Noninvasive Physical Plasma as Innovative and Tissue-Preserving Therapy for Women Positive for Cervical Intraepithelial Neoplasia
<p>In Vitro NIPP treatment induces antiproliferative cell effects at different molecular interfaces. (<b>a</b>) Representative IF staining of Ki67 72 h after 30 s of NIPP treatment and (<b>b</b>) relative antiproliferative efficacy 72 h after 30 s of NIPP treatment), shown as relative decreases in cell number, cell viability, and Ki67 expression; the scale bar equals 40 μm. (<b>c</b>) Representative IF staining of 5mC 4 h after 30 s of NIPP treatment and (<b>d</b>) relative genomic methylation level per nucleus (number of foci normalized to the control) 4 (◆) and 24 h (■) after 30 s of NIPP treatment of cervical cancer cells; the scale bar equals 20 μm. (<b>e</b>) Representative IF microscopy of γH2AX and (<b>f</b>) relative γH2AX intensity and (<b>g</b>) relative γH2AX intensity 1 h, 4 h, and 24 h after 30 s of NIPP treatment of cervical cancer cells, indicating DNA double-strand breaks; the scale bar equals 10 μm. (<b>h</b>) Relative induction of growth arrest- and DNA damage-inducible genes GADD45 and PARP 72 h after 30 s of NIPP treatment. (<b>i</b>) Relative fractions of cells in 561 cell cycle phases S, G1 and G2 and with reversible phase transition to G2 4 h after 30 s of NIPP treatment. (<b>j</b>) Relative expression of the cell cycle factors phospho-histone H3 (Ser10) and CyclinB1 72 h after 30 s of NIPP treatment, indicating G2 arrest. (<b>k</b>) Relative caspase-3/7 activity 24 h after 30 s of NIPP treatment. (<b>l</b>) Relative expression of the apoptotic factors pAkt, Hsp27, Bim Casp9, pp53, and 53BP1 24 h after 30 s of NIPP treatment. (<b>m</b>) PC-3 and (<b>n</b>) PC-4 score values for single-cell Raman microspectroscopy of untreated and 30 s NIPP-treated cervical cancer cells after 1 and 24 h, as assessed by PCA; the data for each group originate from 3 independent experiments with 30 cells each. Results are expressed as mean ± SD; (<b>a</b>–<b>l</b>): * <span class="html-italic">p</span> < 0.05; paired <span class="html-italic">t</span> test; (<b>m</b>,<b>n</b>): one-way ANOVA; * <span class="html-italic">p</span> < 0.05).</p> "> Figure 2
<p>Ex vivo NIPP treatment maintains tissue morphology but shows transmucosal penetration and immediate effects on cell physiology. (<b>a</b>) Representative lactate dehydrogenase (LDH; upper row) and hematoxylin-eosin (HE, lower row) staining of cervical tissues after treatment with NIPP at different doses; the scale bar equals 200 μm. (<b>b</b>) Raman intensity distribution heatmaps assigned to collagen I (pink), nuclei (red) and cytoplasmic proteins (light blue) immediately and 24 h after ex vivo NIPP treatment of cervical tissue for 2 and 5 min; the scale bar equals 50 μm. Images were acquired 583 from the basal and superficial tissue layers. (<b>c</b>) The gray value intensities (GVIs) of the Raman images assessed in (<b>b</b>) revealed no quantitative differences between treated and untreated tissues. (<b>d</b>) Statistical comparison of the nuclear spectra obtained in (<b>b</b>) was performed by PCA and subsequent normalization of the PC score values to the control samples to assess qualitative differences in nuclear composition; the data points represent average score values per donor (<span class="html-italic">n</span> = 3). Results are expressed as mean ± SD; two-way ANOVA; * <span class="html-italic">p</span> < 0.05).</p> "> Figure 3
<p>In vivo NIPP treatment and evaluation of molecular tissue effects, penetration depth and clinical efficacy. (<b>a</b>) Trial flow chart of patient recruitment and study visits for the prospective clinical study. (<b>b</b>) Setup of in vivo NIPP treatment. (<b>c</b>) Schematic of the anatomical view of the human cervix. As the uterine portion of the vaginal cavity, the cervix is easily accessible for NIPP treatment. (<b>d</b>) Colposcopic image of a human cervix after staining with 4% acetic acid and Lugol’s iodine at beginning (<b>left</b>) and after (<b>right</b>) NIPP treatment (30 s/cm<sup>2</sup>). The transformation zone is completely visible (T1 transformation zone; dashed line). The NIPP effluent is marked by an asterisk. (<b>e</b>–<b>j</b>) Columnar (<b>e</b>–<b>g</b>) and squamous (<b>h</b>–<b>j</b>) epithelium of tissue sections from patients treated with NIPP in vivo at 30 s/cm<sup>2</sup> and tissue biopsies before treatment (control) were analyzed by Raman imaging. (<b>e</b>,<b>h</b>) Nuclei (red), collagen I (pink) and cytoplasmic proteins (light blue) were localized by TCA; the scale bar equals 50 μm. (<b>f</b>,<b>i</b>) The nuclear spectra obtained in (<b>e</b>,<b>h</b>) were processed by PCA, and the average PC score values of each patient (◆) were statistically compared (mean ± SD; paired <span class="html-italic">t</span> test; * <span class="html-italic">p</span> < 0.05). (<b>g</b>,<b>j</b>) Underlying biochemical information was interpreted based on relevant spectral signatures elaborated in the loading plot.</p> "> Figure 4
<p>Study results. (<b>a</b>) Representative histopathological images of a CIN1 a CIN2 lesion before and 24 weeks after NIPP treatment within the prospective clinical study; the scale bar equals 50 μm; the asterisk marks the junction between squamous and columnar epithelium. (<b>b</b>) Clinical, histopathological and cytological features of patients before and 2, 12 and 24 weeks after NIPP treatment.</p> "> Figure 5
<p>General summary of the antineoplastic NIPP response. The reactive species generated by NIPP cause a transmucosal increase in intracellular ROS and RNS, particularly through NIPP-mediated impairment of the cytoplasmic membrane. As a result, ROS and RNS activate various intracellular response pathways, primarily alterations in genomic methylation patterns and signal transduction cascades involved in the DNA double-strand break response and p53-associated apoptosis. This is followed by the attenuation of cell growth, arrest of the cell cycle, and the initiation of apoptosis.</p> ">
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Treatment
2.2. Physico-Chemical Characterization
2.3. Propagation and In Vitro NIPP Treatment of Cells
2.4. Cell Proliferation
2.5. Immunfluorescence Microscopy
2.6. Flow Cytometry
2.7. Quantitative Reverse Transcription-Polymerase Chain Reaction (RT-PCR)
2.8. DigiWest Multiplex Protein Profiling
2.9. Raman Microspectroscopy and Raman Imaging
2.10. Histology
2.11. Statistical Analysis
3. Results
3.1. In Vitro NIPP Treatment and Molecular Analysis of the Human Malignant Cervical Cancer Cells
3.2. Ex Vivo NIPP Treatment and Molecular Analysis of Cervical Tissue Samples
3.3. In Vivo NIPP Treatment of Patients with CIN
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 2015, 136, E359–E386. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Yang, X.; Dai, Y.; Wu, Q.; He, G.; Yin, G. Survey of cervical cancer survivors regarding quality of life and sexual function. J. Cancer Res. 2016, 12, 938–944. [Google Scholar] [CrossRef]
- Peto, J.; Gilham, C.; Deacon, J.; Taylor, C.; Evans, C.; Binns, W.; Haywood, M.; Elanko, N.; Coleman, D.; Yule, R. Cervical HPV infection and neoplasia in a large population-based prospective study: The Manchester cohort. Br. J. Cancer 2004, 91, 942–953. [Google Scholar] [CrossRef] [Green Version]
- Ostör, A.G. Natural history of cervical intraepithelial neoplasia: A critical review. Int. J. Gynecol. Pathol. 1993, 12, 186–192. [Google Scholar] [CrossRef] [PubMed]
- McIndoe, W.A.; Mclean, M.R.; Jones, R.W.; Mullins, P.R. The invasive potential of carcinoma in situ of the cervix. Obstet. Gynecol. 1984, 64, 451–458. [Google Scholar] [CrossRef]
- Perkins, R.B.; Guido, R.S.; Castle, P.E.; Chelmow, D.; Einstein, M.H.; Garcia, F.; Huh, W.K.; Kim, J.J.; Moscicki, A.B.; Nayar, R.; et al. 2019 ASCCP Risk-Based Management Consensus Guidelines for Abnormal Cervical Cancer Screening Tests and Cancer Precursors. J. Low. Genit. Tract Dis. 2020, 24, 102–131. [Google Scholar] [CrossRef] [Green Version]
- Kyrgiou, M.; Athanasiou, A.; Kalliala, I.E.J.; Paraskevaidi, M.; Mitra, A.; Martin-Hirsch, P.P.; Arbyn, M.; Bennett, P.; Paraskevaidis, E. Obstetric outcomes after conservative treatment for cervical intraepithelial lesions and early invasive disease. Cochrane Database Syst. Rev. 2017, 11, Cd012847. [Google Scholar] [CrossRef]
- Sadler, L.; Saftlas, A.; Wang, W.; Exeter, M.; Whittaker, J.; McCowan, L. Treatment for cervical intraepithelial neoplasia and risk of preterm delivery. JAMA 2004, 291, 2100–2106. [Google Scholar] [CrossRef] [Green Version]
- Koensgen, D.; Besic, I.; Guembel, D.; Kaul, A.; Weiss, M.; Diesing, K.; Kramer, A.; Bekeschus, S.; Mustea, A.; Stope, M.B. Cold atmospheric plasma (CAP) and CAP-stimulated cell culture media suppress ovarian cancer cell growth—A putative treatment option in ovarian cancer therapy. Anticancer. Res. 2017, 37, 6739–6744. [Google Scholar]
- Weiss, M.; Gümbel, D.; Gelbrich, N.; Brandenburg, L.-O.; Mandelkow, R.; Zimmermann, U.; Ziegler, P.; Burchardt, M.; Stope, M.B. Inhibition of cell growth of the prostate cancer cell model LNCaP by cold atmospheric plasma. In Vivo 2015, 29, 611–616. [Google Scholar]
- Weiss, M.; Gümbel, D.; Hanschmann, E.-M.; Mandelkow, R.; Gelbrich, N.; Zimmermann, U.; Walther, R.; Ekkernkamp, A.; Sckell, A.; Kramer, A. Cold atmospheric plasma treatment induces anti-proliferative effects in prostate cancer cells by redox and apoptotic signaling pathways. PLoS ONE 2015, 10, e0130350. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Nguyen, L.N.; Akter, M.; Park, G.; Choi, E.H.; Kaushik, N.K. Impact of ROS generated by chemical, physical, and plasma techniques on cancer attenuation. Cancers 2019, 11, 1030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, M.; Utz, R.; Ackermann, M.; Taran, F.A.; Krämer, B.; Hahn, M.; Wallwiener, D.; Brucker, S.; Haupt, M.; Barz, J. Characterization of a non-thermally operated electrosurgical argon plasma source by electron spin resonance spectroscopy. Plasma Process. Polym. 2019, 16, 1800150. [Google Scholar] [CrossRef]
- Wenzel, T.; Carvajal Berrio, D.A.; Daum, R.; Reisenauer, C.; Weltmann, K.-D.; Wallwiener, D.; Brucker, S.Y.; Schenke-Layland, K.; Brauchle, E.-M.; Weiss, M. Molecular Effects and Tissue Penetration Depth of Physical Plasma in Human Mucosa Analyzed by Contact- and Marker-Independent Raman Microspectroscopy. ACS Appl. Mater. Interfaces 2019, 11, 42885–42895. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, T.; Carvajal Berrio, D.A.; Reisenauer, C.; Layland, S.; Koch, A.; Wallwiener, D.; Brucker, S.Y.; Schenke-Layland, K.; Brauchle, E.-M.; Weiss, M. Trans-mucosal efficacy of non-thermal plasma treatment on cervical cancer tissue and human cervix uteri by a next generation electrosurgical argon plasma device. Cancers 2020, 12, 267. [Google Scholar] [CrossRef] [Green Version]
- Schoenthaler, M.; Farin, E.; Karcz, W.K.; Ardelt, P.; Wetterauer, U.; Miernik, A. The Freiburg Index of Patient Satisfaction: Introduction and validation of a new questionnaire. Dtsch. Med. Wochenschr. 2012, 137, 419–424. [Google Scholar] [CrossRef]
- Weiss, M.; Barz, J.; Ackermann, M.; Utz, R.; Ghoul, A.; Weltmann, K.D.; Stope, M.B.; Wallwiener, D.; Schenke-Layland, K.; Oehr, C.; et al. Dose-Dependent Tissue-Level Characterization of a Medical Atmospheric Pressure Argon Plasma Jet. ACS Appl. Mater. Interfaces 2019, 11, 19841–19853. [Google Scholar] [CrossRef]
- Feil, L.; Koch, A.; Utz, R.; Ackermann, M.; Barz, J.; Stope, M.; Kramer, B.; Wallwiener, D.; Brucker, S.Y.; Weiss, M. Cancer-Selective Treatment of Cancerous and Non-Cancerous Human Cervical Cell Models by a Non-Thermally Operated Electrosurgical Argon Plasma Device. Cancers 2020, 12, 1037. [Google Scholar] [CrossRef] [Green Version]
- Milutinovic, S.; Zhuang, Q.; Niveleau, A.; Szyf, M. Epigenomic stress response: Knockdown of DNA methyltransferase 1 triggers an intra-S-phase arrest of DNA replication and induction of stress response genes. J. Biol. Chem. 2003, 278, 14985–14995. [Google Scholar] [CrossRef] [Green Version]
- Holl, M.; Becker, L.; Keller, A.L.; Feuerer, N.; Marzi, J.; Carvajal Berrio, D.A.; Jakubowski, P.; Neis, F.; Pauluschke-Frohlich, J.; Brucker, S.Y.; et al. Laparoscopic Peritoneal Wash Cytology-Derived Primary Human Mesothelial Cells for In Vitro Cell Culture and Simulation of Human Peritoneum. Biomedicines 2021, 9, 176. [Google Scholar] [CrossRef]
- Ruoff, F.; Henes, M.; Templin, M.; Enderle, M.; Boesmueller, H.; Wallwiener, D.; Brucker, S.Y.; Schenke-Layland, K.; Weiss, M. Targeted Protein Profiling of In Vivo NIPP-Treated Tissues Using DigiWest Technology. Appl Sci. 2021, 11, 11238. [Google Scholar] [CrossRef]
- Hess, R.; Scarpelli, D.; Pearse, A. Cytochemical localization of pyridine nucleotide-linked dehydrogenases. Nature 1958, 181, 1531–1532. [Google Scholar] [CrossRef] [PubMed]
- Braný, D.; Dvorská, D.; Halašová, E.; Škovierová, H. Cold Atmospheric Plasma: A Powerful Tool for Modern Medicine. Int. J. Mol. Sci. 2020, 21, 2932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurita, H.; Haruta, N.; Uchihashi, Y.; Seto, T.; Takashima, K. Strand breaks and chemical modification of intracellular DNA induced by cold atmospheric pressure plasma irradiation. PLoS ONE 2020, 15, e0232724. [Google Scholar] [CrossRef]
- Stope, M.B. Phosphorylation of histone H2A. X as a DNA-associated biomarker. World Acad. Sci. J. 2021, 3, 31. [Google Scholar] [CrossRef]
- Tang, L.; Zhang, Y.; Pan, H.; Luo, Q.; Zhu, X.-M.; Dong, M.-Y.; Leung, P.C.; Sheng, J.-Z.; Huang, H.-F. Involvement of cyclin B1 in progesterone-mediated cell growth inhibition, G2/M cell cycle arrest, and apoptosis in human endometrial cell. Reprod. Biol. Endocrinol. 2009, 7, 144. [Google Scholar] [CrossRef] [Green Version]
- Hans, F.; Dimitrov, S. Histone H3 phosphorylation and cell division. Oncogene 2001, 20, 3021–3027. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Global Strategy to Accelerate the Elimination of Cervical Cancer as a Public Health Problem; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Pinder, L.F.; Parham, G.P.; Basu, P.; Muwonge, R.; Lucas, E.; Nyambe, N.; Sauvaget, C.; Mwanahamuntu, M.H.; Sankaranarayanan, R.; Prendiville, W. Thermal ablation versus cryotherapy or loop excision to treat women positive for cervical precancer on visual inspection with acetic acid test: Pilot phase of a randomised controlled trial. Lancet Oncol. 2020, 21, 175–184. [Google Scholar] [CrossRef]
- Basu, P.; Mittal, S.; Vale, D.B.; Kharaji, Y.C. Secondary prevention of cervical cancer. Best Pract. Res. Clin. Obstet. Gynaecol. 2018, 47, 73–85. [Google Scholar] [CrossRef]
- Yan, D.; Sherman, J.H.; Keidar, M. Cold atmospheric plasma, a novel promising anti-cancer treatment modality. Oncotarget 2017, 8, 15977–15995. [Google Scholar] [CrossRef] [Green Version]
- Kluge, S.; Bekeschus, S.; Bender, C.; Benkhai, H.; Sckell, A.; Below, H.; Stope, M.B.; Kramer, A. Investigating the mutagenicity of a cold argon-plasma jet in an HET-MN model. PLoS ONE 2016, 11, e0160667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gentile, M.; Latonen, L.; Laiho, M. Cell cycle arrest and apoptosis provoked by UV radiation-induced DNA damage are transcriptionally highly divergent responses. Nucleic Acids Res. 2003, 31, 4779–4790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vairapandi, M.; Balliet, A.G.; Hoffman, B.; Liebermann, D.A. GADD45b and GADD45g are cdc2/cyclinB1 kinase inhibitors with a role in S and G2/M cell cycle checkpoints induced by genotoxic stress. J. Cell. Physiol. 2002, 192, 327–338. [Google Scholar] [CrossRef]
- Dubuc, A.; Monsarrat, P.; Virard, F.; Merbahi, N.; Sarrette, J.-P.; Laurencin-Dalicieux, S.; Cousty, S. Use of cold-atmospheric plasma in oncology: A concise systematic review. Ther. Adv. Med. Oncol. 2018, 10, 1758835918786475. [Google Scholar] [CrossRef] [PubMed]
- Hillemanns, P.; Friese, K.; Dannecker, C.; Klug, S.; Seifert, U.; Iftner, T.; Hädicke, J.; Löning, T.; Horn, L.; Schmidt, D. Prevention of Cervical Cancer. Guideline of the DGGG and the DKG (S3 Level, AWMF Register Number 015/027OL, December 2017)—Part 2 on Triage, Treatment and Follow-up. Geburtshilfe Frauenheilkd. 2019, 79, 160. [Google Scholar]
- Czamara, K.; Majzner, K.; Pacia, M.Z.; Kochan, K.; Kaczor, A.; Baranska, M. Raman spectroscopy of lipids: A review. J. Raman Spectrosc. 2015, 46, 4–20. [Google Scholar] [CrossRef]
- Krafft, C.; Neudert, L.; Simat, T.; Salzer, R. Near infrared Raman spectra of human brain lipids. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2005, 61, 1529–1535. [Google Scholar] [CrossRef]
- Rygula, A.; Majzner, K.; Marzec, K.M.; Kaczor, A.; Pilarczyk, M.; Baranska, M. Raman spectroscopy of proteins: A review. J. Raman Spectrosc. 2013, 44, 1061–1076. [Google Scholar] [CrossRef]
- Stone, N.; Kendall, C.; Smith, J.; Crow, P.; Barr, H. Raman spectroscopy for identification of epithelial cancers. Faraday Disc. 2004, 126, 141–157; discussion 169–183. [Google Scholar] [CrossRef]
- Benevides, J.M.; Thomas, G.J., Jr. Characterization of DNA structures by Raman spectroscopy: High-salt and low-salt forms of double helical poly(dG-dC) in H2O and D2O solutions and application to B, Z and A-DNA. Nucleic Acids Res. 1983, 11, 5747–5761. [Google Scholar] [CrossRef] [Green Version]
- Frushour, B.G.; Koenig, J.L. Raman scattering of collagen, gelatin, and elastin. Biopolymers 1975, 14, 379–391. [Google Scholar] [CrossRef]
- De Gelder, J.; De Gussem, K.; Vandenabeele, P.; Moens, L. Reference database of Raman spectra of biological molecules. J. Raman Spectrosc. 2007, 38, 1133–1147. [Google Scholar] [CrossRef]
- Puppels, G.J.; Garritsen, H.S.; Segers-Nolten, G.M.; de Mul, F.F.; Greve, J. Raman microspectroscopic approach to the study of human granulocytes. Biophys. J. 1991, 60, 1046–1056. [Google Scholar] [CrossRef] [Green Version]
- Daum, R.; Brauchle, E.M.; Berrio, D.A.C.; Jurkowski, T.P.; Schenke-Layland, K. Non-invasive detection of DNA methylation states in carcinoma and pluripotent stem cells using Raman microspectroscopy and imaging. Sci. Rep. 2019, 9, 7014. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Lim, S.F.; Puretzky, A.; Riehn, R.; Hallen, H.D. DNA Methylation Detection Using Resonance and Nanobowtie—Antenna-Enhanced Raman Spectroscopy. Biophys. J. 2018, 114, 2498–2506. [Google Scholar] [CrossRef] [Green Version]
- Pezzotti, G.; Horiguchi, S.; Boschetto, F.; Adachi, T.; Marin, E.; Zhu, W.; Yamamoto, T.; Kanamura, N.; Ohgitani, E.; Mazda, O. Raman Imaging of Individual Membrane Lipids and Deoxynucleoside Triphosphates in Living Neuronal Cells during Neurite Outgrowth. ACS Chem. Neurosci. 2018, 9, 3038–3048. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marzi, J.; Stope, M.B.; Henes, M.; Koch, A.; Wenzel, T.; Holl, M.; Layland, S.L.; Neis, F.; Bösmüller, H.; Ruoff, F.; et al. Noninvasive Physical Plasma as Innovative and Tissue-Preserving Therapy for Women Positive for Cervical Intraepithelial Neoplasia. Cancers 2022, 14, 1933. https://doi.org/10.3390/cancers14081933
Marzi J, Stope MB, Henes M, Koch A, Wenzel T, Holl M, Layland SL, Neis F, Bösmüller H, Ruoff F, et al. Noninvasive Physical Plasma as Innovative and Tissue-Preserving Therapy for Women Positive for Cervical Intraepithelial Neoplasia. Cancers. 2022; 14(8):1933. https://doi.org/10.3390/cancers14081933
Chicago/Turabian StyleMarzi, Julia, Matthias B. Stope, Melanie Henes, André Koch, Thomas Wenzel, Myriam Holl, Shannon L. Layland, Felix Neis, Hans Bösmüller, Felix Ruoff, and et al. 2022. "Noninvasive Physical Plasma as Innovative and Tissue-Preserving Therapy for Women Positive for Cervical Intraepithelial Neoplasia" Cancers 14, no. 8: 1933. https://doi.org/10.3390/cancers14081933
APA StyleMarzi, J., Stope, M. B., Henes, M., Koch, A., Wenzel, T., Holl, M., Layland, S. L., Neis, F., Bösmüller, H., Ruoff, F., Templin, M., Krämer, B., Staebler, A., Barz, J., Carvajal Berrio, D. A., Enderle, M., Loskill, P. M., Brucker, S. Y., Schenke-Layland, K., & Weiss, M. (2022). Noninvasive Physical Plasma as Innovative and Tissue-Preserving Therapy for Women Positive for Cervical Intraepithelial Neoplasia. Cancers, 14(8), 1933. https://doi.org/10.3390/cancers14081933