Abstract
The mechanisms of two programmed cell death pathways, autophagy, and apoptosis, are extensively focused areas of research in the context of cancer. Both the catabolic pathways play a significant role in maintaining cellular as well as organismal homeostasis. Autophagy facilitates this by degradation and elimination of misfolded proteins and damaged organelles, while apoptosis induces canonical cell death in response to various stimuli. Ideally, both autophagy and apoptosis have a role in tumor suppression, as autophagy helps in eliminating the tumor cells, and apoptosis prevents their survival. However, as cancer proceeds, autophagy exhibits a dual role by enhancing cancer cell survival in response to stress conditions like hypoxia, thereby promoting chemoresistance to the tumor cells. Thus, any inadequacy in either of their levels can lead to tumor progression. A complex array of biomarkers is involved in maintaining coordination between the two by acting as either positive or negative regulators of one or both of these pathways of cell death. The resulting crosstalk between the two and its role in influencing the survival or death of malignant cells makes it quintessential, among other challenges facing chemotherapeutic treatment of cancer. In view of this, the present review aims to highlight some of the factors involved in maintaining their diaphony and stresses the importance of inhibition of cytoprotective autophagy and deletion of the intermediate pathways involved to facilitate tumor cell death. This will pave the way for future prospects in designing drug combinations facilitating the synergistic effect of autophagy and apoptosis in achieving cancer cell death.
Graphic abstract
Similar content being viewed by others
Abbreviations
- CMA:
-
Chaperone-Mediated Autophagy
- mTOR:
-
Mammalian Target of Rapamycin
- mTORC1:
-
Mammalian Target of Rapamycin Complex 1
- mTORC2:
-
Mammalian Target of Rapamycin Complex 2
- ATG:
-
Autophagy Related Protein
- AMP:
-
Adenosine Monophosphate
- AMPK:
-
AMP-Activated Protein Kinase
- ULK:
-
Unc-51-Like Autophagy-Activating Kinase
- PI3K:
-
Phosphatidyl Inositol-3 Kinase
- BCL-2:
-
B-Cell Lymphoma 2
- LC3:
-
Light Chain Kinase 3
- VPS:
-
Vacuolar Protein Sorting
- SNARE:
-
Soluble n-Ethylmaleimide Sensitive Factor Attachment Protein Receptor
- PE:
-
Phosphatidylethanolamine
- AVO:
-
Acidic Vesicular Organelles
- UVRAG:
-
UV Radiation Resistance Associated Gene
- FIP200:
-
Focal Adhesion Kinase Family Interacting Protein of 200 Kd
- PTEN:
-
Phosphatase and Tensin Analogue
- HIF:
-
Hypoxia Inducible Factors
- BNIP3:
-
BCL2/Adenovirus E1B 19 kDa Protein-Interacting Protein 3
- MOMP:
-
Mitochondrial Outer Membrane Permeabilization
- DNA:
-
Deoxyribonucleic Acid
- APAF1:
-
Apoptotic Protease-Activating Factor 1
- ATP:
-
Adenosine Triphosphate
- TNFR1:
-
Tumor Necrosis Factor Receptor 1
- TRAIL:
-
Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand
- TRAILR:
-
TNF-Related Apoptosis-Inducing Ligand Receptor
- TRADD:
-
TNFR1-Associated Death Domain
- FADD:
-
Fas-Associated Death Domain
- MEK:
-
Mitogen-Activated Protein Kinase Kinase
- IAP:
-
Inhibitors of Apoptosis Proteins
- CD95:
-
Cluster of Differentiation 95
- BAX:
-
BCL-2-Associated X Protein
- BAK:
-
BCL-2 Antagonist or Killer
- UPR:
-
Unfolded Protein Response
- ER:
-
Endoplasmic Reticulum
- BID:
-
BH3-Interacting Domain Death Agonist
- VMP1:
-
Vacuole Membrane Protein 1
- AMBRA1:
-
Activating Molecule Beclin1-Regulated Autophagy 1
- BCLAF1:
-
BCL-2-Associated Transcription Factor 1
- SKI:
-
Sphingosine Kinase Inhibitor
- p53:
-
Tumor Protein 53
- DRAM:
-
Damage-Regulated Autophagy Modulator
- IFNγ:
-
Interferon Gamma
- MOMP:
-
Mitochondrial Outer Membrane Permeabilization
- Bcl-xl:
-
B-Cell Lymphoma Extra-Large
- BAD:
-
BCL2 Associated Agonist of Cell Death
- Akt:
-
Protein Kinase B
- c-FLIP:
-
Cellular FLICE (FADD-like IL-1β-Converting Enzyme)-Inhibitory Protein
- DAPK:
-
Death Associated Protein Kinase
- PARP:
-
Poly (ADP-Ribose) Polymerase
- APAF1:
-
Apoptotic Protease Activating Factor 1
- ATP:
-
Adenosine Triphosphate
- SMAC:
-
Second Mitochondria-Derived Activator of Caspase
- RIP:
-
Receptor Interacting Protein
- NF-κB:
-
Nuclear Factor Kappa Light Chain Enhancer of Activated B Cells
- ROS:
-
Reactive Oxygen Species
- PUMA:
-
p53 Upregulated Modulator of Apoptosis
- BIM:
-
B-Cell Lymphoma 2-Interacting Mediator
- Mcl-1:
-
Myeloid Cell Leukaemia 1
- DRAM:
-
Damage-Regulated Autophagy Modulator
- FAP-1:
-
Fas-Associated Phosphatase-1
- RTK:
-
Receptor Tyrosine Kinase
References
World Health Organisation (2018) Cancer, fact sheets. World Health Organisation, Geneva
American Cancer Society (2020) Cancer facts & fig. American Cancer Society, Atlanta
Cancer Statistics—India Against Cancer (2020) https://doi.org/http://cancerindia.org.in/cancer-statistics/
Liu J, Lin M, Yu J, Liu B, Bao J (2011) Targeting apoptotic and autophagic pathways for cancer therapeutics. Cancer Lett 300:105–114. https://doi.org/10.1016/j.canlet.2010.10.001
Colhado Rodrigues BL, Lallo MA, Perez EC (2020) The controversial role of autophagy in tumor development: a systematic review. Immunol Invest 49:386–396. https://doi.org/10.1080/08820139.2019.1682600
Hseu YC, Tsai TJ, Korivi M, Liu JY, Chen HJ, Lin CM, Shen YC, Yang HL (2017) Antitumor properties of Coenzyme Q0 against human ovarian carcinoma cells via induction of ROS-mediated apoptosis and cytoprotective autophagy. Sci Rep 7:1–21. https://doi.org/10.1038/s41598-017-08659-7
Yun CW, Lee SH (2018) The roles of autophagy in cancer. Int J Mol Sci 19:3466. https://doi.org/10.3390/ijms19113466
Shaid S, Brandts CH, Serve H, Dikic I (2013) Ubiquitination and selective autophagy. Cell Death Differ 20:21–30. https://doi.org/10.1038/cdd.2012.72
Vessoni AT, Filippi-Chiela EC, Menck CFM, Lenz G (2013) Autophagy and genomic integrity. Cell Death Differ 20:1444–1454. https://doi.org/10.1038/cdd.2013.103
Hamasaki M, Furuta N, Matsuda A, Nezu A, Yamamoto A, Fujita N, Oomori H, Noda T, Haraguchi T, Hiraoka Y, Amano A, Yoshimori T (2013) Autophagosomes form at ER-mitochondria contact sites. Nature 495:389–393. https://doi.org/10.1038/nature11910
Saxton RA, Sabatini DM (2017) mTOR signaling in growth, metabolism, and disease. Cell 168:960–976. https://doi.org/10.1016/j.cell.2017.02.004
Dibble CC, Manning BD (2013) Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nat Cell Biol 15:555–564. https://doi.org/10.1038/ncb2763
Dossou AS, Basu A (2019) The emerging roles of mTORC1 in macromanaging autophagy. Cancers (Basel) 11:1422. https://doi.org/10.3390/cancers11101422
Xiang H, Zhang J, Lin C, Zhang L, Liu B, Ouyang L (2020) Targeting autophagy-related protein kinases for potential therapeutic purpose. Acta Pharm Sin B 10:569–581. https://doi.org/10.1016/j.apsb.2019.10.003
Mochida K, Oikawa Y, Kimura Y, Kirisako H, Hirano H, Ohsumi Y, Nakatogawa H (2015) Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature 522:359–362. https://doi.org/10.1038/nature14506
Lőrincz P, Juhász G (2020) Autophagosome-lysosome fusion. J Mol Biol 432:2462–2482. https://doi.org/10.1016/j.jmb.2019.10.028
Singh SS, Vats S, Chia AY, Zea T, Shuo T, Mei D, Ong S, Arfuso F, Yap CT, Cher B, Sethi G, Huang RY, Shen HM, Manjithaya R, Prem A (2018) Dual role of autophagy in hallmarks of cancer. Oncogene 37:1142–1158. https://doi.org/10.1038/s41388-017-0046-6
Yun CW, Lee SH (2018) The roles of autophagy in cancer. Int J Mol Sci. https://doi.org/10.3390/ijms19113466
Udristioiu A, Nica-Badea D (2019) Autophagy dysfunctions associated with cancer cells and their therapeutic implications. Biomed Pharmacother 115:108892. https://doi.org/10.1016/j.biopha.2019.108892
Fu Y, Huang Z, Hong L, Lu J, Feng D (2019) Targeting ATG4 in cancer therapy. Cancers (Basel) 11:1–17
Aquila S, Santoro M, Caputo A, Panno ML, Pezzi V, De Amicis F (2020) The tumor suppressor PTEN as molecular switch node regulating cell metabolism and autophagy: implications in immune system and tumor microenvironment. Cells 9:1725. https://doi.org/10.3390/cells9071725
Jin X, Dai L, Ma Y, Wang J, Liu Z (2020) Implications of HIF-1α in the tumorigenesis and progression of pancreatic cancer. Cancer Cell Int 20:273. https://doi.org/10.1186/s12935-020-01370-0
Zhou J, Li C, Yao W, Alsiddig MC, Huo L, Liu H, Miao YL (2018) Hypoxia-inducible factor-1α-dependent autophagy plays a role in glycolysis switch in mouse granulosa cells. Biol Reprod 99:308–318. https://doi.org/10.1093/biolre/ioy061
Marinković M, Šprung M, Novak I (2020) Dimerization of mitophagy receptor BNIP3L/NIX is essential for recruitment of autophagic machinery. Autophagy. https://doi.org/10.1080/15548627.2020.1755120
Daskalaki I, Gkikas I, Tavernarakis N (2018) Hypoxia and selective autophagy in cancer development and therapy. Front Cell Dev Biol 6:1–22. https://doi.org/10.3389/fcell.2018.00104
Feng S, Zha Z, Wang Z, Yang P, Wu J, Li X, Xu Q, Liu Y (2020) Anticancer activity of oleiferoside B involving autophagy and apoptosis through increasing ROS release in MCF-7 cells and SMMC-7721 cells. Nat Prod Res. https://doi.org/10.1080/14786419.2020.1739039
Singh R, Letai A, Sarosiek K (2019) Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol 20:175–193. https://doi.org/10.1038/s41580-018-0089-8
Mariño G, Niso-Santano M, Baehrecke EH (2014) Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 15:81–94. https://doi.org/10.1038/nrm3735.Self-consumption
Peña-Blanco A, García-Sáez AJ (2018) Bax, Bak and beyond—mitochondrial performance in apoptosis. FEBS J 285:416–431. https://doi.org/10.1111/febs.14186
D’Orsi B, Mateyka J, Prehn JHM (2017) Control of mitochondrial physiology and cell death by the Bcl-2 family proteins Bax and Bok. Neurochem Int 109:162–170. https://doi.org/10.1016/j.neuint.2017.03.010
Füllsack S, Rosenthal A, Wajant H, Siegmund D (2019) Redundant and receptor-specific activities of TRADD, RIPK1 and FADD in death receptor signaling. Cell Death Dis 10:122. https://doi.org/10.1038/s41419-019-1396-5
Carneiro BA, El-Deiry WS (2020) Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol 17:395–417. https://doi.org/10.1038/s41571-020-0341-y
Tse C, Shoemaker AR, Adickes J, Anderson MG, Chen J, Jin S, Johnson EF, Marsh KC, Mitten MJ, Nimmer P, Roberts L, Tahir SK, Xiao Y, Yang X, Zhang H, Fesik S, Rosenberg SH, Elmore SW (2008) ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res 68:3421–3428. https://doi.org/10.1158/0008-5472.CAN-07-5836
Roberts AW, Seymour JF, Brown JR, Wierda WG, Kipps TJ, Khaw SL, Carney DA, He SZ, Huang DCS, Xiong H, Cui Y, Busman TA, McKeegan EM, Krivoshik AP, Enschede SH, Humerickhouse R (2012) Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: results of a phase I study of navitoclax in patients with relapsed or refractory disease. J Clin Oncol Off J Am Soc Clin Oncol 30:488–496. https://doi.org/10.1200/JCO.2011.34.7898
Kipps TJ, Eradat H, Grosicki S, Catalano J, Cosolo W, Dyagil IS, Yalamanchili S, Chai A, Sahasranaman S, Punnoose E, Hurst D, Pylypenko H (2015) A phase 2 study of the BH3 mimetic BCL2 inhibitor navitoclax (ABT-263) with or without rituximab, in previously untreated B-cell chronic lymphocytic leukemia. Leuk Lymphoma 56:2826–2833. https://doi.org/10.3109/10428194.2015.1030638
Lakhani NJ, Rasco DW, Tolcher AW, Huang Y, Ji J, Wang H, Dong Q, Men L, O’Rourke TJ, Chandana SR, Amaya A, Cole Y, Kaiser B, Mays TA, Patnaik A, Papadopoulos KP, Yang D, Zhai Y (2018) A phase I study of novel dual Bcl-2/Bcl-xL inhibitor APG-1252 in patients with advanced small cell lung cancer (SCLC) or other solid tumor. J Clin Oncol 36:2594. https://doi.org/10.1200/JCO.2018.36.15_suppl.2594
Reis B, Jukofsky L, Chen G, Martinelli G, Zhong H, So WV, Dickinson MJ, Drummond M, Assouline S, Hashemyan M, Theron M, Blotner S, Lee J-H, Kasner M, Yoon S-S, Rueger R, Seiter K, Middleton SA, Kelly KR, Vey N, Yee K, Nichols G, Chen L-C, Pierceall WE (2016) Acute myeloid leukemia patients’ clinical response to idasanutlin (RG7388) is associated with pre-treatment MDM2 protein expression in leukemic blasts. Haematologica 101:e185–e188. https://doi.org/10.3324/haematol.2015.139717
Blotner S, Chen L-C, Ferlini C, Zhi J (2018) Phase 1 summary of plasma concentration-QTc analysis for idasanutlin, an MDM2 antagonist, in patients with advanced solid tumors and AML. Cancer Chemother Pharmacol 81:597–607. https://doi.org/10.1007/s00280-018-3534-7
Skalniak L, Kocik J, Polak J, Skalniak A, Rak M, Wolnicka-Glubisz A, Holak TA (2018) Prolonged idasanutlin (RG7388) treatment leads to the generation of p53-mutated cells. Cancers (Basel). https://doi.org/10.3390/cancers10110396
Tolcher AW, Fang DD, Li Y, Tang Y, Ji J, Wang H, Karim R, Rosas C, Huang Y, Zhai Y (2019) A phase Ib/II study of APG-115 in combination with pembrolizumab in patients with unresectable or metastatic melanomas or advanced solid tumors. Ann Oncol 30:i2. https://doi.org/10.1093/annonc/mdz027
Aguilar A, Lu J, Liu L, Du D, Bernard D, McEachern D, Przybranowski S, Li X, Luo R, Wen B, Sun D, Wang H, Wen J, Wang G, Zhai Y, Guo M, Yang D, Wang S (2017) Discovery of 4-((3’R,4’S,5’R)-6″-Chloro-4’-(3-chloro-2-fluorophenyl)-1’-ethyl-2″-oxodispiro[cyclohexane-1,2’-pyrrolidine-3’,3″-indoline]-5’-carboxamido)bicyclo[2.2.2]octane-1-carboxylic Acid (AA-115/APG-115): a potent and orally active murine double minu. J Med Chem 60:2819–2839. https://doi.org/10.1021/acs.jmedchem.6b01665
Shustov A, Horwitz S, Zain J, Patel M, Sokol L, Meric-Bernstam F, Shapiro G, Nasta S, Janakiram M, Weinstock D, Korn R, Payton M, Annis D, Pinchasik D, Aivado M, Mehta A (2018) Preliminary results of the stapled peptide ALRN-6924, a dual inhibitor of MDMX and MDM2, in two phase IIa dose expansion cohorts in relapsed/refractory TP53 wild-type peripheral T-cell lymphoma. Blood 132:1623. https://doi.org/10.1182/blood-2018-99-116780
Arnhold V, Schmelz K, Proba J, Winkler A, Wünschel J, Toedling J, Deubzer HE, Künkele A, Eggert A, Schulte JH, Hundsdoerfer P (2018) Reactivating TP53 signaling by the novel MDM2 inhibitor DS-3032b as a therapeutic option for high-risk neuroblastoma. Oncotarget 9:2304–2319. https://doi.org/10.18632/oncotarget.23409
Erba HP, Becker PS, Shami PJ, Grunwald MR, Flesher DL, Zhu M, Rasmussen E, Henary HA, Anderson AA, Wang ES (2019) Phase 1b study of the MDM2 inhibitor AMG 232 with or without trametinib in relapsed/refractory acute myeloid leukemia. Blood Adv 3:1939–1949. https://doi.org/10.1182/bloodadvances.2019030916
Cornillie J, Wozniak A, Li H, Gebreyohannes YK, Wellens J, Hompes D, Debiec-Rychter M, Sciot R, Schöffski P (2020) Anti-tumor activity of the MDM2-TP53 inhibitor BI-907828 in dedifferentiated liposarcoma patient-derived xenograft models harboring MDM2 amplification. Clin Transl Oncol Off Publ Fed Spanish Oncol Soc Natl Cancer Inst Mex 22:546–554. https://doi.org/10.1007/s12094-019-02158-z
Infante JR, Dees EC, Olszanski AJ, Dhuria SV, Sen S, Cameron S, Cohen RB (2014) Phase I dose-escalation study of LCL161, an oral inhibitor of apoptosis proteins inhibitor, in patients with advanced solid tumors. J Clin Oncol Off J Am Soc Clin Oncol 32:3103–3110. https://doi.org/10.1200/JCO.2013.52.3993
Bardia A, Parton M, Kümmel S, Estévez LG, Huang C-S, Cortés J, Ruiz-Borrego M, Telli ML, Martin-Martorell P, López R, Beck JT, Ismail-Khan R, Chen S-C, Hurvitz SA, Mayer IA, Carreon D, Cameron S, Liao S, Baselga J, Kim S-B (2018) Paclitaxel with inhibitor of apoptosis antagonist, LCL161, for localized triple-negative breast cancer, prospectively stratified by gene signature in a biomarker-driven neoadjuvant trial. J Clin Oncol Off J Am Soc Clin Oncol. https://doi.org/10.1200/JCO.2017.74.8392
Hsu H-Y, Lin T-Y, Hu C-H, Shu DTF, Lu M-K (2018) Fucoidan upregulates TLR4/CHOP-mediated caspase-3 and PARP activation to enhance cisplatin-induced cytotoxicity in human lung cancer cells. Cancer Lett 432:112–120. https://doi.org/10.1016/j.canlet.2018.05.006
Jin Z, McDonald ER, Dicker DT, El-Deiry WS (2004) Deficient tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor transport to the cell surface in human colon cancer cells selected for resistance to TRAIL-induced apoptosis. J Biol Chem 279:35829–35839. https://doi.org/10.1074/jbc.M405538200
Kalal BS, Upadhya D, Pai VR (2017) Chemotherapy resistance mechanisms in advanced skin cancer. Oncol Rev 11:326. https://doi.org/10.4081/oncol.2017.326
van Noesel MM, van Bezouw S, Salomons GS, Voûte PA, Pieters R, Baylin SB, Herman JG, Versteeg R (2002) Tumor-specific down-regulation of the tumor necrosis factor-related apoptosis-inducing ligand decoy receptors DcR1 and DcR2 is associated with dense promoter hypermethylation. Cancer Res 62:2157–2161
Petak I, Danam RP, Tillman DM, Vernes R, Howell SR (2003) Hypermethylation of the gene promoter and enhancer region can regulate Fas expression and sensitivity in colon carcinoma. Cell Death Differ 10:211–217. https://doi.org/10.1038/sj.cdd.4401132
Kurtova AV, Xiao J, Mo Q, Pazhanisamy S, Krasnow R, Lerner SP, Chen F, Roh TT, Lay E, Ho PL, Chan KS (2015) Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature 517:209–213. https://doi.org/10.1038/nature14034
Ichim G, Tait SWG (2016) A fate worse than death: apoptosis as an oncogenic process. Nat Rev Cancer 16:539–548. https://doi.org/10.1038/nrc.2016.58
Tardáguila M, Mañes S (2013) CX3CL1 at the crossroad of EGF signals: relevance for the progression of ERBB2(+) breast carcinoma. Oncoimmunology 2:e25669. https://doi.org/10.4161/onci.25669
Tang J, Chen Y, Cui R, Li D, Xiao L, Lin P, Du Y, Sun H, Yu X, Zheng X (2015) Upregulation of fractalkine contributes to the proliferative response of prostate cancer cells to hypoxia via promoting the G1/S phase transition. Mol Med Rep 12:7907–7914. https://doi.org/10.3892/mmr.2015.4438
Arandjelovic S, Ravichandran KS (2015) Phagocytosis of apoptotic cells in homeostasis. Nat Immunol 16:907–917. https://doi.org/10.1038/ni.3253
Noy R, Pollard JW (2014) Tumor-associated macrophages: from mechanisms to therapy. Immunity 41:49–61. https://doi.org/10.1016/j.immuni.2014.06.010
Vigano S, Alatzoglou D, Irving M, Ménétrier-Caux C, Caux C, Romero P, Coukos G (2019) Targeting adenosine in cancer immunotherapy to enhance T-cell function. Front Immunol 10:925. https://doi.org/10.3389/fimmu.2019.00925
Oh YT, Sun SY (2021) Regulation of cancer metastasis by trail/death receptor signaling. Biomolecules. https://doi.org/10.3390/biom11040499
Miles MA, Hawkins CJ (2017) Executioner caspases and CAD are essential for mutagenesis induced by TRAIL or vincristine. Cell Death Dis 8:e3062–e3062. https://doi.org/10.1038/cddis.2017.454
Hapach LA, Mosier JA, Wang W, Reinhart-King CA (2019) Engineered models to parse apart the metastatic cascade. NPJ Precis Oncol 3:20. https://doi.org/10.1038/s41698-019-0092-3
Su Z, Yang Z, Xu Y, Chen Y, Yu Q (2015) Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol Cancer 14:1–14. https://doi.org/10.1186/s12943-015-0321-5
Kim Y-N, Koo KH, Sung JY, Yun U-J, Kim H (2012) Anoikis resistance: an essential prerequisite for tumor metastasis. Int J Cell Biol. https://doi.org/10.1155/2012/306879
Paoli P, Giannoni E, Chiarugi P (2013) Anoikis molecular pathways and its role in cancer progression. Biochim Biophys Acta—Mol Cell Res 1833:3481–3498. https://doi.org/10.1016/j.bbamcr.2013.06.026
Fofaria NM, Srivastava SK (2015) STAT3 induces anoikis resistance, promotes cell invasion and metastatic potential in pancreatic cancer cells. Carcinogenesis 36:142–150. https://doi.org/10.1093/carcin/bgu233
Mak CSL, Yung MMH, Hui LMN, Leung LL, Liang R, Chen K, Liu SS, Qin Y, Leung THY, Lee K-F, Chan KKL, Ngan HYS, Chan DW (2017) MicroRNA-141 enhances anoikis resistance in metastatic progression of ovarian cancer through targeting KLF12/Sp1/survivin axis. Mol Cancer 16:11. https://doi.org/10.1186/s12943-017-0582-2
Li J, Li Q, Huang H, Li Y, Li L, Hou W, You Z (2017) Overexpression of miRNA-221 promotes cell proliferation by targeting the apoptotic protease activating factor-1 and indicates a poor prognosis in ovarian cancer. Int J Oncol 50:1087–1096. https://doi.org/10.3892/ijo.2017.3898
Powell E, Piwnica-Worms D, Piwnica-Worms H (2014) Contribution of p53 to metastasis. Cancer Discov 4:405–414. https://doi.org/10.1158/2159-8290.CD-13-0136
Eelen G, Treps L, Li X, Carmeliet P (2020) Basic and therapeutic aspects of angiogenesis updated. Circ Res 127:310–329. https://doi.org/10.1161/CIRCRESAHA.120.316851
Watson EC, Grant ZL, Coultas L (2017) Endothelial cell apoptosis in angiogenesis and vessel regression. Cell Mol Life Sci 74:4387–4403. https://doi.org/10.1007/s00018-017-2577-y
Dimmeler S, Zeiher AM (2000) Endothelial cell apoptosis in angiogenesis and vessel regression. Circ Res 87:434–439. https://doi.org/10.1161/01.res.87.6.434
Zou L, Liu X, Li J, Li W, Zhang L, Li J, Zhang J (2019) Tetramethylpyrazine enhances the antitumor effect of paclitaxel by inhibiting angiogenesis and inducing apoptosis. Front Pharmacol 10:707. https://doi.org/10.3389/fphar.2019.00707
Yaacoub K, Pedeux R, Tarte K, Thierry G (2016) Role of the tumor microenvironment in regulating apoptosis and cancer progression. Cancer Lett. https://doi.org/10.1016/j.canlet.2016.05.012
Wang M, Zhao J, Zhang L, Wei F, Lian Y, Wu Y, Gong Z, Zhang S, Zhou J, Cao K, Li X, Xiong W, Li G, Zeng Z, Guo C (2017) Role of tumor microenvironment in tumorigenesis. J Cancer 8:761–773. https://doi.org/10.7150/jca.17648
Sarode GS, Sarode SC, Maniyar N, Sharma NK, Patil S (2017) Carcinogenesis-relevant biological events in the pathophysiology of the efferocytosis phenomenon. Oncol Rev 11:343. https://doi.org/10.4081/oncol.2017.343
Shin S-A, Moon SY, Park D, Park JB, Lee CS (2019) Apoptotic cell clearance in the tumor microenvironment: a potential cancer therapeutic target. Arch Pharm Res 42:658–671. https://doi.org/10.1007/s12272-019-01169-2
Park S-Y, Kim I-S (2017) Engulfment signals and the phagocytic machinery for apoptotic cell clearance. Exp Mol Med 49:e331. https://doi.org/10.1038/emm.2017.52
Kumar S, Calianese D, Birge RB (2017) Efferocytosis of dying cells differentially modulate immunological outcomes in tumor microenvironment. Immunol Rev 280:149–164. https://doi.org/10.1111/imr.12587
Gray M, Botelho RJ (2017) Phagocytosis: hungry, hungry cells. Methods Mol Biol 1519:1–16. https://doi.org/10.1007/978-1-4939-6581-6_1
Sharma B, Kanwar SS (2018) Phosphatidylserine: a cancer cell targeting biomarker. Semin Cancer Biol 52:17–25. https://doi.org/10.1016/j.semcancer.2017.08.012
Birge RB, Boeltz S, Kumar S, Carlson J, Wanderley J, Calianese D, Barcinski M, Brekken RA, Huang X, Hutchins JT, Freimark B, Empig C, Mercer J, Schroit AJ, Schett G, Herrmann M (2016) Phosphatidylserine is a global immunosuppressive signal in efferocytosis, infectious disease, and cancer. Cell Death Differ 23:962–978. https://doi.org/10.1038/cdd.2016.11
Chang W, Fa H, Xiao D, Wang J (2020) Targeting phosphatidylserine for cancer therapy: prospects and challenges. Theranostics 10:9214–9229. https://doi.org/10.7150/thno.45125
Lin Y, Xu J, Lan H (2019) Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J Hematol Oncol 12:76. https://doi.org/10.1186/s13045-019-0760-3
Garg AD, Agostinis P (2017) Cell death and immunity in cancer: from danger signals to mimicry of pathogen defense responses. Immunol Rev 280:126–148. https://doi.org/10.1111/imr.12574
Zhu J, Powis de Tenbossche CG, Cané S, Colau D, van Baren N, Lurquin C, Schmitt-Verhulst A-M, Liljeström P, Uyttenhove C, Van den Eynde BJ (2017) Resistance to cancer immunotherapy mediated by apoptosis of tumor-infiltrating lymphocytes. Nat Commun 8:1404. https://doi.org/10.1038/s41467-017-00784-1
Zhu J, Petit P-F, Van den Eynde BJ (2019) Apoptosis of tumor-infiltrating T lymphocytes: a new immune checkpoint mechanism. Cancer Immunol Immunother 68:835–847. https://doi.org/10.1007/s00262-018-2269-y
Farhood B, Najafi M, Mortezaee K (2019) CD8(+) cytotoxic T lymphocytes in cancer immunotherapy: a review. J Cell Physiol 234:8509–8521. https://doi.org/10.1002/jcp.27782
Ferris RL, Blumenschein G, Fayette J, Guigay J, Colevas AD, Licitra L, Harrington K, Kasper S, Vokes EE, Even C, Worden F, Saba NF, Iglesias Docampo LC, Haddad R, Rordorf T, Kiyota N, Tahara M, Monga M, Lynch M, Geese WJ, Kopit J, Shaw JW, Gillison ML (2016) Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 375:1856–1867. https://doi.org/10.1056/NEJMoa1602252
Bellmunt J, de Wit R, Vaughn DJ, Fradet Y, Lee J-L, Fong L, Vogelzang NJ, Climent MA, Petrylak DP, Choueiri TK, Necchi A, Gerritsen W, Gurney H, Quinn DI, Culine S, Sternberg CN, Mai Y, Poehlein CH, Perini RF, Bajorin DF (2017) Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med 376:1015–1026. https://doi.org/10.1056/NEJMoa1613683
Chung C (2018) Restoring the switch for cancer cell death: targeting the apoptosis signaling pathway. Am J Heal Pharm 75:945–952. https://doi.org/10.2146/ajhp170607
Saito H, Takaya S, Osaki T, Ikeguchi M (2013) Increased apoptosis and elevated Fas expression in circulating natural killer cells in gastric cancer patients. Gastric Cancer 16:473–479. https://doi.org/10.1007/s10120-012-0210-1
Mohme M, Riethdorf S, Pantel K (2017) Circulating and disseminated tumour cells—mechanisms of immune surveillance and escape. Nat Rev Clin Oncol 14:155–167. https://doi.org/10.1038/nrclinonc.2016.144
Motz GT, Santoro SP, Wang L-P, Garrabrant T, Lastra RR, Hagemann IS, Lal P, Feldman MD, Benencia F, Coukos G (2014) Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat Med 20:607–615. https://doi.org/10.1038/nm.3541
Wang Y-H, Scadden DT (2015) Harnessing the apoptotic programs in cancer stem-like cells. EMBO Rep 16:1084–1098. https://doi.org/10.15252/embr.201439675
Steinbichler TB, Dudás J, Skvortsov S, Ganswindt U, Riechelmann H, Skvortsova I-I (2018) Therapy resistance mediated by cancer stem cells. Semin Cancer Biol 53:156–167. https://doi.org/10.1016/j.semcancer.2018.11.006
Phi LTH, Sari IN, Yang Y-G, Lee S-H, Jun N, Kim KS, Lee YK, Kwon HY (2018) Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment. Stem Cells Int 2018:5416923. https://doi.org/10.1155/2018/5416923
Li Y, Wang Z, Ajani JA, Song S (2021) Drug resistance and cancer stem cells. Cell Commun Signal 19:19. https://doi.org/10.1186/s12964-020-00627-5
Costello RT, Mallet F, Gaugler B, Sainty D, Arnoulet C, Gastaut JA, Olive D (2000) Human acute myeloid leukemia CD34+/CD38- progenitor cells have decreased sensitivity to chemotherapy and Fas-induced apoptosis, reduced immunogenicity, and impaired dendritic cell transformation capacities. Cancer Res 60:4403–4411
Peitzsch C, Kurth I, Kunz-Schughart L, Baumann M, Dubrovska A (2013) Discovery of the cancer stem cell related determinants of radioresistance. Radiother Oncol 108:378–387. https://doi.org/10.1016/j.radonc.2013.06.003
Haga RB, Ridley AJ (2016) Rho GTPases: regulation and roles in cancer cell biology. Small GTPases 7:207–221. https://doi.org/10.1080/21541248.2016.1232583
Green DR, Fitzgerald P (2016) Just so stories about the evolution of apoptosis. Curr Biol 26:R620–R627. https://doi.org/10.1016/j.cub.2016.05.023
Yang J, Chai X-Q, Zhao X-X, Li X (2017) Comparative genomics revealed the origin and evolution of autophagy pathway. J Syst Evol 55:71–82. https://doi.org/10.1111/jse.12212
Mariño G, Niso-Santano M, Baehrecke EH, Kroemer G (2014) Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 15:81–94. https://doi.org/10.1038/nrm3735
Germain M, Mathai JP, Shore GC (2002) BH-3-only BIK functions at the endoplasmic reticulum to stimulate cytochrome c release from mitochondria*. J Biol Chem 277:18053–18060. https://doi.org/10.1074/jbc.M201235200
Amr S, Heisey C, Zhang M, Xia X-J, Shows KH, Ajlouni K, Pandya A, Satin LS, El-Shanti H, Shiang R (2007) A homozygous mutation in a novel zinc-finger protein, ERIS, is responsible for Wolfram syndrome 2. Am J Hum Genet 81:673–683. https://doi.org/10.1086/520961
Zhu W, Cowie A, Wasfy GW, Penn LZ, Leber B, Andrews DW (1996) Bcl-2 mutants with restricted subcellular location reveal spatially distinct pathways for apoptosis in different cell types. EMBO J 15:4130–4141
Chang NC, Nguyen M, Germain M, Shore GC (2010) Antagonism of Beclin 1-dependent autophagy by BCL-2 at the endoplasmic reticulum requires NAF-1. EMBO J 29:606–618. https://doi.org/10.1038/emboj.2009.369
Baehrecke EH (2005) Autophagy: dual roles in life and death? Nat Rev Mol Cell Biol 6:505–510. https://doi.org/10.1038/nrm1666
Richard DPN, Youle J (2016) Mechanisms of mitophagy. Nat Rev Mol Cell Biol 12:9–14. https://doi.org/10.1038/nrm3028.Mechanisms
Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8:741–752. https://doi.org/10.1038/nrm2239
Sipos F, Firneisz G, Műzes G (2016) Therapeutic aspects of c-MYC signaling in inflammatory and cancerous colonic diseases. World J Gastroenterol 22:7938–7950. https://doi.org/10.3748/wjg.v22.i35.7938
Manié SN, Lebeau J, Chevet E (2014) Cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. 3. Orchestrating the unfolded protein response in oncogenesis: an update. Am J Physiol Physiol 307:C901–C907. https://doi.org/10.1152/ajpcell.00292.2014
Butler DE, Marlein C, Walker HF, Frame FM, Mann VM, Simms MS, Davies BR, Collins AT, Maitland NJ (2017) Inhibition of the PI3K/AKT/mTOR pathway activates autophagy and compensatory Ras/Raf/MEK/ERK signalling in prostate cancer. Oncotarget 8:56698–56713. https://doi.org/10.18632/oncotarget.18082
González-Polo R-A, Boya P, Pauleau A-L, Jalil A, Larochette N, Souquère S, Eskelinen E-L, Pierron G, Saftig P, Kroemer G (2005) The apoptosis/autophagy paradox: autophagic vacuolization before apoptotic death. J Cell Sci 118:3091–3102. https://doi.org/10.1242/jcs.02447
Zhao Z, Xia G, Li N, Su R, Chen X, Zhong L (2018) Autophagy inhibition promotes bevacizumab-induced apoptosis and proliferation inhibition in colorectal cancer cells. J Cancer 9:3407–3416. https://doi.org/10.7150/jca.24201
Das DN, Naik PP, Mukhopadhyay S, Panda PK, Sinha N, Meher BR, Bhutia SK (2017) Elimination of dysfunctional mitochondria through mitophagy suppresses benzo[a]pyrene-induced apoptosis. Free Radic Biol Med 112:452–463. https://doi.org/10.1016/j.freeradbiomed.2017.08.020
Grasso D, Ropolo A, Lo A, Ré V, Boggio MI, Molejón JL, Iovanna CD, Gonzalez R, Urrutia MI, Vaccaro (2011) Zymophagy, a novel selective autophagy pathway mediated by VMP1-USP9x-p62, prevents pancreatic cell death. J Biol Chem 286:8308–8324. https://doi.org/10.1074/jbc.M110.197301
Hou W, Han J, Lu C, Goldstein LA, Rabinowich H (2010) Autophagic degradation of active caspase-8: a crosstalk mechanism between autophagy and apoptosis. Autophagy 6:891–900. https://doi.org/10.4161/auto.6.7.13038
Pagliarini V, Wirawan E, Romagnoli A, Ciccosanti F, Lisi G, Lippens S, Cecconi F, Fimia GM, Vandenabeele P, Corazzari M, Piacentini M (2012) Autophagic pro-survival response Proteolysis of Ambra1 during apoptosis has a role in the inhibition of the autophagic pro-survival response. Cell Death Differ 19:1495–1504. https://doi.org/10.1038/cdd.2012.27
Lamy L, Ngo VN, Emre NCT, Shaffer AL, Yang Y, Tian E, Nair V, Kruhlak MJ, Zingone A, Landgren O, Staudt LM (2013) Control of autophagic cell death by caspase-10 in multiple myeloma. Cancer Cell 23:435–449. https://doi.org/10.1016/j.ccr.2013.02.017
Dong X, Fu J, Yin X, Cao S, Li X, Lin L, Ni J (2016) Emodin: a review of its pharmacology, toxicity and pharmacokinetics: emodin: pharmacology, toxicity and pharmacokinetics. Phyther Res 30:1207–1218. https://doi.org/10.1002/ptr.5631
Wang Y, Luo Q, He X, Wei H, Wang T, Shao J, Jiang X (2018) Emodin induces apoptosis of colon cancer cells via induction of autophagy in a ROS-dependent manner. Oncol Res 26:889–899. https://doi.org/10.3727/096504017X15009419625178
Yousefi S, Perozzo R, Schmid I, Ziemiecki A, Schaffner T, Scapozza L, Brunner T, Simon HU (2006) Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol 8:1124–1132. https://doi.org/10.1038/ncb1482
Chen H, Zhao C, He R, Zhou M, Liu Y, Guo X, Wang M, Zhu F, Qin R, Li X (2019) Danthron suppresses autophagy and sensitizes pancreatic cancer cells to doxorubicin. Toxicol Vitr 54:345–353. https://doi.org/10.1016/j.tiv.2018.10.019
Shui L, Wang W, Xie M, Ye B, Li X, Liu Y, Zheng M (2020) Isoquercitrin induces apoptosis and autophagy in hepatocellular carcinoma cells via AMPK/mTOR/p70S6K signaling pathway. Aging (Albany NY) 12:24318–24332. https://doi.org/10.18632/aging.202237
Young MM, Takahashi Y, Khan O, Park S, Hori T, Yun J, Sharma AK, Amin S, Hu CD, Zhang J, Kester M, Wang HG (2012) Autophagosomal membrane serves as platform for intracellular death-inducing signaling complex (iDISC)-mediated caspase-8 activation and apoptosis. J Biol Chem 287:12455–12468. https://doi.org/10.1074/jbc.M111.309104
Rathore R, McCallum JE, Varghese E, Florea A-M, Büsselberg D (2017) Overcoming chemotherapy drug resistance by targeting inhibitors of apoptosis proteins (IAPs). Apoptosis 22:898–919. https://doi.org/10.1007/s10495-017-1375-1
Xie Q, Liu Y, Li X (2020) The interaction mechanism between autophagy and apoptosis in colon cancer. Transl Oncol 13:100871. https://doi.org/10.1016/j.tranon.2020.100871
Zhu J, Zhao L, Luo B, Sheng W (2019) Shikonin regulates invasion and autophagy of cultured colon cancer cells by inhibiting yes–associated protein. Oncol Lett 18:6117–6125. https://doi.org/10.3892/ol.2019.10980
Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P, Shen S, Kepp O, Scoazec M, Mignot G, Rello-Varona S, Tailler M, Menger L, Vacchelli E, Galluzzi L, Ghiringhelli F, di Virgilio F, Zitvogel L, Kroemer G (2011) Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334:1573–1577. https://doi.org/10.1126/science.1208347
Crighton D, Wilkinson S, O’Prey J, Syed N, Smith P, Harrison PR, Gasco M, Garrone O, Crook T, Ryan KM (2006) DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126:121–134. https://doi.org/10.1016/j.cell.2006.05.034
White E (2016) Autophagy and p53. Cold Spring Harb Perspect Med 6:a026120–a026120. https://doi.org/10.1101/cshperspect.a026120
Li M, Gao P, Zhang J (2016) Crosstalk between autophagy and apoptosis: potential and emerging therapeutic targets for cardiac diseases. Int J Mol Sci 17:332. https://doi.org/10.3390/ijms17030332
Moghtaderi H, Sepehri H, Attari F (2017) Combination of arabinogalactan and curcumin induces apoptosis in breast cancer cells in vitro and inhibits tumor growth via overexpression of p53 level in vivo. Biomed Pharmacother 88:582–594. https://doi.org/10.1016/j.biopha.2017.01.072
De U, Son JY, Sachan R, Park YJ, Kang D, Yoon K, Lee BM, Kim IS, Moon HR, Kim HS (2018) A new synthetic histone deacetylase inhibitor, MHY2256, induces apoptosis and autophagy cell death in endometrial cancer cells via p53 acetylation. Int J Mol Sci 19:2743. https://doi.org/10.3390/ijms19092743
Mrakovcic M, Fröhlich LF (2018) p53-mediated molecular control of autophagy in tumor cells. Biomolecules 8:14. https://doi.org/10.3390/biom8020014
Lin C-F, Chien S-Y, Chen C-L, Hsieh C-Y, Tseng P-C, Wang Y-C (2016) IFN-γ induces mimic extracellular trap cell death in lung epithelial cells through autophagy-regulated DNA damage. J Interf Cytokine Res 36:100–112. https://doi.org/10.1089/jir.2015.0011
Pyo JO, Jang MH, Kwon YK, Lee HJ, Il Jun J, Woo HN, Cho DH, Choi BY, Lee H, Kim JH, Mizushima N, Oshumi Y, Jung YK (2005) Essential roles of Atg5 and FADD in autophagic cell death: dissection of autophagic cell death into vacuole formation and cell death. J Biol Chem 280:20722–20729. https://doi.org/10.1074/jbc.M413934200
Ye X, Zhou X-J, Zhang H (2018) Exploring the role of autophagy-related gene 5 (ATG5) yields important insights into autophagy in autoimmune/autoinflammatory diseases. Front Immunol 9:2334. https://doi.org/10.3389/fimmu.2018.02334
Nian H, Ma B (2021) Calpain–calpastatin system and cancer progression. Biol Rev 96:961–975. https://doi.org/10.1111/brv.12686
Zhang J, Zhang S, Shi Q, Allen TD, You F, Yang D (2020) The anti-apoptotic proteins Bcl-2 and Bcl-xL suppress Beclin 1/Atg6-mediated lethal autophagy in polyploid cells, Exp. Cell Res 394:112112. https://doi.org/10.1016/j.yexcr.2020.112112
Gordy C, He YW (2012) The crosstalk between autophagy and apoptosis: where does this lead? Protein Cell 3:17–27. https://doi.org/10.1007/s13238-011-1127-x
Heras-Sandoval D, Pérez-Rojas JM, Hernández-Damián J, Pedraza-Chaverri J (2014) The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration. Cell Signal 26:2694–2701. https://doi.org/10.1016/j.cellsig.2014.08.019
Xie W, Wulin H, Shao G, Wei L, Qi R, Ma B, Chen N, Shi R (2020) Polygalasaponin F inhibits neuronal apoptosis induced by oxygen-glucose deprivation and reoxygenation through the PI3K/Akt pathway. Basic Clin Pharmacol Toxicol 127:196–204. https://doi.org/10.1111/bcpt.13408
Safa AR (2013) Roles of c-FLIP in apoptosis, necroptosis, and autophagy. J Carcinog Mutagen. https://doi.org/10.4172/2157-2518.S6-003.Roles
Singh P, Ravanan P, Talwar P (2016) Death associated protein kinase 1 (DAPK1): a regulator of apoptosis and autophagy. Front Mol Neurosci 9:46. https://doi.org/10.3389/fnmol.2016.00046
Elbadawy M, Usui T, Yamawaki H, Sasaki K (2018) Novel functions of death-associated protein kinases through mitogen-activated protein kinase-related signals. Int J Mol Sci 19:3031. https://doi.org/10.3390/ijms19103031
Yu L, Wan F, Dutta S, Welsh S, Liu ZH, Freundt E, Baehrecke EH, Lenardo M (2006) Autophagic programmed cell death by selective catalase degradation. Proc Natl Acad Sci USA 103:4952–4957. https://doi.org/10.1073/pnas.0511288103
Bonapace L, Bornhauser BC, Schmitz M, Cario G, Ziegler U, Niggli FK, Schäfer BW, Schrappe M, Stanulla M, Bourquin JP (2010) Induction of autophagy-dependent necroptosis is required for childhood acute lymphoblastic leukemia cells to overcome glucocorticoid resistance. J Clin Invest 120:1310–1323. https://doi.org/10.1172/JCI39987
Yao Z, Zhang P, Guo H, Shi J, Liu S, Liu Y, Zheng D (2015) RIP1 modulates death receptor mediated apoptosis and autophagy in macrophages. Mol Oncol 9:806–817. https://doi.org/10.1016/j.molonc.2014.12.004
Verzella D, Pescatore A, Capece D, Vecchiotti D, Ursini MV, Franzoso G, Alesse E, Zazzeroni F (2020) Life, death, and autophagy in cancer: NF-κB turns up everywhere. Cell Death Dis 11:210. https://doi.org/10.1038/s41419-020-2399-y
Blaser H, Dostert C, Mak TW, Brenner D (2016) TNF and ROS crosstalk in inflammation. Trends Cell Biol 26:249–261. https://doi.org/10.1016/j.tcb.2015.12.002
Ryan KM, Ernst MK, Rice NR, Vousden KH (2000) Role of NF-κB in p53-mediated programmed cell death. Nature 404:892–897. https://doi.org/10.1038/35009130
Khandelwal N, Simpson J, Taylor G, Rafique S, Whitehouse A, Hiscox J, Stark LA (2011) Nucleolar NF-κB/RelA mediates apoptosis by causing cytoplasmic relocalization of nucleophosmin. Cell Death Differ 18:1889–1903. https://doi.org/10.1038/cdd.2011.79
Kong P, Zhu X, Geng Q, Xia L, Sun X, Chen Y, Li W, Zhou Z, Zhan Y, Xu D (2017) The microRNA-423-3p-Bim axis promotes cancer progression and activates oncogenic autophagy in gastric cancer. Mol Ther 25:1027–1037. https://doi.org/10.1016/j.ymthe.2017.01.013
Su B, Wang X-T, Sun Y-H, Long M-Y, Zheng J, Wu W-H, Li L (2020) Ischemia/hypoxia inhibits cardiomyocyte autophagy and promotes apoptosis via the Egr-1/Bim/Beclin-1 pathway. J Geriatr Cardiol 17:284–293. https://doi.org/10.11909/j.issn.1671-5411.2020.05.004
Yang D, Okamura H, Teramachi J, Haneji T (2016) Histone demethylase Jmjd3 regulates osteoblast apoptosis through targeting anti-apoptotic protein Bcl-2 and pro-apoptotic protein Bim. Biochim Biophys Acta—Mol Cell Res 1863:650–659. https://doi.org/10.1016/j.bbamcr.2016.01.006
Menon MB, Dhamija S (2018) Beclin 1 phosphorylation—at the Center of Autophagy Regulation. Front Cell Dev Biol 6:137. https://doi.org/10.3389/fcell.2018.00137
Oral O, Akkoc Y, Bayraktar O, Gozuacik D (2016) Physiological and pathological significance of the molecular cross-talk between autophagy and apoptosis. Histol Histopathol 31:479–498. https://doi.org/10.14670/HH-11-714
Yuan Y, Zhang Y, Han L, Sun S, Shu Y (2018) miR-183 inhibits autophagy and apoptosis in gastric cancer cells by targeting ultraviolet radiation resistance-associated gene. Int J Mol Med 42:3562–3570. https://doi.org/10.3892/ijmm.2018.3871
Murrow L, Malhotra R, Debnath J (2015) ATG12-ATG3 interacts with Alix to promote basal autophagic flux and late endosome function. Nat Cell Biol 17:300–310. https://doi.org/10.1038/ncb3112
Tsai T-C, Lai K-H, Su J-H, Wu Y-J, Sheu J-H (2018) 7-Acetylsinumaximol B induces apoptosis and autophagy in human gastric carcinoma cells through mitochondria dysfunction and activation of the PERK/eIF2α/ATF4/CHOP signaling pathway. Mar Drugs 16:104. https://doi.org/10.3390/md16040104
Alway SE (2019) Chap 27—antioxidants and polyphenols mediate mitochondrial mediated muscle death signaling in sarcopenia. Academic Press, Cambridge, pp 439–494. https://doi.org/10.1016/B978-0-12-810422-4.00026-9
Su M, Mei Y, Sinha S (2013) Role of the crosstalk between autophagy and apoptosis in cancer. J Oncol. https://doi.org/10.1155/2013/102735
Fairlie WD, Tran S, Lee EF (2020) Crosstalk between apoptosis and autophagy signaling pathways, 1st edn. Elsevier, Amsterdam. https://doi.org/10.1016/bs.ircmb.2020.01.003
McComb S, Chan PK, Guinot A, Hartmannsdottir H, Jenni S, Dobay MP, Bourquin J-P, Bornhauser BC (2019) Efficient apoptosis requires feedback amplification of upstream apoptotic signals by effector caspase-3 or -7. Sci Adv 5:eaau9433. https://doi.org/10.1126/sciadv.aau9433
Tracking Autophagy With LC3B & p62 - IN, (n.d.). http://www.thermofisher.com/in/en/home/life-science/cell-analysis/cell-viability-and-regulation/autophagy/autophagy-lc3b-p62.html
Ojha R, Ishaq M, Singh S (2015) Caspase-mediated crosstalk between autophagy and apoptosis: mutual adjustment or matter of dominance. J Cancer Res Ther 11:514–524. https://doi.org/10.4103/0973-1482.163695
Tsapras P, Nezis IP (2017) Caspase involvement in autophagy. Cell Death Differ 24:1369–1379. https://doi.org/10.1038/cdd.2017.43
Young MM, Takahashi Y, Khan O, Park S, Hori T, Yun J, Sharma AK, Amin S, Hu C-D, Zhang J, Kester M, Wang H-G (2012) Autophagosomal membrane serves as platform for intracellular death-inducing signaling complex (iDISC)-mediated caspase-8 activation and apoptosis. J Biol Chem 287:12455–12468. https://doi.org/10.1074/jbc.M111.309104
Liu T, Zhang J, Li K, Deng L, Wang H (2020) Combination of an autophagy inducer and an autophagy inhibitor: a smarter strategy emerging in cancer therapy. Front Pharmacol 11:408. https://doi.org/10.3389/fphar.2020.00408
Fitzwalter BE, Towers CG, Sullivan KD, Andrysik Z, Hoh M, Ludwig M, O’Prey J, Ryan KM, Espinosa JM, Morgan MJ, Thorburn A (2018) Autophagy inhibition mediates apoptosis sensitization in cancer therapy by relieving FOXO3a turnover. Dev Cell 44:555–565.e3. https://doi.org/10.1016/j.devcel.2018.02.014
Chen M-C, Lin Y-C, Liao Y-H, Liou J-P, Chen C-H (2019) MPT0G612, a novel HDAC6 inhibitor, induces apoptosis and suppresses IFN-γ-induced programmed death-ligand 1 in human colorectal carcinoma cells. Cancers (Basel) 11:1617. https://doi.org/10.3390/cancers11101617
Yu H, Wu C-L, Wang X, Ban Q, Quan C, Liu M, Dong H, Li J, Kim G-Y, Choi YH, Wang Z, Jin C-Y (2019) SP600125 enhances C-2-induced cell death by the switch from autophagy to apoptosis in bladder cancer cells. J Exp Clin Cancer Res 38:448. https://doi.org/10.1186/s13046-019-1467-6
Tilija Pun N, Jang W-J, Jeong C-H (2020) Role of autophagy in regulation of cancer cell death/apoptosis during anti-cancer therapy: focus on autophagy flux blockade. Arch Pharm Res 43:475–488. https://doi.org/10.1007/s12272-020-01239-w
Peng Y, Qiu L, Xu D, Zhang L, Yu H, Ding Y, Deng L, Lin J (2017) M4IDP, a zoledronic acid derivative, induces G1 arrest, apoptosis and autophagy in HCT116 colon carcinoma cells via blocking PI3K/Akt/mTOR pathway. Life Sci 185:63–72. https://doi.org/10.1016/j.lfs.2017.07.024
Kaluzki I, Hailemariam-Jahn T, Doll M, Kaufmann R, Balermpas P, Zöller N, Kippenberger S, Meissner M (2019) Dimethylfumarate inhibits colorectal carcinoma cell proliferation: evidence for cell cycle arrest, apoptosis and autophagy. Cells 8:1329. https://doi.org/10.3390/cells8111329
Gugnoni M, Sancisi V, Manzotti G, Gandolfi G, Ciarrocchi A (2016) Autophagy and epithelial–mesenchymal transition: an intricate interplay in cancer. Cell Death Dis 7:e2520–e2520. https://doi.org/10.1038/cddis.2016.415
Dang S, Yu Z, Zhang C, Zheng J, Li K, Wu Y, Qian L, Yang Z, Li X, Zhang Y, Wang R (2015) Autophagy promotes apoptosis of mesenchymal stem cells under inflammatory microenvironment. Stem Cell Res Ther 6:247. https://doi.org/10.1186/s13287-015-0245-4
Lin Y, Jiang D, Li Y, Han X, Yu D, Park JH, Jin Y-H (2015) Effect of sun ginseng potentiation on epirubicin and paclitaxel-induced apoptosis in human cervical cancer cells. J Ginseng Res 39:22–28. https://doi.org/10.1016/j.jgr.2014.08.001
Hong X, Li S, Li W, Xie M, Wei Z, Guo H, Wei W, Zhang S (2019) Disruption of protein neddylation with MLN4924 attenuates paclitaxel-induced apoptosis and microtubule polymerization in ovarian cancer cells. Biochem Biophys Res Commun 508:986–990. https://doi.org/10.1016/j.bbrc.2018.12.048
Deng L, Wu X, Zhu X, Yu Z, Liu Z, Wang J, Zheng Y (2021) Combination effect of curcumin with docetaxel on the PI3K/AKT/mTOR pathway to induce autophagy and apoptosis in esophageal squamous cell carcinoma. Am J Transl Res 13:57–72
Zhao P, Li M, Wang Y, Chen Y, He C, Zhang X, Yang T, Lu Y, You J, Lee RJ, Xiang G (2018) Enhancing anti-tumor efficiency in hepatocellular carcinoma through the autophagy inhibition by miR-375/sorafenib in lipid-coated calcium carbonate nanoparticles. Acta Biomater 72:248–255. https://doi.org/10.1016/j.actbio.2018.03.022
Acknowledgements
We are grateful to BITS-Pilani, Pilani campus for providing research-initiation grant (RIG) and stipend to the student for carrying out the literature search.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
No potential conflict of interest exist.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Das, S., Shukla, N., Singh, S.S. et al. Mechanism of interaction between autophagy and apoptosis in cancer. Apoptosis 26, 512–533 (2021). https://doi.org/10.1007/s10495-021-01687-9
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10495-021-01687-9