Ruthenium(II) Complex with 8-Hydroxyquinoline Exhibits Antitumor Activity in Breast Cancer Cell Lines
"> Figure 1
<p>Ru(quin)<sub>2</sub> triggers cytotoxicity in ER+ and TNBC breast cancer cells. (<b>A</b>) Chemical structure of Ru(quin)<sub>2</sub>. (<b>B</b>,<b>C</b>) Representative phase-contrast micrographs showing morphological changes in T47D (<b>B</b>) and MDA-MB-231 (<b>C</b>) cells after 72 h. (<b>D</b>) Dose-dependent inhibition of cell growth in T47D and MDA-MB-231 cells as assessed by the SRB assay after 72 h of Ru(quin)<sub>2</sub> treatment. (<b>E</b>,<b>F</b>) Colony formation assay showing the inhibitory effects of Ru(quin)<sub>2</sub> on T47D (<b>E</b>) and MDA-MB-231 (<b>F</b>) cells after 72 h. Colonies were stained with sulforhodamine B and quantified. Data represent the mean ± SD of three independent experiments performed in triplicate. Statistical significance: ** <span class="html-italic">p</span> < 0.01; *** <span class="html-italic">p</span> < 0.001. Abbreviations: ER+—estrogen receptor-positive, TNBC—triple-negative breast cancer.</p> "> Figure 2
<p>Ru(quin)<sub>2</sub> induces apoptosis and alters apoptotic markers in ER+ and TNBC breast cancer cells. (<b>A</b>) Quantification of apoptosis levels in T47D and MDA-MB-231 cells using an enzyme-linked immunosorbent assay. (<b>B</b>) Caspase-3 activity assay demonstrating Ru(quin)<sub>2</sub>-induced caspase activation in levels of T47D and MDA-MB-231 cells. (<b>C</b>) AURKB expression levels in T47D and MDA-MB-231 cells assessed by quantitative PCR. (<b>D</b>) Western blot analysis showing the expression of BAX and vinculin in T47D cells treated with Ru(quin)<sub>2</sub>. (<b>E</b>) Western blot analysis showing the expression of BAX and β-actin in MDA-MB-231 cells treated with Ru(quin)<sub>2</sub>. Representative blot from three independent experiments is shown. Data represent the mean ± SD of three independent experiments performed in triplicate. Statistical significance: * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01; *** <span class="html-italic">p</span> < 0.001. Abbreviations: ER+—estrogen receptor-positive, TNBC—triple-negative breast cancer, AURKB—Aurora B kinase. The original Western blot figures can be found in <a href="#app1-cancers-17-00195" class="html-app">Supplementary File S1</a>.</p> "> Figure 3
<p>Ru(quin)<sub>2</sub> promotes autophagy in ER+ and TNBC breast cancer cells. (<b>A</b>) Immunoblot analysis of autophagy-related markers LC3, Atg13, FIP200, SQSTM1/p62, vinculin, phosphorylated ERK1/2 (Thr 202 and Tyr 204), and ERK1/2 in T47D cells treated with Ru(quin)<sub>2</sub>. The intensity of the LC3-II, Atg13, FIP200, and SQSTM1/p62 bands was quantified and normalized to that of vinculin bands, whereas the phosphorylated ERK1/2 bands were quantified and normalized to the respective total ERK1/2 bands. (<b>B</b>) Immunoblot analysis of autophagy-related markers LC3, Atg13, FIP200, SQSTM1/p62, β-actin, phosphorylated ERK1/2 (Thr 202 and Tyr 204), and ERK1/2 in MDA-MB-231 cells treated with Ru(quin)<sub>2</sub>. The intensity of the LC3-II, Atg13, FIP200, and SQSTM1/p62 bands was quantified and normalized to that of β-actin bands, whereas the phosphorylated ERK1/2 bands were quantified and normalized to the respective total ERK1/2 bands. Representative blot from three independent experiments is shown. Abbreviations: ER+—estrogen receptor-positive, TNBC—triple-negative breast cancer, LC3—microtubule-associated proteins 1A/1B light chain 3, Atg13—autophagy-related protein 13, FIP200—focal adhesion kinase family interacting protein of 200 kDa, SQSTM1/p62—sequestosome 1. The original Western blot figures can be found in <a href="#app1-cancers-17-00195" class="html-app">Supplementary File S1</a>.</p> "> Figure 4
<p>Ru(quin)<sub>2</sub> induces G0/G1 phase cell cycle arrest in ER+ and TNBC breast cancer cells. (<b>A</b>) Flow cytometry analysis of the percentage of cells in each cell cycle phase (G1, S, and G2/M) in T47D cells treated with Ru(quin)<sub>2</sub>. (<b>B</b>) Flow cytometry analysis of cell cycle phases in MDA-MB-231 cells treated with Ru(quin)<sub>2</sub>. (<b>C</b>) Immunoblot analysis of CCND1, CDK4, CDK6, p21, and vinculin in T47D cells following Ru(quin)<sub>2</sub> treatment. The intensity of the CCND1, CDK4, CDK6, and p21 bands was quantified and normalized to that of vinculin bands. (<b>D</b>) Immunoblot analysis of the same markers in MDA-MB-231 cells. The intensity of the CCND1, CDK6, and p21 bands was quantified and normalized to that of vinculin bands. Data represent the mean ± SD of three independent experiments performed in triplicate. Representative blot from three independent experiments is shown. Statistical significance: * <span class="html-italic">p</span> < 0.05; **: <span class="html-italic">p</span> < 0.01; n.s: non-significant. Abbreviations: ER+—estrogen receptor-positive, TNBC—triple-negative breast cancer, CDK—cyclin-dependent kinase, CCND1—cyclin D1. The original Western blot figures can be found in <a href="#app1-cancers-17-00195" class="html-app">Supplementary File S1</a>.</p> ">
1. Introduction
2. Materials and Methods
2.1. Preparation of Ru(quin)2
2.2. Cell Lines and Reagents
2.3. Treatments
2.4. Sulforhodamine B (SRB) Assay
2.5. Morphological Analysis
2.6. Colony Formation Assay
2.7. Apoptosis ELISA
2.8. Flow Cytometric Analysis
2.9. Caspase-3 Activity Assay
2.10. Immunoblotting
2.11. Quantitative Real-Time PCR (QPCR)
2.12. Statistical Analysis
3. Results
3.1. Ru(quin)2 Induced Cytotoxicity in T47D and MDA-MB-231 Cells
3.2. Ru(quin)2 Induced Apoptosis in T47D and MDA-MB-231 Cells
3.3. Ru(quin)2 Triggered Autophagy in T47D and MDA-MB-231 Cells
3.4. Ru(quin)2 Induced Cell Cycle Arrest in T47D and MDA-MB-231 Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wild, C.; Weiderpass, E.; Stewart, B.W. World Cancer Report: Cancer Research for Cancer Prevention; International Agency for Research on Cancer: Lyon, France, 2020.
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Khalifa, A.; Guijarro, A.; Nencioni, A. Advances in Diet and Physical Activity in Breast Cancer Prevention and Treatment. Nutrients 2024, 16, 2262. [Google Scholar] [CrossRef]
- Harbeck, N.; Penault-Llorca, F.; Cortes, J.; Gnant, M.; Houssami, N.; Poortmans, P.; Ruddy, K.; Tsang, J.; Cardoso, F. Breast cancer. Nat. Rev. Dis. Primers 2019, 5, 66. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A.H.; Shash, E. General Oncology Care in Egypt. In Cancer in the Arab World; Al-Shamsi, H.O., Abu-Gheida, I.H., Iqbal, F., Al-Awadhi, A., Eds.; Springer: Singapore, 2022; pp. 41–61. [Google Scholar]
- Ibrahim, A.S.; Khaled, H.M.; Mikhail, N.N.; Baraka, H.; Kamel, H. Cancer incidence in egypt: Results of the national population-based cancer registry program. J. Cancer Epidemiol. 2014, 2014, 437971. [Google Scholar] [CrossRef] [PubMed]
- Azim, H.A.; Elghazawy, H.; Ghazy, R.M.; Abdelaziz, A.H.; Abdelsalam, M.; Elzorkany, A.; Kassem, L. Clinicopathologic Features of Breast Cancer in Egypt-Contemporary Profile and Future Needs: A Systematic Review and Meta-Analysis. JCO Glob. Oncol. 2023, 9, e2200387. [Google Scholar] [CrossRef]
- Araki, K.; Miyoshi, Y. Mechanism of resistance to endocrine therapy in breast cancer: The important role of PI3K/Akt/mTOR in estrogen receptor-positive, HER2-negative breast cancer. Breast Cancer 2018, 25, 392–401. [Google Scholar] [CrossRef]
- Caffa, I.; Spagnolo, V.; Vernieri, C.; Valdemarin, F.; Becherini, P.; Wei, M.; Brandhorst, S.; Zucal, C.; Driehuis, E.; Ferrando, L. Fasting-mimicking diet and hormone therapy induce breast cancer regression. Nature 2020, 583, 620–624. [Google Scholar] [CrossRef]
- Zeeneldin, A.A.; Ramadan, M.; Gaber, A.A.; Taha, F.M. Clinico-pathological features of breast carcinoma in elderly Egyptian patients: A comparison with the non-elderly using population-based data. J. Egypt. Natl. Cancer Inst. 2013, 25, 5–11. [Google Scholar] [CrossRef]
- Dent, R.; Trudeau, M.; Pritchard, K.I.; Hanna, W.M.; Kahn, H.K.; Sawka, C.A.; Lickley, L.A.; Rawlinson, E.; Sun, P.; Narod, S.A. Triple-negative breast cancer: Clinical features and patterns of recurrence. Clin. Cancer Res. 2007, 13, 4429–4434. [Google Scholar] [CrossRef]
- Galluzzi, L.; Vitale, I.; Michels, J.; Brenner, C.; Szabadkai, G.; Harel-Bellan, A.; Castedo, M.; Kroemer, G. Systems biology of cisplatin resistance: Past, present and future. Cell Death Dis. 2014, 5, e1257. [Google Scholar] [CrossRef] [PubMed]
- Levina, A.; Mitra, A.; Lay, P.A. Recent developments in ruthenium anticancer drugs. Metallomics 2009, 1, 458–470. [Google Scholar] [CrossRef] [PubMed]
- Thota, S.; Rodrigues, D.A.; Crans, D.C.; Barreiro, E.J. Ru (II) compounds: Next-generation anticancer metallotherapeutics? J. Med. Chem. 2018, 61, 5805–5821. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Kim, C.Y.; Nam, T.-G. Ruthenium complexes as anticancer agents: A brief history and perspectives. Drug Des. Dev. Ther. 2020, 14, 5375–5392. [Google Scholar] [CrossRef]
- Adhikari, S.; Nath, P.; Das, A.; Datta, A.; Baildya, N.; Duttaroy, A.K.; Pathak, S. A review on metal complexes and its anti-cancer activities: Recent updates from in vivo studies. Biomed. Pharmacother. 2024, 171, 116211. [Google Scholar] [CrossRef] [PubMed]
- Prachayasittikul, V.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. 8-Hydroxyquinolines: A review of their metal chelating properties and medicinal applications. Drug Des. Dev. Ther. 2013, 7, 1157–1178. [Google Scholar] [CrossRef]
- Lescoat, G.; Léonce, S.; Pierré, A.; Gouffier, L.; Gaboriau, F. Antiproliferative and iron chelating efficiency of the new bis-8-hydroxyquinoline benzylamine chelator S1 in hepatocyte cultures. Chem.-Biol. Interact. 2012, 195, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Chen, W.; Zhan, P.; Liu, X. 8-Hydroxyquinoline: A privileged structure with a broad-ranging pharmacological potential. MedChemComm 2015, 6, 61–74. [Google Scholar]
- Mathew, R.; Karantza-Wadsworth, V.; White, E. Role of autophagy in cancer. Nat. Rev. Cancer 2007, 7, 961–967. [Google Scholar] [CrossRef]
- Cheon, S.Y.; Kim, H.; Rubinsztein, D.C.; Lee, J.E. Autophagy, Cellular Aging and Age-related Human Diseases. Exp. Neurobiol. 2019, 28, 643–657. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.N.; Kumar, D.; Shankar, S.; Srivastava, R.K. Rottlerin induces autophagy which leads to apoptotic cell death through inhibition of PI3K/Akt/mTOR pathway in human pancreatic cancer stem cells. Biochem. Pharmacol. 2012, 84, 1154–1163. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, J.; Fan, X.; Hu, S.; Zhou, F.; Dong, J.; Zhang, S.; Shang, Y.; Jiang, X.; Guo, H. Chaperone-mediated autophagy regulates proliferation by targeting RND3 in gastric cancer. Autophagy 2016, 12, 515–528. [Google Scholar] [CrossRef] [PubMed]
- Tsai, J.-P.; Lee, C.-H.; Ying, T.-H.; Lin, C.-L.; Lin, C.-L.; Hsueh, J.-T.; Hsieh, Y.-H. Licochalcone A induces autophagy through PI3K/Akt/mTOR inactivation and autophagy suppression enhances Licochalcone A-induced apoptosis of human cervical cancer cells. Oncotarget 2015, 6, 28851. [Google Scholar] [CrossRef] [PubMed]
- White, E.; DiPaola, R.S. The double-edged sword of autophagy modulation in cancer. Clin. Cancer Res. 2009, 15, 5308–5316. [Google Scholar] [CrossRef] [PubMed]
- Apel, A.; Herr, I.; Schwarz, H.; Rodemann, H.P.; Mayer, A. Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy. Cancer Res. 2008, 68, 1485–1494. [Google Scholar] [CrossRef]
- Chen, P.; Cescon, M.; Bonaldo, P. Autophagy-mediated regulation of macrophages and its applications for cancer. Autophagy 2014, 10, 192–200. [Google Scholar] [CrossRef]
- Zhou, Y.-Y.; Li, Y.; Jiang, W.-Q.; Zhou, L.-F. MAPK/JNK signalling: A potential autophagy regulation pathway. Biosci. Rep. 2015, 35, e00199. [Google Scholar] [CrossRef] [PubMed]
- Trondl, R.; Heffeter, P.; Kowol, C.R.; Jakupec, M.A.; Berger, W.; Keppler, B.K. NKP-1339, the first ruthenium-based anticancer drug on the edge to clinical application. Chem. Sci. 2014, 5, 2925–2932. [Google Scholar] [CrossRef]
- Mahmud, K.M.; Niloy, M.S.; Shakil, M.S.; Islam, M.A. Ruthenium complexes: An alternative to platinum drugs in colorectal cancer treatment. Pharmaceutics 2021, 13, 1295. [Google Scholar] [CrossRef] [PubMed]
- Czarnomysy, R.; Surażyński, A.; Muszynska, A.; Gornowicz, A.; Bielawska, A.; Bielawski, K. A novel series of pyrazole-platinum (II) complexes as potential anti-cancer agents that induce cell cycle arrest and apoptosis in breast cancer cells. J. Enzym. Inhib. Med. Chem. 2018, 33, 1006–1023. [Google Scholar] [CrossRef]
- de Lima, A.P.; Pereira, F.d.C.; Vilanova-Costa, C.A.S.T.; Soares, J.R.; Pereira, L.C.G.; Porto, H.K.P.; Pavanin, L.A.; Dos Santos, W.B.; Silveira-Lacerda, E.d.P. Induction of cell cycle arrest and apoptosis by ruthenium complex cis-(dichloro) tetramineruthenium (III) chloride in human lung carcinoma cells A549. Biol. Trace Elem. Res. 2012, 147, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Lei, Z.; Wang, X.; Zhu, F.; Chen, D. Ruthenium complex Λ-WH0402 induces hepatocellular carcinoma LM6 (HCCLM6) cell death by triggering the Beclin-1-dependent autophagy pathway. Metallomics 2015, 7, 896–907. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Lai, S.; Wu, S.; Hu, S.; Zhou, L.; Chen, Y.; Wang, M.; Zhu, Y.; Lian, W.; Peng, W. Nuclear permeable ruthenium (II) β-carboline complexes induce autophagy to antagonize mitochondrial-mediated apoptosis. J. Med. Chem. 2010, 53, 7613–7624. [Google Scholar] [CrossRef] [PubMed]
- Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef]
- Pfeffer, C.M.; Singh, A.T.K. Apoptosis: A Target for Anticancer Therapy. Int. J. Mol. Sci. 2018, 19, 448. [Google Scholar] [CrossRef]
- Su, Z.; Yang, Z.; Xu, Y.; Chen, Y.; Yu, Q. Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol. Cancer 2015, 14, 48. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Shukla, N.; Singh, S.S.; Kushwaha, S.; Shrivastava, R. Mechanism of interaction between autophagy and apoptosis in cancer. Apoptosis 2021, 26, 512–533. [Google Scholar] [CrossRef] [PubMed]
- Bond, A.M.; Khalifa, M. Accessibility of Formally Six-Coordinate Ruthenium (IV) Complexes Generated by Electrochemical Oxidation of Ruthenium (II) Dimethylglyoxime and Related Complexes Containing Phosphorus, Nitrogen or Oxygen Donor Axial Ligands. Aust. J. Chem. 1988, 41, 1389–1406. [Google Scholar] [CrossRef]
- Vichai, V.; Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc. 2006, 1, 1112–1116. [Google Scholar] [CrossRef]
- Khalifa, A.; Guijarro, A.; Ravera, S.; Bertola, N.; Adorni, M.P.; Papotti, B.; Raffaghello, L.; Benelli, R.; Becherini, P.; Namatalla, A.; et al. Cyclic fasting bolsters cholesterol biosynthesis inhibitors’ anticancer activity. Nat. Commun. 2023, 14, 6951. [Google Scholar] [CrossRef]
- Elsherbini, A.M.; Sheweita, S.A.; Sultan, A.S. Pterostilbene as a Phytochemical Compound Induces Signaling Pathways Involved in the Apoptosis and Death of Mutant P53-Breast Cancer Cell Lines. Nutr. Cancer 2021, 73, 1976–1984. [Google Scholar] [CrossRef]
- Khalil, M.I.; Ibrahim, M.M.; El-Gaaly, G.A.; Sultan, A.S. Trigonella foenum (Fenugreek) Induced Apoptosis in Hepatocellular Carcinoma Cell Line, HepG2, Mediated by Upregulation of p53 and Proliferating Cell Nuclear Antigen. BioMed Res. Int. 2015, 2015, 914645. [Google Scholar] [CrossRef] [PubMed]
- Westphal, D.; Kluck, R.; Dewson, G. Building blocks of the apoptotic pore: How Bax and Bak are activated and oligomerize during apoptosis. Cell Death Differ. 2014, 21, 196–205. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, J.; Park, B.H.; Kinzler, K.W.; Vogelstein, B. Role of BAX in the apoptotic response to anticancer agents. Science 2000, 290, 989–992. [Google Scholar] [CrossRef]
- Lamark, T.; Svenning, S.; Johansen, T. Regulation of selective autophagy: The p62/SQSTM1 paradigm. Essays Biochem. 2017, 61, 609–624. [Google Scholar]
- Rakesh, R.; PriyaDharshini, L.C.; Sakthivel, K.M.; Rasmi, R.R. Role and regulation of autophagy in cancer. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2022, 1868, 166400. [Google Scholar] [CrossRef]
- Bertoli, C.; Skotheim, J.M.; De Bruin, R.A. Control of cell cycle transcription during G1 and S phases. Nat. Rev. Mol. Cell Biol. 2013, 14, 518–528. [Google Scholar] [CrossRef]
- Kumar Singh, A.; Kumar, A.; Singh, H.; Sonawane, P.; Pathak, P.; Grishina, M.; Pal Yadav, J.; Verma, A.; Kumar, P. Metal Complexes in cancer treatment: Journey so far. Chem. Biodivers. 2023, 20, e202300061. [Google Scholar] [CrossRef] [PubMed]
- Alessio, E.; Messori, L. NAMI-A and KP1019/1339, Two Iconic Ruthenium Anticancer Drug Candidates Face-to-Face: A Case Story in Medicinal Inorganic Chemistry. Molecules 2019, 24, 1995. [Google Scholar] [CrossRef]
- Lima, A.P.; Pereira, F.C.; Almeida, M.A.; Mello, F.M.; Pires, W.C.; Pinto, T.M.; Delella, F.K.; Felisbino, S.L.; Moreno, V.; Batista, A.A.; et al. Cytoxicity and apoptotic mechanism of ruthenium(II) amino acid complexes in sarcoma-180 tumor cells. PLoS ONE 2014, 9, e105865. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, S.A.; Harrypersad, S.; Sahyon, H.A.; El-Magd, M.A.; Walsby, C.J. Ruthenium (II)/(III) DMSO-based complexes of 2-aminophenyl benzimidazole with in vitro and in vivo anticancer activity. Molecules 2020, 25, 4284. [Google Scholar] [CrossRef]
- Keen, N.; Taylor, S. Aurora-kinase inhibitors as anticancer agents. Nat. Rev. Cancer 2004, 4, 927–936. [Google Scholar] [CrossRef] [PubMed]
- De Grandis, R.A.; Oliveira, K.M.; Guedes, A.P.; Dos Santos, P.W.; Aissa, A.F.; Batista, A.A.; Pavan, F.R. A novel ruthenium (II) complex with lapachol induces G2/M phase arrest through aurora-B kinase down-regulation and ROS-mediated apoptosis in human prostate adenocarcinoma cells. Front. Oncol. 2021, 11, 682968. [Google Scholar] [CrossRef] [PubMed]
- Carmena, M.; Wheelock, M.; Funabiki, H.; Earnshaw, W.C. The chromosomal passenger complex (CPC): From easy rider to the godfather of mitosis. Nat. Rev. Mol. Cell Biol. 2012, 13, 789–803. [Google Scholar] [CrossRef] [PubMed]
- Gully, C.P.; Zhang, F.; Chen, J.; Yeung, J.A.; Velazquez-Torres, G.; Wang, E.; Yeung, S.-C.J.; Lee, M.-H. Antineoplastic effects of an Aurora B kinase inhibitor in breast cancer. Mol. Cancer 2010, 9, 42. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalifa, A.; Sheweita, S.A.; Namatalla, A.; Khalifa, M.A.; Nencioni, A.; Sultan, A.S. Ruthenium(II) Complex with 8-Hydroxyquinoline Exhibits Antitumor Activity in Breast Cancer Cell Lines. Cancers 2025, 17, 195. https://doi.org/10.3390/cancers17020195
Khalifa A, Sheweita SA, Namatalla A, Khalifa MA, Nencioni A, Sultan AS. Ruthenium(II) Complex with 8-Hydroxyquinoline Exhibits Antitumor Activity in Breast Cancer Cell Lines. Cancers. 2025; 17(2):195. https://doi.org/10.3390/cancers17020195
Chicago/Turabian StyleKhalifa, Amr, Salah A. Sheweita, Asmaa Namatalla, Mohamed A. Khalifa, Alessio Nencioni, and Ahmed S. Sultan. 2025. "Ruthenium(II) Complex with 8-Hydroxyquinoline Exhibits Antitumor Activity in Breast Cancer Cell Lines" Cancers 17, no. 2: 195. https://doi.org/10.3390/cancers17020195
APA StyleKhalifa, A., Sheweita, S. A., Namatalla, A., Khalifa, M. A., Nencioni, A., & Sultan, A. S. (2025). Ruthenium(II) Complex with 8-Hydroxyquinoline Exhibits Antitumor Activity in Breast Cancer Cell Lines. Cancers, 17(2), 195. https://doi.org/10.3390/cancers17020195