Metronidazole Electro-Oxidation Degradation on a Pilot Scale
"> Figure 1
<p>Experimental setup.</p> "> Figure 2
<p>Effect of current density on the normalized metronidazole (MTZ) concentration profile. [MTZ]<sub>0</sub> = 30 mg L<sup>−1</sup>, 0.05 M Na<sub>2</sub>SO<sub>4</sub>, <span style="color:blue">●</span> 30 mA cm<sup>−2</sup>, <span style="color:green">▲</span> 50 mA cm<sup>−2</sup>, and <span style="color:red">■</span> 100 mA cm<sup>−2</sup>.</p> "> Figure 3
<p>Comparison of the oxidizability of metronidazole, showing the trends of the reaction rate as a function of current density <span style="color:blue">●</span> 30 mA cm<sup>−2</sup>, <span style="color:green">▲</span> 50 mA cm<sup>−2</sup>, and <span style="color:red">■</span> 100 mA cm<sup>−2</sup>.</p> "> Figure 4
<p>Changes in the concentration of MTZ with the specific electric charge passed during the electrolysis process in a batch system with a BDD anode and a stainless-steel cathode at different electric charges and a 286.92 L h<sup>−1</sup> flowrate. Different current densities: <span style="color:blue">●</span> 30 mA cm<sup>−2</sup>, <span style="color:green">▲</span> 50 mA cm<sup>−2</sup>, and <span style="color:red">■</span> 100 mA cm<sup>−2</sup>.</p> "> Figure 5
<p>TOC removal percentage during electrolysis of metronidazole in an aqueous solution with a BDD anode and a stainless-steel iron with a 0.05 M electrolyte support concentration and different current densities: 30 mA cm<sup>−2</sup>, 50mA cm<sup>−2</sup>, and 100 mA cm<sup>−2</sup>.</p> "> Figure 6
<p>Biochemical oxygen demand (BOD<sub>5</sub>) achieved during the electrolysis process, at density currents of <span style="color:blue">●</span> 30 mA cm<sup>−2</sup>, <span style="color:green">▲</span> 50 mA cm<sup>−2</sup>, and <span style="color:red">■</span> 100 mA cm<sup>−2</sup>.</p> "> Figure 7
<p>Biodegradability index of metronidazole at 0 min and 180 min of different current densities: 30 mA cm<sup>−2</sup>, 50 mA cm<sup>−2</sup>, and 100 mA cm<sup>−2</sup>.</p> "> Figure 8
<p>pH achieved during the electrolytic process at a 286.92 L h<sup>−1</sup> flowrate and different current densities: (<span style="color:blue">●</span>) 30 mA cm<sup>−2</sup>, (<span style="color:green">▲</span>) 50 mA cm<sup>−2</sup>, and (<span style="color:red">■</span>) 100 mA cm<sup>−2</sup>.</p> "> Figure 9
<p>(<b>a</b>) Formic acid produced during the electrolysis process of 30 mg L<sup>−1</sup>: <span style="color:blue">●</span> 30 mA cm<sup>−2</sup>, <span style="color:green">▲</span> 50 mA cm<sup>−2</sup>, and <span style="color:red">■</span> 100 mA cm<sup>−2</sup> in 180 min; (<b>b</b>) acetic acid produced during the electrolysis process of 30 mg L<sup>−1</sup>: <span style="color:blue">●</span> 30 mA cm<sup>−2</sup>, <span style="color:green">▲</span> 50 mA cm<sup>−2</sup>, and <span style="color:red">■</span> 100 mA cm<sup>−2</sup> in 180 min.</p> "> Figure 10
<p>Proposed MTZ degradation pathway during BDD/stainless-steel electrolysis. (<b>a</b>) Initial degradation. (<b>b</b>) Intermediate degradation. (<b>c</b>) Byproducts of degradation and mineralization.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Pilot Scale of Degradation Kinetics
3.2. Treatment Quality Analysis
3.3. Metronidazole Degradation Byproducts
3.4. Cost Analysis
Laboratory Scale | Pilot Scale |
---|---|
Low energetic consumption, considering volumes less than 1 L | High energetic consumption, because of the large volumes treated |
Ideal operating conditions are considered for optimization | Optimization depends on the performance at scale and the cost of operation |
Operating costs are low because of the scale | High operating costs for commercial viability |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, L.; Li, W.; Désesquelles, P.; Van-Oanh, N.T.; Thomas, S.; Yang, J. A Statistical Model and DFT Study of the Fragmentation Mechanisms of Metronidazole by Advanced Oxidation Processes. J. Phys. Chem. A 2019, 123, 933–942. [Google Scholar] [CrossRef] [PubMed]
- Feier, B.; Florea, A.; Cristea, C.; Săndulescu, R. Electrochemical detection and removal of pharmaceuticals in waste waters. Curr. Opin. Electrochem. 2018, 11, 1–11. [Google Scholar] [CrossRef]
- Görmez, F.; Görmez, Ö.; Gözmen, B.; Kalderis, D. Degradation of chloramphenicol and metronidazole by electro-Fenton process using graphene oxide-Fe3O4 as heterogeneous catalyst. J. Environ. Chem. Eng. 2019, 7, 102990. [Google Scholar] [CrossRef]
- Seid-Mohammadi, A.; Ghorbanian, Z.; Asgari, G.; Dargahi, A. Photocatalytic degradation of metronidazole (MNZ) antibiotic in aqueous media using copper oxide nanoparticles activated by H2O2/UV process: Biodegradability and kinetic studies. Desalination Water Treat. 2020, 193, 369–380. [Google Scholar] [CrossRef]
- Asgari, E.; Esrafili, A.; Jafari, A.J.; Kalantary, R.R.; Nourmoradi, H.; Farzadkia, M. The Comparison of ZnO/polyaniline Nanocomposite under UV and Visible Radiations for Decomposition of Metronidazole: Degradation Rate, Mechanism and Mineralization. Process Saf. Environ. Prot. 2019, 128, 65–76. [Google Scholar] [CrossRef]
- Afkhami, A.; Bahiraei, A.; Madrakian, T. Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium. Mater. Sci. Eng. C 2016, 59, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Sousa, C.P.; Ribeiro, F.W.P.; Oliveira, T.M.B.F.; Salazar-Banda, G.R.; de Lima-Neto, P.; Morais, S.; Correia, A.N. Electroanalysis of Pharmaceuticals on Boron-Doped Diamond Electrodes: A Review. ChemElectroChem 2019, 6, 2350–2378. [Google Scholar] [CrossRef]
- Nolasco, S.L.; Roa, G.; Gomez, R.M.; Balderas, P.; Ibarra, P. Degradation of Metronidazole in Aqueous Solution by Electrochemical Peroxidation. ECS Trans. 2013, 47, 25–33. [Google Scholar] [CrossRef]
- Ahmadzadeh, S.; Dolatabadi, M. Electrochemical treatment of pharmaceutical wastewater through electrosynthesis of iron hydroxides for practical removal of metronidazole. Chemosphere 2018, 212, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Farzadkia, M.; Bazrafshan, E.; Esrafili, A.; Yang, J.-K.; Shirzad-Siboni, M. Photocatalytic degradation of Metronidazole with illuminated TiO2 nanoparticles. J. Environ. Health Sci. Eng. 2015, 13, 35. [Google Scholar] [CrossRef]
- Cheng, W.; Yang, M.; Xie, Y.; Fang, Z.; Nan, J.; Tsang, P.E. Electrochemical degradation of the antibiotic metronidazole in aqueous solution by the Ti/SnO2–Sb–Ce anode. Environ. Technol. 2013, 34, 2977–2987. [Google Scholar] [CrossRef]
- Parashar, D.; Achari, G.; Kumar, M. Facile synthesis of silver doped ZnO nanoparticles by thermal decomposition method for photocatalytic degradation of metronidazole under visible light. J. Environ. Chem. Eng. 2024, 12, 113205. [Google Scholar] [CrossRef]
- Fang, Z.; Chen, J.; Qiu, X.; Qiu, X.; Cheng, W.; Zhu, L. Effective removal of antibiotic metronidazole from water by nanoscale zero-valent iron particles. Desalination 2011, 268, 60–67. [Google Scholar] [CrossRef]
- Xia, Y.; Zhang, Q.; Li, G.; Tu, X.; Zhou, Y.; Hu, X. Biodegradability enhancement of real antibiotic metronidazole wastewater by a modified electrochemical Fenton. J. Taiwan Inst. Chem. Eng. 2019, 96, 256–263. [Google Scholar] [CrossRef]
- Pan, Y.; Li, X.; Fu, K.; Deng, H.; Shi, J. Degradation of metronidazole by UV/chlorine treatment: Efficiency, mechanism, pathways and DBPs formation. Chemosphere 2019, 224, 228–236. [Google Scholar] [CrossRef]
- Ré, J.L.; De Méo, M.P.; Laget, M.; Guiraud, H.; Castegnaro, M.; Vanelle, P.; Duménil, G. Evaluation of the genotoxic activity of metronidazole and dimetridazole in human lymphocytes by the comet assay. Mutat. Res. Mol. Mech. Mutagen. 1997, 375, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Vicente, D.; Pérez-Trallero, E. Tetraciclinas, sulfamidas y metronidazol. Enfermedades Infecc. Y Microbiol. Clin. 2010, 28, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, J.; Lin, J.; Zhang, S.; Liu, Y. Degradation of metronidazole by radio frequency discharge in an aqueous solution. Plasma Process. Polym. 2018, 15, 1700176. [Google Scholar] [CrossRef]
- Chianeh, F.N.; Parsa, J.B. Electrochemical degradation of metronidazole from aqueous solutions using stainless steel anode coated with SnO2 nanoparticles: Experimental design. Taiwan Inst. Chem. Eng. 2016, 59, 424–432. [Google Scholar] [CrossRef]
- Pérez, T.; Garcia-Segura, S.; El-Ghenymy, A.; Nava, J.L.; Brillas, E. Solar photoelectro-Fenton degradation of the antibiotic metronidazole using a flow plant with a Pt/air-diffusion cell and a CPC photoreactor. Electrochimica Acta 2015, 165, 173–181. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, P.; Pu, Y.; Xuan, S.; Wang, P.; Zhang, Y. Electrochemical degradation of spent tributyl phosphate extractant by a boron-doped diamond anode. J. Radioanal. Nucl. Chem. 2018, 315, 29–37. [Google Scholar] [CrossRef]
- Siedlecka, E.M.; Ofiarska, A.; Borzyszkowska, A.F.; Białk-Bielińska, A.; Stepnowski, P.; Pieczyńska, A. Cytostatic drug removal using electrochemical oxidation with BDD electrode: Degradation pathway and toxicity. Water Res. 2018, 144, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Serna-Galvis, E.A.; Botero-Coy, A.M.; Martínez-Pachón, D.; Moncayo-Lasso, A.; Ibáñez, M.; Hernández, F.; Palma, R.A.T. Degradation of seventeen contaminants of emerging concern in municipal wastewater effluents by sonochemical advanced oxidation processes. Water Res. 2019, 154, 349–360. [Google Scholar] [CrossRef]
- Cuerda-Correa, E.M.; Alexandre-Franco, M.F.; Fernández-González, C. Antibiotics from Water. An Overview. Water 2020, 12, 1–50. [Google Scholar]
- Ammar, H.B.; Ben Brahim, M.; Abdelhédi, R.; Samet, Y. Green electrochemical process for metronidazole degradation at BDD anode in aqueous solutions via direct and indirect oxidation. Sep. Purif. Technol. 2016, 157, 9–16. [Google Scholar] [CrossRef]
- Aboudalle, A.; Djelal, H.; Fourcade, F.; Domergue, L.; Assadi, A.A.; Lendormi, T.; Taha, S.; Amrane, A. Metronidazole removal by means of a combined system coupling an electro-Fenton process and a conventional biological treatment: By-products monitoring and performance enhancement. J. Hazard. Mater. 2018, 359, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Souza, F.; Saéz, C.; Lanza, M.; Cañizares, P.; A Rodrigo, M. Towards the scale-up of electrolysis with diamond anodes: Effect of stacking on the electrochemical oxidation of 2,4 D. J. Chem. Technol. Biotechnol. 2016, 91, 742–747. [Google Scholar] [CrossRef]
- García-Montaño, J.; Pérez-Estrada, L.; Oller, I.; Maldonado, M.I.; Torrades, F.; Peral, J. Pilot plant scale reactive dyes degradation by solar photo-Fenton and biological processes. J. Photochem. Photobiol. A Chem. 2008, 195, 205–214. [Google Scholar] [CrossRef]
- Francis, L.; Ghaffour, N.; Alsaadi, A.; Nunes, S.; Amy, G. Performance evaluation of the DCMD desalination process under bench scale and large scale module operating conditions. J. Membr. Sci. 2014, 455, 103–112. [Google Scholar] [CrossRef]
- Herrera-Melián, J.; Martín-Rodríguez, A.; Ortega-Méndez, A.; Araña, J.; Doña-Rodríguez, J.; Pérez-Peña, J. Degradation and detoxification of 4-nitrophenol by advanced oxidation technologies and bench-scale constructed wetlands. J. Environ. Manag. 2012, 105, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Avilés-García, O.; Mendoza-Zepeda, A.; Regalado-Méndez, A.; Espino-Valencia, J.; Martínez-Vargas, S.L.; Romero, R.; Natividad, R. Photo-Oxidation of Glycerol Catalyzed by Cu/TiO2. Catalysts 2022, 12, 835. [Google Scholar] [CrossRef]
- Amado-Piña, D.; Roa-Morales, G.; Molina-Mendieta, M.; Balderas-Hernández, P.; Romero, R.; Díaz, C.E.B.; Natividad, R. E-peroxone process of a chlorinated compound: Oxidant species, degradation pathway and phytotoxicity. J. Environ. Chem. Eng. 2022, 10, 108148. [Google Scholar] [CrossRef]
- 5815-1:2003E; Water Quality—Determination of Biochemical Oxygen Demand After n Days (BODn). International Organization for Standardization: Geneva, Switzerland, 2003; p. 15.
- Liao, Y.; Ye, Y.; Chen, X.; Xin, H.; Ma, S.; Lin, S.; Luo, H. Treatment of metronidazole pharmaceutical wastewater using pulsed switching peroxi-coagulation combined with electro-Fenton process. Water Cycle 2024, 5, 167–175. [Google Scholar] [CrossRef]
- Yu, X.; Mao, C.; Wang, W.; Kulshrestha, S.; Zhang, P.; Usman, M.; Zong, S.; Hilal, M.G.; Fang, Y.; Han, H.; et al. Reduction of metronidazole in municipal wastewater and protection of activated sludge system using a novel immobilized Aspergillus tabacinus LZ-M. Bioresour. Technol. 2023, 369, 128509. [Google Scholar] [CrossRef]
- Arias, A.N.A.; Calle, J.R.; Villaseñor, E.A.; Hernández, J.A. Remoción fotocatalítica de dqo, dbo5 y cot de efluentes de la industria farmacéutica. Rev. Politécnica 2012, 8, 9–17. [Google Scholar]
- Wang, Y.-L.; Gómez-Avilés, A.; Zhang, S.; Rodriguez, J.; Bedia, J.; Belver, C. Metronidazole photodegradation under solar light with UiO-66-NH2 photocatalyst: Mechanisms, pathway, and toxicity assessment. J. Environ. Chem. Eng. 2023, 11, 109744. [Google Scholar] [CrossRef]
- Pérez, G.; Ibáñez, R.; Urtiaga, A.; Ortiz, I. Kinetic study of the simultaneous electrochemical removal of aqueous nitrogen compounds using BDD electrodes. Chem. Eng. J. 2012, 197, 475–482. [Google Scholar] [CrossRef]
- García-Orozco, V.M.; Linares-Hernández, I.; Natividad, R.; Balderas-Hernández, P.; Alanis-Ramírez, C.; Barrera-Díaz, C.E.; Roa-Morales, G. Solar-photovoltaic electrocoagulation of wastewater from a chocolate manufacturing industry: Anodic material effect (aluminium, copper and zinc) and life cycle assessment. J. Environ. Chem. Eng. 2022, 10, 107969. [Google Scholar] [CrossRef]
- Santana, D.R.; Espino-Estévez, M.; Santiago, D.E.; Méndez, J.; González-Díaz, O.; Doña-Rodríguez, J. Treatment of aquaculture wastewater contaminated with metronidazole by advanced oxidation techniques. Environ. Nanotechnol. Monit. Manag. 2017, 8, 11–24. [Google Scholar] [CrossRef]
- Liao, H.; Fang, J.; Wang, J.; Long, X.; Zhang, I.Y.; Huang, R. Effective Degradation of Metronidazole through Electrochemical Activation of Peroxymonosulfate: Mechanistic Insights and Implications. Energies 2024, 17, 1750. [Google Scholar] [CrossRef]
- Cornejo, O.M.; Murrieta, M.F.; Aguilar, Z.G.; Rodríguez, J.F.; Márquez, A.A.; León, M.I.; Nava, J.L. Recent advances in electrochemical flow reactors used in advanced oxidation processes: A critical review. Chem. Eng. J. 2024, 496, 153935. [Google Scholar] [CrossRef]
- Flores, O.J.; Nava, J.L.; Carreño, G.; Elorza, E.; Martínez, F. Arsenic removal from groundwater by electrocoagulation in a pre-pilot-scale continuous filter press reactor. Chem. Eng. Sci. 2013, 97, 1–6. [Google Scholar] [CrossRef]
- Cornejo, O.M.; Valentín-Reyes, J.; Rosales, M.; Nava, J.L. Simulations of aluminum dosage and H2O-H2 flow in a pre-pilot twelve-cell electrocoagulation stack. Chem. Eng. J. 2022, 450, 138222. [Google Scholar] [CrossRef]
- Clematis, D.; Delucchi, M.; Panizza, M. Electrochemical technologies for wastewater treatment at pilot plant scale. Curr. Opin. Electrochem. 2022, 37, 101172. [Google Scholar] [CrossRef]
- Virruso, G.; Cassaro, C.; Culcasi, A.; Cipollina, A.; Tamburini, A.; Bogle, I.D.L.; Micale, G.D. Multi-scale modelling of an electrodialysis with bipolar membranes pilot plant and economic evaluation of its potential. Desalination 2024, 583, 117724. [Google Scholar] [CrossRef]
Characteristic | Metronidazole (MTZ) | Units |
---|---|---|
Molecular formula | C6H9N3O3 | |
Chemical structure | - | |
Molecular weight | 171.2 | g mol−1 |
Water solubility | 9.5 | g L−1, 25 °C |
Melting point | 159–163 | °C |
pKa | 2.55 | - |
LogKow | −0.02 | - |
Koc | 23 | - |
λ | 320 | nm |
Vp | 4.07 × 10−7 | Pa |
Cell Characteristics | |
---|---|
Electrode material | BDD/silicon anode Stainless steel cathode |
Flow rate (L h−1) | 286.92 |
Electrode geometry | Disc |
Anode surface (cm2) | 78.53 |
Feed tank volume (L) | 16 |
Inner electrode gap (mm) | 5 |
Current Density (mA cm−2) | k1 (min−1) | r2 | t1/2 (min) |
---|---|---|---|
100 | 0.0258 | 0.9641 | 26.8661 |
50 | 0.0083 | 0.9802 | 83.5117 |
30 | 0.0019 | 0.9721 | 364.8143 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maldonado Domínguez, S.M.; Barrera-Díaz, C.E.; Balderas Hernández, P.; Amado-Piña, D.; Torres-Blancas, T.; Roa-Morales, G. Metronidazole Electro-Oxidation Degradation on a Pilot Scale. Catalysts 2025, 15, 29. https://doi.org/10.3390/catal15010029
Maldonado Domínguez SM, Barrera-Díaz CE, Balderas Hernández P, Amado-Piña D, Torres-Blancas T, Roa-Morales G. Metronidazole Electro-Oxidation Degradation on a Pilot Scale. Catalysts. 2025; 15(1):29. https://doi.org/10.3390/catal15010029
Chicago/Turabian StyleMaldonado Domínguez, Sandra María, Carlos Eduardo Barrera-Díaz, Patricia Balderas Hernández, Deysi Amado-Piña, Teresa Torres-Blancas, and Gabriela Roa-Morales. 2025. "Metronidazole Electro-Oxidation Degradation on a Pilot Scale" Catalysts 15, no. 1: 29. https://doi.org/10.3390/catal15010029
APA StyleMaldonado Domínguez, S. M., Barrera-Díaz, C. E., Balderas Hernández, P., Amado-Piña, D., Torres-Blancas, T., & Roa-Morales, G. (2025). Metronidazole Electro-Oxidation Degradation on a Pilot Scale. Catalysts, 15(1), 29. https://doi.org/10.3390/catal15010029