<b>d</b>) GANT + Gos or (<b>f</b>) ATO + Gos. (<b>g</b>) Venn diagram depicting the overlap between the significantly (left side) decreased and (right side) increased proteins. Note that the x-axis in (<b>b</b>,<b>d</b>,<b>f</b>) depicts the number of proteins that are significantly decreased (negative values) and increased (positive values).</p> "> Figure 2 Cont.
<p>GANT and ATO-treatment in combination with Gos causes global proteomic changes affecting differentiation, cell cycle and proliferation. (<b>a</b>,<b>c</b>,<b>e</b>) Volcano Plots showing the protein ratios (in log2) as a function of the –log p-values of label-free quantification proteomics data of GS-5 after treatment for 24 h with (<b>a</b>) 5 µM Gos alone or in combination with (<b>c</b>) 2.5 µM GANT or (<b>e</b>) 2.5 µM ATO. 5008 proteins were quantified, the amount of significantly changed proteins is written above the Plot. (<b>b</b>,<b>d</b>,<b>f</b>) Bar Chart after bioinformatic analysis using the STRING-platform (string-db.com, [<a href="#B26-cancers-11-00350" class="html-bibr">26</a>]) and Revigo (revigo.irb.hr, [<a href="#B27-cancers-11-00350" class="html-bibr">27</a>]) for enriched Gene Ontology biological processes (GO:BP) and manual clustering (marked with an *) after treatment with (<b>b</b>) Gos alone, (<b>d</b>) GANT + Gos or (<b>f</b>) ATO + Gos. (<b>g</b>) Venn diagram depicting the overlap between the significantly (left side) decreased and (right side) increased proteins. Note that the x-axis in (<b>b</b>,<b>d</b>,<b>f</b>) depicts the number of proteins that are significantly decreased (negative values) and increased (positive values).</p> "> Figure 3
<p>ATO, but not GANT in combination with Gos reduces GSC marker and Hh and Notch pathway activity. (<b>a</b>,<b>b</b>) Western Blot analysis of (<b>a</b>) GS-5 and (<b>b</b>) 17/02 after treatment for 24 h with solvent (DMSO), 7.5 µM Gos, 5 µM GANT, 5 µM ATO or a combination of Gos with GANT (GANT + Gos) or ATO (ATO + Gos). (<b>c</b>,<b>d</b>) Bar graph of Taqman-based gene expression analysis of GS-5 cells after treatment with 5 µM Gos, 2.5 µM GANT or ATO or the combination of GANT or ATO with Gos (G+Gos; A+Gos). (<b>e</b>) Representative images of immunofluorescent microscopy of GS-5 72h after treatment as in (<b>c</b>) of the stemness markers SOX2 (green) and SOX9 (red) (upper row) and OLIG2 (green; lower row); scale bar: 20 µm. (<b>f</b>) Summarized quantification of three independent experiments; at least 100 cells per condition and experiment were counted. All experiments were performed at least 3 times; gene expression data was further performed in 3 biological replicates. * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01; *** <span class="html-italic">p</span> < 0.001; **** <span class="html-italic">p</span> < 0.0001. # <span class="html-italic">p</span> < 0.05; ## <span class="html-italic">p</span> < 0.01; ### <span class="html-italic">p</span> < 0.001; #### <span class="html-italic">p</span> < 0.0001. against both single treatments One-way ANOVA followed by Tukey Post-Hoc-Test (GraphPad Prism 7).</p> "> Figure 3 Cont.
<p>ATO, but not GANT in combination with Gos reduces GSC marker and Hh and Notch pathway activity. (<b>a</b>,<b>b</b>) Western Blot analysis of (<b>a</b>) GS-5 and (<b>b</b>) 17/02 after treatment for 24 h with solvent (DMSO), 7.5 µM Gos, 5 µM GANT, 5 µM ATO or a combination of Gos with GANT (GANT + Gos) or ATO (ATO + Gos). (<b>c</b>,<b>d</b>) Bar graph of Taqman-based gene expression analysis of GS-5 cells after treatment with 5 µM Gos, 2.5 µM GANT or ATO or the combination of GANT or ATO with Gos (G+Gos; A+Gos). (<b>e</b>) Representative images of immunofluorescent microscopy of GS-5 72h after treatment as in (<b>c</b>) of the stemness markers SOX2 (green) and SOX9 (red) (upper row) and OLIG2 (green; lower row); scale bar: 20 µm. (<b>f</b>) Summarized quantification of three independent experiments; at least 100 cells per condition and experiment were counted. All experiments were performed at least 3 times; gene expression data was further performed in 3 biological replicates. * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01; *** <span class="html-italic">p</span> < 0.001; **** <span class="html-italic">p</span> < 0.0001. # <span class="html-italic">p</span> < 0.05; ## <span class="html-italic">p</span> < 0.01; ### <span class="html-italic">p</span> < 0.001; #### <span class="html-italic">p</span> < 0.0001. against both single treatments One-way ANOVA followed by Tukey Post-Hoc-Test (GraphPad Prism 7).</p> "> Figure 4
<p>GANT or ATO in combination with Gos synergistically induces DNA damage in GSC via downregulation of CHK1, CHK2 and Survivin. (<b>a</b>) Taqman-based gene expression analysis of GS-5 after treatment with 5 µM Gos, 2.5 µM GANT or ATO or the combination of GANT or ATO with Gos (G + Gos; A + Gos). (<b>b</b>) Western Blot analysis of GS-5 after treatment for 24 h with solvent (DMSO), 7.5 µM Gos, 5 µM GANT, 5 µM ATO or a combination of Gos with GANT (GANT + Gos) or ATO (ATO + Gos). (<b>c</b>,<b>d</b>) Dot-Plots of (<b>c</b>) TP53BP1 (green)- or (<b>d</b>) γH2AFX (red)-positive foci per nucleus of GS-5 24 h after treatment with 5 µM Gos, 3 µM GANT, 2.5 µM ATO or a combination of GANT and Gos (GANT + Gos) or ATO and Gos (ATO + Gos). Each point represents the number of foci per nucleus. Representative pictures are presented in (<b>e</b>); scale bar: 20 µm. The experiments were performed at least 3 times in triplicates. For each replicate at least 20 nuclei were counted. Statistics in (<b>c</b>,<b>d</b>) were performed using the mean value of each replicate. * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01; *** <span class="html-italic">p</span> < 0.001; **** <span class="html-italic">p</span> < 0.0001 against solvent; # <span class="html-italic">p</span> < 0.05 against both single treatments. One-way ANOVA followed by Tukey Post-Hoc-Test (GraphPad Prism 7).</p> "> Figure 4 Cont.
<p>GANT or ATO in combination with Gos synergistically induces DNA damage in GSC via downregulation of CHK1, CHK2 and Survivin. (<b>a</b>) Taqman-based gene expression analysis of GS-5 after treatment with 5 µM Gos, 2.5 µM GANT or ATO or the combination of GANT or ATO with Gos (G + Gos; A + Gos). (<b>b</b>) Western Blot analysis of GS-5 after treatment for 24 h with solvent (DMSO), 7.5 µM Gos, 5 µM GANT, 5 µM ATO or a combination of Gos with GANT (GANT + Gos) or ATO (ATO + Gos). (<b>c</b>,<b>d</b>) Dot-Plots of (<b>c</b>) TP53BP1 (green)- or (<b>d</b>) γH2AFX (red)-positive foci per nucleus of GS-5 24 h after treatment with 5 µM Gos, 3 µM GANT, 2.5 µM ATO or a combination of GANT and Gos (GANT + Gos) or ATO and Gos (ATO + Gos). Each point represents the number of foci per nucleus. Representative pictures are presented in (<b>e</b>); scale bar: 20 µm. The experiments were performed at least 3 times in triplicates. For each replicate at least 20 nuclei were counted. Statistics in (<b>c</b>,<b>d</b>) were performed using the mean value of each replicate. * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01; *** <span class="html-italic">p</span> < 0.001; **** <span class="html-italic">p</span> < 0.0001 against solvent; # <span class="html-italic">p</span> < 0.05 against both single treatments. One-way ANOVA followed by Tukey Post-Hoc-Test (GraphPad Prism 7).</p> "> Figure 5
<p>ATO and Gos treatment reduces stemness properties of GS-5/GS-5 GFP-Luc and 17/02 in vitro. (<b>a</b>,<b>b</b>) Extreme limiting dilution analysis [<a href="#B34-cancers-11-00350" class="html-bibr">34</a>] of (<b>a</b>) GS-5 GFP-Luc and (<b>b</b>) 17/02 7 days after seeding and treatment with 1 µM ATO, 2.5 µM GANT61 or 0.5 µM Gos alone or in combinaton of increasing cell numbers (4 to 500 cells for GS-5 and 8 to 1024 for 17/02). The stem cell frequency calculated by ELDA software [<a href="#B34-cancers-11-00350" class="html-bibr">34</a>] is depicted next to the graph. (<b>c</b>) Scheme of the extended SFA. (<b>d</b>–<b>f</b>) Dot-Plots displaying the (upper row) sphere volume and (lower row) total number of spheres of GS-5 spheres after measurement of primary sphere formation, sphere recovery and secondary sphere formation. Lines in (<b>d</b>–<b>f</b>) are the median ± 95% confidence intervals. Limiting dilution assays were performed three times in 12 biological replicates. Sphere formation assays were performed twice in triplicates and three vision fields were analyzed for each biological replicate. * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01; *** <span class="html-italic">p</span> < 0.001; **** <span class="html-italic">p</span> < 0.0001. One-way ANOVA followed by Tukey Post-Hoc-Test (GraphPad Prism 7).</p> "> Figure 6
<p>ATO, ATO/Gos and GANT/Gos decrease tumor size in adult OTC transplantation experiments. (<b>a</b>) Representative images of tumors of GS-5 GFP-Luc grown on adult OTCs after treatment with solvent (DMSO) or ATO/Gos. Within 6 days some tumors treated with ATO/Gos show complete elimination (white arrows), while others decrease in size; scale bar: 500 µm. (<b>b</b>) Growth kinetic of tumors over time after treatment with solvent (DMSO, white), 2.5 µM GANT (pink), 2.5 µM ATO (light blue), 5 µM Gos (black), GANT/Gos (red) or ATO/Gos (blue). (<b>c</b>) Bar graph for selected time point displaying the mean (+ SEM) tumor size. * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01; *** <span class="html-italic">p</span> < 0.001; **** <span class="html-italic">p</span> < 0.0001 compared to DMSO for each time-point. One-way ANOVA followed by Tukey Post-Hoc-Test (GraphPad Prism 7).</p> ">
Abstract
:1. Introduction
2. Results
2.1. Hh/Notch Inhibition in Combination with Gos Synergistically Induces Cell Death of GSCs
2.2. Proteomic Analysis Reveals Global Changes Related to Impaired Cell Movement, DNA Repair and Stemness Properties after ATO/Gos Treatment
2.3. ATO and Gos Treatment Reduces Expression of Stemness Markers
2.4. ATO and Gos Treatment Induces DNA Damage Via Downregulation of DDR Genes
2.5. Effects of ATO and Gos on Sphere Forming Capacity and Stem-Cell Frequency of GSCs
2.6. ATO and ATO/Gos Treatment Inhibits Tumor Growth in Adult Organotypic Slice Cultures
3. Discussion
4. Materials and Methods
4.1. Cells and Cell Culture
4.2. Compounds
4.3. SDS-PAGE and Western Blot
4.4. Immunofluorescence Microscopy
4.5. Antibodies
4.6. Cell-Based Assays
4.7. Proteomics
4.8. Taqman-Based qRT-PCR
4.9. Adult Organotypic Slice Cultures and Ex Vivo Tumor Growth assay
4.10. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary. Acta Neuropathol. 2016, 131, 803–820. [Google Scholar] [CrossRef] [PubMed]
- Becker, K.P.; Yu, J. Status quo-standard-of-care medical and radiation therapy for glioblastoma. Cancer J. 2012, 18, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Stupp, R.; Hegi, M.E.; Gilbert, M.R.; Chakravarti, A. Chemoradiotherapy in malignant glioma: Standard of care and future directions. J. Clin. Oncol. 2007, 25, 4127–4136. [Google Scholar] [CrossRef]
- Signore, M.; Ricci-Vitiani, L.; De Maria, R. Targeting apoptosis pathways in cancer stem cells. Cancer Lett. 2013, 332, 374–382. [Google Scholar] [CrossRef]
- Bradshaw, A.; Wickremsekera, A.; Tan, S.T.; Peng, L.; Davis, P.F.; Itinteang, T. Cancer Stem Cell Hierarchy in Glioblastoma Multiforme. Front. Surg. 2016, 3, 21. [Google Scholar] [CrossRef] [PubMed]
- Tirosh, I.; Venteicher, A.S.; Hebert, C.; Escalante, L.E.; Patel, A.P.; Yizhak, K.; Fisher, J.M.; Rodman, C.; Mount, C.; Filbin, M.G.; et al. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature 2016, 539, 309–313. [Google Scholar] [CrossRef] [Green Version]
- Bao, S.; Wu, Q.; McLendon, R.E.; Hao, Y.; Shi, Q.; Hjelmeland, A.B.; Dewhirst, M.W.; Bigner, D.D.; Rich, J.N. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006, 444, 756–760. [Google Scholar] [CrossRef] [PubMed]
- Ferent, J.; Traiffort, E. Hedgehog: Multiple Paths for Multiple Roles in Shaping the Brain and Spinal Cord. Neuroscientist 2015, 21, 356–371. [Google Scholar] [CrossRef]
- Clement, V.; Sanchez, P.; de Tribolet, N.; Radovanovic, I.; Ruiz i Altaba, A. HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr. Biol. 2007, 17, 165–172. [Google Scholar] [CrossRef]
- Briscoe, J.; Therond, P.P. The mechanisms of Hedgehog signalling and its roles in development and disease. Nat. Rev. Mol. Cell Biol. 2013, 14, 416–429. [Google Scholar] [CrossRef]
- Bray, S.J.; Gomez-Lamarca, M. Notch after cleavage. Curr. Opin. Cell Biol. 2017, 51, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Zhen, Y.; Zhao, S.; Li, Q.; Li, Y.; Kawamoto, K. Arsenic trioxide-mediated Notch pathway inhibition depletes the cancer stem-like cell population in gliomas. Cancer Lett. 2010, 292, 64–72. [Google Scholar] [CrossRef]
- Stockhausen, M.T.; Kristoffersen, K.; Poulsen, H.S. The functional role of Notch signaling in human gliomas. Neuro Oncol. 2010, 12, 199–211. [Google Scholar] [CrossRef] [PubMed]
- Beauchamp, E.M.; Ringer, L.; Bulut, G.; Sajwan, K.P.; Hall, M.D.; Lee, Y.C.; Peaceman, D.; Ozdemirli, M.; Rodriguez, O.; Macdonald, T.J.; et al. Arsenic trioxide inhibits human cancer cell growth and tumor development in mice by blocking Hedgehog/GLI pathway. J. Clin. Investig. 2011, 121, 148–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, D.; Lim, K.S.; Eberhart, C.G. Arsenic trioxide inhibits Hedgehog, Notch and stem cell properties in glioblastoma neurospheres. Acta Neuropathol. Commun. 2014, 2, 31. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Aftab, B.T.; Tang, J.Y.; Kim, D.; Lee, A.H.; Rezaee, M.; Chen, B.; King, E.M.; Borodovsky, A.; Riggins, G.J.; et al. Itraconazole and arsenic trioxide inhibit Hedgehog pathway activation and tumor growth associated with acquired resistance to smoothened antagonists. Cancer Cell 2013, 23, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Voss, V.; Senft, C.; Lang, V.; Ronellenfitsch, M.W.; Steinbach, J.P.; Seifert, V.; Kogel, D. The pan-Bcl-2 inhibitor (−)-gossypol triggers autophagic cell death in malignant glioma. Mol. Cancer Res. 2010, 8, 1002–1016. [Google Scholar] [CrossRef] [PubMed]
- Lan, L.; Appelman, C.; Smith, A.R.; Yu, J.; Larsen, S.; Marquez, R.T.; Liu, H.; Wu, X.; Gao, P.; Roy, A.; et al. Natural product (−)-gossypol inhibits colon cancer cell growth by targeting RNA-binding protein Musashi-1. Mol. Oncol. 2015, 9, 1406–1420. [Google Scholar] [CrossRef]
- Volate, S.R.; Kawasaki, B.T.; Hurt, E.M.; Milner, J.A.; Kim, Y.S.; White, J.; Farrar, W.L. Gossypol induces apoptosis by activating p53 in prostate cancer cells and prostate tumor-initiating cells. Mol. Cancer Ther. 2010, 9, 461–470. [Google Scholar] [CrossRef]
- Lauth, M.; Bergstrom, A.; Shimokawa, T.; Toftgard, R. Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists. Proc. Natl. Acad. Sci. USA 2007, 104, 8455–8460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chou, T.C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 2006, 58, 621–681. [Google Scholar] [CrossRef]
- Chen, J.K.; Taipale, J.; Young, K.E.; Maiti, T.; Beachy, P.A. Small molecule modulation of Smoothened activity. Proc. Natl. Acad. Sci. USA 2002, 99, 14071–14076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Podergajs, N.; Motaln, H.; Rajcevic, U.; Verbovsek, U.; Korsic, M.; Obad, N.; Espedal, H.; Vittori, M.; Herold-Mende, C.; Miletic, H.; et al. Transmembrane protein CD9 is glioblastoma biomarker, relevant for maintenance of glioblastoma stem cells. Oncotarget 2016, 7, 593–609. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yuan, B.; Zheng, Z.; Liu, Z.; Wang, S.; Liu, Y. A novel vaccine containing EphA2 epitope and LIGHT plasmid induces robust cellular immunity against glioma U251 cells. Cell. Immunol. 2011, 272, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Nagaishi, M.; Kim, Y.H.; Mittelbronn, M.; Giangaspero, F.; Paulus, W.; Brokinkel, B.; Vital, A.; Tanaka, Y.; Nakazato, Y.; Legras-Lachuer, C.; et al. Amplification of the STOML3, FREM2, and LHFP genes is associated with mesenchymal differentiation in gliosarcoma. Am. J. Pathol. 2012, 180, 1816–1823. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Morris, J.H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.T.; Roth, A.; Bork, P.; et al. The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 2017, 45, D362–D368. [Google Scholar] [CrossRef] [PubMed]
- Supek, F.; Bosnjak, M.; Skunca, N.; Smuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 2011, 6, e21800. [Google Scholar] [CrossRef] [PubMed]
- Vlckova, K.; Ondrusova, L.; Vachtenheim, J.; Reda, J.; Dundr, P.; Zadinova, M.; Zakova, P.; Pouckova, P. Survivin, a novel target of the Hedgehog/GLI signaling pathway in human tumor cells. Cell Death Dis. 2016, 7, e2048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Li, D.; Liu, H.; Xu, H.; Zheng, H.; Qian, F.; Li, W.; Zhao, C.; Wang, Z.; Wang, X. Notch-1 signaling facilitates survivin expression in human non-small cell lung cancer cells. Cancer Biol. Ther. 2011, 11, 14–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capalbo, G.; Dittmann, K.; Weiss, C.; Reichert, S.; Hausmann, E.; Rodel, C.; Rodel, F. Radiation-induced survivin nuclear accumulation is linked to DNA damage repair. Int. J. Radiat. Oncol. Biol. Phys. 2010, 77, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Chakravarti, A.; Zhai, G.G.; Zhang, M.; Malhotra, R.; Latham, D.E.; Delaney, M.A.; Robe, P.; Nestler, U.; Song, Q.; Loeffler, J. Survivin enhances radiation resistance in primary human glioblastoma cells via caspase-independent mechanisms. Oncogene 2004, 23, 7494–7506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ludwig, K.; Kornblum, H.I. Molecular markers in glioma. J. Neurooncol. 2017, 134, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, C.A.; Daou, M.C.; Moser, R.P.; Ross, A.H. Gamma-secretase inhibitors enhance temozolomide treatment of human gliomas by inhibiting neurosphere repopulation and xenograft recurrence. Cancer Res. 2010, 70, 6870–6879. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Smyth, G.K. ELDA: Extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J. Immunol. Methods 2009, 347, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Lan, X.; Jorg, D.J.; Cavalli, F.M.G.; Richards, L.M.; Nguyen, L.V.; Vanner, R.J.; Guilhamon, P.; Lee, L.; Kushida, M.M.; Pellacani, D.; et al. Fate mapping of human glioblastoma reveals an invariant stem cell hierarchy. Nature 2017, 549, 227–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; McKay, R.M.; Parada, L.F. Malignant glioma: Lessons from genomics, mouse models, and stem cells. Cell 2012, 149, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Uchida, H.; Arita, K.; Yunoue, S.; Yonezawa, H.; Shinsato, Y.; Kawano, H.; Hirano, H.; Hanaya, R.; Tokimura, H. Role of sonic hedgehog signaling in migration of cell lines established from CD133-positive malignant glioma cells. J. Neurooncol. 2011, 104, 697–704. [Google Scholar] [CrossRef]
- Takezaki, T.; Hide, T.; Takanaga, H.; Nakamura, H.; Kuratsu, J.; Kondo, T. Essential role of the Hedgehog signaling pathway in human glioma-initiating cells. Cancer Sci. 2011, 102, 1306–1312. [Google Scholar] [CrossRef] [Green Version]
- Santoni, M.; Burattini, L.; Nabissi, M.; Morelli, M.B.; Berardi, R.; Santoni, G.; Cascinu, S. Essential role of Gli proteins in glioblastoma multiforme. Curr. Protein Pept. Sci. 2013, 14, 133–140. [Google Scholar] [CrossRef]
- Li, J.; Cai, J.; Zhao, S.; Yao, K.; Sun, Y.; Li, Y.; Chen, L.; Li, R.; Zhai, X.; Zhang, J.; et al. GANT61, a GLI inhibitor, sensitizes glioma cells to the temozolomide treatment. J. Exp. Clin. Cancer Res. 2016, 35, 184. [Google Scholar] [CrossRef]
- Calcaterra, A.; Iovine, V.; Botta, B.; Quaglio, D.; D’Acquarica, I.; Ciogli, A.; Iazzetti, A.; Alfonsi, R.; Lospinoso Severini, L.; Infante, P.; et al. Chemical, computational and functional insights into the chemical stability of the Hedgehog pathway inhibitor GANT61. J. Enzyme Inhib. Med. Chem. 2018, 33, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Nakada, M.; Hayashi, Y.; Hamada, J. Role of Eph/ephrin tyrosine kinase in malignant glioma. Neuro Oncol. 2011, 13, 1163–1170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, C.H.; Shen, S.C.; Yang, L.Y.; Lin, C.W.; Chen, Y.C. Gossypol reduction of tumor growth through ROS-dependent mitochondria pathway in human colorectal carcinoma cells. Int. J. Cancer 2007, 121, 1670–1679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woo, S.H.; Park, I.C.; Park, M.J.; Lee, H.C.; Lee, S.J.; Chun, Y.J.; Lee, S.H.; Hong, S.I.; Rhee, C.H. Arsenic trioxide induces apoptosis through a reactive oxygen species-dependent pathway and loss of mitochondrial membrane potential in HeLa cells. Int. J. Oncol. 2002, 21, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.B.; Prele, C.M.; Baltic, S.; Arthur, P.G.; Creaney, J.; Watkins, D.N.; Thompson, P.J.; Mutsaers, S.E. Mitochondria-derived reactive oxygen species drive GANT61-induced mesothelioma cell apoptosis. Oncotarget 2015, 6, 1519–1530. [Google Scholar] [CrossRef] [PubMed]
- Palle, K.; Mani, C.; Tripathi, K.; Athar, M. Aberrant GLI1 Activation in DNA Damage Response, Carcinogenesis and Chemoresistance. Cancers 2015, 7, 2330–2351. [Google Scholar] [CrossRef] [Green Version]
- Vermezovic, J.; Adamowicz, M.; Santarpia, L.; Rustighi, A.; Forcato, M.; Lucano, C.; Massimiliano, L.; Costanzo, V.; Bicciato, S.; Del Sal, G.; et al. Notch is a direct negative regulator of the DNA-damage response. Nat. Struct. Mol. Biol. 2015, 22, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Chiang, M.F.; Chen, H.H.; Chi, C.W.; Sze, C.I.; Hsu, M.L.; Shieh, H.R.; Lin, C.P.; Tsai, J.T.; Chen, Y.J. Modulation of Sonic hedgehog signaling and WW domain containing oxidoreductase WOX1 expression enhances radiosensitivity of human glioblastoma cells. Exp. Biol. Med. 2015, 240, 392–399. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Duan, W.; Li, Y.; Zhang, S.; Xin, X.; Sun, L.; Gao, M.; Li, Q.; Wang, D. AT101 exerts a synergetic efficacy in gastric cancer patients with 5-FU based treatment through promoting apoptosis and autophagy. Oncotarget 2016, 7, 34430–34441. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Wang, C.; Wang, L.; Dai, Z.; Yang, K. Arsenic trioxide induces apoptosis and the formation of reactive oxygen species in rat glioma cells. Cell. Mol. Biol. Lett. 2018, 23, 13. [Google Scholar] [CrossRef] [Green Version]
- Cadet, J.; Wagner, J.R. DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation. Cold Spring Harb. Perspect. Biol. 2013, 5, a012559. [Google Scholar] [CrossRef] [PubMed]
- Schipper, H.M. Heme oxygenase-1: Role in brain aging and neurodegeneration. Exp. Gerontol. 2000, 35, 821–830. [Google Scholar] [CrossRef]
- Meyer, N.; Zielke, S.; Michaelis, J.B.; Linder, B.; Warnsmann, V.; Rakel, S.; Osiewacz, H.D.; Fulda, S.; Mittelbronn, M.; Munch, C.; et al. AT 101 induces early mitochondrial dysfunction and HMOX1 (heme oxygenase 1) to trigger mitophagic cell death in glioma cells. Autophagy 2018, 14, 1693–1709. [Google Scholar] [CrossRef]
- Kanzawa, T.; Zhang, L.; Xiao, L.; Germano, I.M.; Kondo, Y.; Kondo, S. Arsenic trioxide induces autophagic cell death in malignant glioma cells by upregulation of mitochondrial cell death protein BNIP3. Oncogene 2005, 24, 980–991. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.W.; Yan, X.J.; Zhou, Z.R.; Yang, F.F.; Wu, Z.Y.; Sun, H.B.; Liang, W.X.; Song, A.X.; Lallemand-Breitenbach, V.; Jeanne, M.; et al. Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML. Science 2010, 328, 240–243. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, R.K.; Li, C.; Chaudhary, S.C.; Ballestas, M.E.; Elmets, C.A.; Robbins, D.J.; Matalon, S.; Deshane, J.S.; Afaq, F.; Bickers, D.R.; et al. Unfolded protein response (UPR) signaling regulates arsenic trioxide-mediated macrophage innate immune function disruption. Toxicol. Appl. Pharmacol. 2013, 272, 879–887. [Google Scholar] [CrossRef]
- Weng, C.Y.; Chiou, S.Y.; Wang, L.; Kou, M.C.; Wang, Y.J.; Wu, M.J. Arsenic trioxide induces unfolded protein response in vascular endothelial cells. Arch. Toxicol. 2014, 88, 213–226. [Google Scholar] [CrossRef]
- Shen, S.; Li, X.F.; Cullen, W.R.; Weinfeld, M.; Le, X.C. Arsenic binding to proteins. Chem. Rev. 2013, 113, 7769–7792. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.H.; Yang, L.; Dessaud, E.; Chuang, K.; Moore, D.M.; Rohatgi, R.; Briscoe, J.; Novitch, B.G. Notch activity modulates the responsiveness of neural progenitors to sonic hedgehog signaling. Dev. Cell 2015, 33, 373–387. [Google Scholar] [CrossRef] [PubMed]
- Ulasov, I.V.; Nandi, S.; Dey, M.; Sonabend, A.M.; Lesniak, M.S. Inhibition of Sonic Hedgehog and Notch Pathways Enhances Sensitivity of CD133(+) Glioma Stem Cells to Temozolomide Therapy. Mol. Med. 2011, 17, 103–112. [Google Scholar] [CrossRef]
- Domingo-Domenech, J.; Vidal, S.J.; Rodriguez-Bravo, V.; Castillo-Martin, M.; Quinn, S.A.; Rodriguez-Barrueco, R.; Bonal, D.M.; Charytonowicz, E.; Gladoun, N.; de la Iglesia-Vicente, J.; et al. Suppression of acquired docetaxel resistance in prostate cancer through depletion of notch- and hedgehog-dependent tumor-initiating cells. Cancer Cell 2012, 22, 373–388. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Cheng, L.; Shi, Y.; Ke, S.Q.; Huang, Z.; Fang, X.; Chu, C.W.; Xie, Q.; Bian, X.W.; Rich, J.N.; et al. Arsenic trioxide disrupts glioma stem cells via promoting PML degradation to inhibit tumor growth. Oncotarget 2015, 6, 37300–37315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiguchi, T.; Yoshino, Y.; Yuan, B.; Yoshizawa, S.; Kitahara, T.; Akahane, D.; Gotoh, M.; Kaise, T.; Toyoda, H.; Ohyashiki, K. Speciation of arsenic trioxide penetrates into cerebrospinal fluid in patients with acute promyelocytic leukemia. Leuk. Res. 2010, 34, 403–405. [Google Scholar] [CrossRef] [PubMed]
- Bushunow, P.; Reidenberg, M.M.; Wasenko, J.; Winfield, J.; Lorenzo, B.; Lemke, S.; Himpler, B.; Corona, R.; Coyle, T. Gossypol treatment of recurrent adult malignant gliomas. J. Neurooncol. 1999, 43, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Kalla, N.R.; Sud, S. Distribution of gossypol. Acta Eur. Fertil. 1990, 21, 77–80. [Google Scholar] [PubMed]
- Gunther, H.S.; Schmidt, N.O.; Phillips, H.S.; Kemming, D.; Kharbanda, S.; Soriano, R.; Modrusan, Z.; Meissner, H.; Westphal, M.; Lamszus, K. Glioblastoma-derived stem cell-enriched cultures form distinct subgroups according to molecular and phenotypic criteria. Oncogene 2008, 27, 2897–2909. [Google Scholar] [CrossRef] [PubMed]
- Wagner, J.; Pfannenstiel, V.; Waldmann, A.; Bergs, J.W.J.; Brill, B.; Huenecke, S.; Klingebiel, T.; Rodel, F.; Buchholz, C.J.; Wels, W.S.; et al. A Two-Phase Expansion Protocol Combining Interleukin (IL)-15 and IL-21 Improves Natural Killer Cell Proliferation and Cytotoxicity against Rhabdomyosarcoma. Front. Immunol. 2017, 8, 676. [Google Scholar] [CrossRef] [PubMed]
- Lemke, D.; Weiler, M.; Blaes, J.; Wiestler, B.; Jestaedt, L.; Klein, A.C.; Low, S.; Eisele, G.; Radlwimmer, B.; Capper, D.; et al. Primary glioblastoma cultures: Can profiling of stem cell markers predict radiotherapy sensitivity? J. Neurochem. 2014, 131, 251–264. [Google Scholar] [CrossRef] [PubMed]
- Antonietti, P.; Linder, B.; Hehlgans, S.; Mildenberger, I.C.; Burger, M.C.; Fulda, S.; Steinbach, J.P.; Gessler, F.; Rodel, F.; Mittelbronn, M.; et al. Interference with the HSF1/HSP70/BAG3 Pathway Primes Glioma Cells to Matrix Detachment and BH3 Mimetic-Induced Apoptosis. Mol. Cancer Ther. 2017, 16, 156–168. [Google Scholar] [CrossRef] [PubMed]
- Gessler, F.; Voss, V.; Dutzmann, S.; Seifert, V.; Gerlach, R.; Kogel, D. Inhibition of tissue factor/protease-activated receptor-2 signaling limits proliferation, migration and invasion of malignant glioma cells. Neuroscience 2010, 165, 1312–1322. [Google Scholar] [CrossRef]
- Linder, B.; Weber, S.; Dittmann, K.; Adamski, J.; Hahn, H.; Uhmann, A. A Functional and Putative Physiological Role of Calcitriol in Patched1/Smoothened Interaction. J. Biol. Chem. 2015, 290, 19614–19628. [Google Scholar] [CrossRef]
- Rahman, M.; Reyner, K.; Deleyrolle, L.; Millette, S.; Azari, H.; Day, B.W.; Stringer, B.W.; Boyd, A.W.; Johns, T.G.; Blot, V.; et al. Neurosphere and adherent culture conditions are equivalent for malignant glioma stem cell lines. Anat. Cell Biol. 2015, 48, 25–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hehlgans, S.; Storch, K.; Lange, I.; Cordes, N. The novel HDAC inhibitor NDACI054 sensitizes human cancer cells to radiotherapy. Radiother. Oncol. 2013, 109, 126–132. [Google Scholar] [CrossRef]
- Das, C.K.; Linder, B.; Bonn, F.; Rothweiler, F.; Dikic, I.; Michaelis, M.; Cinatl, J.; Mandal, M.; Kogel, D. BAG3 Overexpression and Cytoprotective Autophagy Mediate Apoptosis Resistance in Chemoresistant Breast Cancer Cells. Neoplasia 2018, 20, 263–279. [Google Scholar] [CrossRef] [PubMed]
- Cox, J.; Hein, M.Y.; Luber, C.A.; Paron, I.; Nagaraj, N.; Mann, M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteom. 2014, 13, 2513–2526. [Google Scholar] [CrossRef] [PubMed]
- Vizcaino, J.A.; Csordas, A.; Del-Toro, N.; Dianes, J.A.; Griss, J.; Lavidas, I.; Mayer, G.; Perez-Riverol, Y.; Reisinger, F.; Ternent, T.; et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 2016, 44, 11033. [Google Scholar] [CrossRef] [PubMed]
- Remy, J.; Linder, B.; Weirauch, U.; Konovalova, J.; Marschalek, R.; Aigner, A.; Kogel, D. Inhibition of PIM1 blocks the autophagic flux to sensitize glioblastoma cells to ABT-737-induced apoptosis. Biochim. Biophys. Acta Mol. Cell Res. 2018. [Google Scholar] [CrossRef] [PubMed]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Linder, B.; Wehle, A.; Hehlgans, S.; Bonn, F.; Dikic, I.; Rödel, F.; Seifert, V.; Kögel, D. Arsenic Trioxide and (−)-Gossypol Synergistically Target Glioma Stem-Like Cells via Inhibition of Hedgehog and Notch Signaling. Cancers 2019, 11, 350. https://doi.org/10.3390/cancers11030350
Linder B, Wehle A, Hehlgans S, Bonn F, Dikic I, Rödel F, Seifert V, Kögel D. Arsenic Trioxide and (−)-Gossypol Synergistically Target Glioma Stem-Like Cells via Inhibition of Hedgehog and Notch Signaling. Cancers. 2019; 11(3):350. https://doi.org/10.3390/cancers11030350
Chicago/Turabian StyleLinder, Benedikt, Andrej Wehle, Stephanie Hehlgans, Florian Bonn, Ivan Dikic, Franz Rödel, Volker Seifert, and Donat Kögel. 2019. "Arsenic Trioxide and (−)-Gossypol Synergistically Target Glioma Stem-Like Cells via Inhibition of Hedgehog and Notch Signaling" Cancers 11, no. 3: 350. https://doi.org/10.3390/cancers11030350
APA StyleLinder, B., Wehle, A., Hehlgans, S., Bonn, F., Dikic, I., Rödel, F., Seifert, V., & Kögel, D. (2019). Arsenic Trioxide and (−)-Gossypol Synergistically Target Glioma Stem-Like Cells via Inhibition of Hedgehog and Notch Signaling. Cancers, 11(3), 350. https://doi.org/10.3390/cancers11030350