Photo-Oxidation of Glycerol Catalyzed by Cu/TiO2
<p>(<b>a</b>) N<sub>2</sub> adsorption-desorption isotherms and (<b>b</b>) pore size distributions of Cu/TiO<sub>2</sub> and TiO<sub>2</sub> catalysts.</p> "> Figure 2
<p>X-ray diffraction patterns of the synthesized Cu/TiO<sub>2</sub> and TiO<sub>2</sub> catalysts.</p> "> Figure 3
<p>SEM images of catalysts (<b>a</b>) Cu/TiO<sub>2</sub> and (<b>b</b>) TiO<sub>2</sub>.</p> "> Figure 4
<p>TEM and HRTEM micrographs of catalysts (<b>a</b>,<b>b</b>) Cu/TiO<sub>2</sub> and (<b>c</b>,<b>d</b>) TiO<sub>2</sub>.</p> "> Figure 5
<p>Tauc graphs for band-gap energies of synthesized catalysts. Inset: DRS spectra for each catalyst.</p> "> Figure 6
<p>XPS spectra of (<b>a</b>) Ti 2p, (<b>b</b>) O 1s, and (<b>c</b>) Cu 2p for the Cu/TiO<sub>2</sub> catalyst.</p> "> Figure 7
<p>Effect of catalyst concentration on glycerol conversion and initial reaction rate (Initial glycerol concentration = 6.25 × 10<sup>−2</sup> M, T = 305.65 K, Cu/TiO<sub>2</sub> catalyst).</p> "> Figure 8
<p>Effect of catalyst amount on concentration and selectivity towards (<b>a</b>) glyceraldehyde (GCD), (<b>b</b>) formaldehyde (FD), and (<b>c</b>) formic acid (FA). Initial glycerol = 6.25 × 10<sup>−2</sup> M, T = 305.65 K, Cu/TiO<sub>2</sub> catalyst.</p> "> Figure 9
<p>Proposed reaction scheme for the photo-oxidation of glycerol by Cu/TiO<sub>2</sub>.</p> "> Figure 10
<p>Effect of reaction temperature on the glycerol conversion and initial reaction rate (initial glycerol = 6.25 × 10<sup>−2</sup> M, Cu/TiO<sub>2</sub> = 0.25 g/L).</p> "> Figure 11
<p>Effect of reaction temperature on concentration and selectivity towards (<b>a</b>) glyceraldehyde (GCD), (<b>b</b>) formaldehyde (FD), and (<b>c</b>) formic acid (FA). Initial glycerol = 6.25 × 10<sup>−2</sup> M, Cu/TiO<sub>2</sub> = 0.25 g/L.</p> "> Figure 12
<p>Effect of initial glycerol concentration on the glycerol conversion and initial reaction rate (T = 305.65 K, Cu/TiO<sub>2</sub> = 0.25 g/L).</p> "> Figure 13
<p>Effect of initial glycerol concentration on the selectivity and concentration of (<b>a</b>) glyceraldehyde (GCD), (<b>b</b>) formaldehyde (FD), and (<b>c</b>) formic acid (FA). T = 305.65 K, Cu/TiO<sub>2</sub> = 0.25 g/L.</p> "> Figure 14
<p>Percentage of total organic carbon during glycerol photo-oxidation with effect on (<b>a</b>) amount of catalyst, (<b>b</b>) reaction temperature, and (<b>c</b>) initial glycerol concentration.</p> "> Figure 15
<p>Pareto chart analysis.</p> "> Figure 16
<p>Response surface plots for all possible combinations when two independent variables change and the other variable remains constant at the center point. (<b>a</b>,<b>d</b>,<b>g</b>) show the change in reaction temperature and catalyst amount with a constant glycerol concentration. (<b>b</b>,<b>e</b>,<b>h</b>) show the variation in glycerol concentration and catalyst amount with a constant reaction temperature. (<b>c</b>,<b>f</b>,<b>i</b>) show the change in glycerol concentration and reaction temperature with a constant catalyst amount.</p> "> Figure 17
<p>Comparison of the best reaction conditions using UV and visible light towards the concentration and selectivity of products during the glycerol selective oxidation.</p> "> Figure 18
<p>TOC percentage at the end of each catalyst reuse cycle.</p> "> Figure 19
<p>Glycerol degradation percentage and product concentration for different Cu/TiO<sub>2</sub> catalyst reuse cycles.</p> "> Figure 20
<p>Percentage of glycerol converted in the presence of radical and hole scavengers.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization
2.2. Glycerol Photo-Oxidation
2.2.1. Effect of Catalyst Loading
2.2.2. Effect of Reaction Temperature
2.2.3. Effect of Initial Glycerol Concentration
2.2.4. Total Organic Carbon Content
2.2.5. Optimization
3. Materials and Methods
3.1. Synthesis of Photocatalysts
3.2. Characterization
3.3. Photo-Oxidation of Glycerol
3.4. Analytical Methods
3.5. Experimental Design
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garlapati, V.K.; Shankar, U.; Budhiraja, A. Bioconversion technologies of crude glycerol to value added industrial products. Biotechnol. Rep. 2016, 9, 9–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagnato, G.; Iulianelli, A.; Sanna, A.; Basile, A. Glycerol Production and Transformation: A Critical Review with Particular Emphasis on Glycerol Reforming Reaction for Producing Hydrogen in Conventional and Membrane Reactors. Membranes 2017, 7, 17. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Yue, C.; Fan, M.; Haryonob, A.; Leng, Y.; Jiang, P. The selective oxidation of glycerol over metal-free photocatalysts: Insights into the solvent effect on catalytic efficiency and product distribution. Catal. Sci. Technol. 2021, 11, 3385–3392. [Google Scholar] [CrossRef]
- Villa, A.; Jouve, A.; Sanchez Trujillo, F.J.; Motta, D.; Prati, L.; Dimitratos, N. Exploring the Effect of Au/Pt Ratio on Glycerol Oxidation in Presence and Absence of a Base. Catalysts 2018, 8, 54. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhang, Y. Oxidative Dehydration of Glycerol to Acrylic Acid over Vanadium-Substituted Cesium Salts of Keggin-Type Heteropolyacids. ACS Catal. 2016, 6, 2785–2791. [Google Scholar] [CrossRef]
- Jedsukontorn, T.; Meeyoo, V.; Saito, N.; Hunsom, M. Route of glycerol conversion and product generation via TiO2-induced photocatalytic oxidation in the presence of H2O2. Chem. Eng. J. 2015, 281, 252–264. [Google Scholar] [CrossRef]
- Lu, Z.; Demianets, I.; Hamze, R.; Terrile, N.J.; Williams, T.J. A Prolific Catalyst for Selective Conversion of Neat Glycerol to Lactic Acid. ACS Catal. 2016, 6, 2014–2017. [Google Scholar] [CrossRef]
- Chi, Z.; Pyle, D.; Wen, Z.; Frear, C.; Chen, S. A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochem. 2007, 42, 1537–1545. [Google Scholar] [CrossRef]
- Liu, C.; Hirohara, M.; Maekawa, T.; Chang, R.; Hayashi, T.; Chiang, C.-Y. Selective electro-oxidation of glycerol to dihydroxyacetone by a non-precious electrocatalyst–CuO. Appl. Catal. B Environ. 2020, 265, 118543. [Google Scholar] [CrossRef]
- Hermes, N.A.; Corsetti, A.R.; Pacheco, A.S.; Lansarin, M.A. Photocatalytic Oxidation of Glycerol over ZnO: Systematic Evaluation of Reaction Parameters. J. Adv. Oxid. Technol. 2015, 18, 315–321. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, N.; Tang, Z.-R.; Xu, Y.-J. Identification of Bi2WO6 as a highly selective visible-light photocatalyst toward oxidation of glycerol to dihydroxyacetone in water. Chem. Sci. 2013, 4, 1820–1824. [Google Scholar] [CrossRef]
- Ning, X.; Li, Y.; Yu, H.; Peng, F.; Wang, H.; Yang, Y. Promoting role of bismuth and antimony on Pt catalysts for the selective oxidation of glycerol to dihydroxyacetone. J. Catal. 2016, 335, 95–104. [Google Scholar] [CrossRef]
- Chong, R.; Li, J.; Zhou, X.; Ma, Y.; Yang, J.; Huang, L.; Han, H.; Zhang, F.; Li, C. Selective photocatalytic conversion of glycerol to hydroxyacetaldehyde in aqueous solution on facet tuned TiO2-based catalysts. Chem. Commun. 2014, 50, 165–167. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xie, Z.; Liang, Y.; Wei, J.; Zhu, Y.; Huo, Y.; Zhang, X.; Wang, H. Hybridizing TiO2 with Nitrogen-Doped Carbon: A New Route to A Highly Visible Light-Active Photocatalyst. ChemistrySelect 2017, 2, 1565–1572. [Google Scholar] [CrossRef]
- Cai, Q.; Hu, J. Effect of UVA/LED/TiO2 photocatalysis treated sulfamethoxazole and trimethoprim containing wastewater on antibiotic resistance development in sequencing batch reactors. Water Res. 2018, 140, 251–260. [Google Scholar] [CrossRef]
- Jedsukontorn, T.; Saito, N.; Hunsom, M. Photoinduced Glycerol Oxidation over Plasmonic Au and AuM (M = Pt, Pd and Bi) Nanoparticle-Decorated TiO2 Photocatalysts. Nanomaterials 2018, 8, 269. [Google Scholar] [CrossRef] [Green Version]
- Islam, S.Z.; Nagpure, S.; Kim, D.Y.; Rankin, S.E. Synthesis and Catalytic Applications of Non-Metal Doped Mesoporous Titania. Inorganics 2017, 5, 15. [Google Scholar] [CrossRef]
- Husin, H.; Mahidin, M.; Pontas, K.; Ahmadi, A.; Ridho, M.; Erdiwansyah, E.; Nasution, F.; Hasfita, F.; Hussin, M.H. Microwave-assisted catalysis of water-glycerol solutions for hydrogen production over NiO/zeolite catalyst. Heliyon 2021, 7, e07557. [Google Scholar] [CrossRef] [PubMed]
- Martín-Gómez, J.; Hidalgo-Carrillo, J.; Montes, V.; Estévez-Toledano, R.C.; Escamilla, J.C.; Marinas, A.; Urbano, F.J. EPR and CV studies cast further light on the origin of the enhanced hydrogen production through glycerol photoreforming on CuO:TiO2 physical mixtures. J. Environ. Chem. Eng. 2021, 9, 105336. [Google Scholar] [CrossRef]
- Macedo, M.S.; Soria, M.A.; Madeira, L.M. Process intensification for hydrogen production through glycerol steam reforming. Renew. Sustain. Energy Rev. 2021, 146, 111151. [Google Scholar] [CrossRef]
- Maslova, V.; Quadrelli, E.A.; Gaval, P.; Fasolini, A.; Albonetti, S.; Basile, F. Highly-dispersed ultrafine Pt nanoparticles on microemulsion-mediated TiO2 for production of hydrogen and valuable chemicals via oxidative photo-dehydrogenation of glycerol. J. Environ. Chem. Eng. 2021, 9, 105070. [Google Scholar] [CrossRef]
- Rangarajan, G.; Pal, R.; Farnood, R. Visible light driven selective photocatalytic synthesis of high-value carbonyl compounds from glycerol over Ag-AgBr/TiO2 nanocomposites in acetonitrile. Mater. Lett. 2021, 292, 129535. [Google Scholar] [CrossRef]
- Jedsukontorn, T.; Ueno, T.; Saito, N.; Hunsom, M. Narrowing band gap energy of defective black TiO2 fabricated by solution plasma process and its photocatalytic activity on glycerol transformation. J. Alloys Compd. 2018, 757, 188–199. [Google Scholar] [CrossRef]
- Jedsukontorn, T.; Saito, N.; Hunsom, M. Photocatalytic behavior of metal-decorated TiO2 and their catalytic activity for transformation of glycerol to value added compounds. Mol. Catal. 2017, 432, 160–171. [Google Scholar] [CrossRef]
- Dodekatos, G.; Tüysüz, H. Plasmonic Au/TiO2 nanostructures for glycerol oxidation. Catal. Sci. Technol. 2016, 6, 7307–7315. [Google Scholar] [CrossRef]
- Bagheri, S.; Julkapli, N.M.; Yehye, W.A. Catalytic conversion of biodiesel derived raw glycerol to value added products. Renew. Sustain. Energy Rev. 2015, 41, 113–127. [Google Scholar] [CrossRef]
- Maslova, V.; Fasolini, A.; Offidani, M.; Albonetti, S.; Basile, F. Solar-driven valorization of glycerol towards production of chemicals and hydrogen. Catal. Today 2021, 380, 147–155. [Google Scholar] [CrossRef]
- Valter, M.; dos Santos, E.C.; Pettersson, L.G.M.; Hellman, A. Partial Electrooxidation of Glycerol on Close-Packed Transition Metal Surfaces: Insights from First-Principles Calculations. J. Phys. Chem. C 2020, 124, 17907–17915. [Google Scholar] [CrossRef]
- Len, C.; Luque, R. Continuous flow transformations of glycerol to valuable products: An overview. Sustain. Chem. Processes 2014, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Grabowska, E.; Marchelek, M.; Paszkiewicz-Gawron, M.; Zaleska-Medynska, A. 3-Metal oxide photocatalysts. In Metal Oxide-Based Photocatalysis; Zaleska-Medynska, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 51–209. [Google Scholar] [CrossRef]
- He, Z.; Ning, X.; Yang, G.; Wang, H.; Cao, Y.; Peng, F.; Yu, H. Selective oxidation of glycerol over supported noble metal catalysts. Catal. Today 2021, 365, 162–171. [Google Scholar] [CrossRef]
- Yang, L.; Li, X.; Chen, P.; Hou, Z. Selective oxidation of glycerol in a base-free aqueous solution: A short review. Chin. J. Catal. 2019, 40, 1020–1034. [Google Scholar] [CrossRef]
- Mehmood, T.; Ahmed, A.; Ahmad, A.; Ahmad, M.S.; Sandhu, M.A. Optimization of mixed surfactants-based β-carotene nanoemulsions using response surface methodology: An ultrasonic homogenization approach. Food Chem. 2018, 253, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, A.; Sacco, O.; Vaiano, V.; Sannino, D.; Pragliola, S.; Venditto, V.; Morante, N. Visible light active Fe-Pr co-doped TiO2 for water pollutants degradation. Catal. Today 2021, 380, 93–104. [Google Scholar] [CrossRef]
- Avilés-García, O.; Espino-Valencia, J.; Romero, R.; Rico-Cerda, J.L.; Natividad, R. Oxidation of 4-Chlorophenol by Mesoporous Titania: Effect of Surface Morphological Characteristics. Int. J. Photoenergy 2014, 2014, 210751. [Google Scholar] [CrossRef]
- Prashad Ojha, D.; Babu Poudel, M.; Joo Kim, H. Investigation of electrochemical performance of a high surface area mesoporous Mn doped TiO2 nanoparticle for a supercapacitor. Mater. Lett. 2020, 264, 127363. [Google Scholar] [CrossRef]
- Caudillo-Flores, U.; Avilés-García, O.; Alonso-Núñez, G.; Kubacka, A.; Fernández-García, M. Assessing quantitatively charge carrier fate in 4-chlorophenol photocatalytic degradation using globular titania catalysts: Implications in quantum efficiency calculation. J. Environ. Chem. Eng. 2021, 9, 106074. [Google Scholar] [CrossRef]
- Avilés-García, O.; Espino-Valencia, J.; Mendoza-Zepeda, A.; Donkor, K.; Brewer, S.; Romero, R.; Natividad, R. Removal of metoprolol by means of photo-oxidation processes. Catal. Today 2021, 397–399, 562–573. [Google Scholar] [CrossRef]
- Bensouici, F.; Bououdina, M.; Dakhel, A.A.; Tala-Ighil, R.; Tounane, M.; Iratni, A.; Souier, T.; Liu, S.; Cai, W. Optical, structural and photocatalysis properties of Cu-doped TiO2 thin films. Appl. Surf. Sci. 2017, 395, 110–116. [Google Scholar] [CrossRef]
- Sudrajat, H.; Nguyen, T.K. Key factors controlling the durability of a Cu-doped TiO2 photocatalyst. Optik 2020, 217, 164914. [Google Scholar] [CrossRef]
- Avilés-García, O.; Espino-Valencia, J.; Romero, R.; Rico-Cerda, J.L.; Arroyo-Albiter, M.; Natividad, R. W and Mo doped TiO2: Synthesis, characterization and photocatalytic activity. Fuel 2017, 198, 31–41. [Google Scholar] [CrossRef]
- Crişan, M.; Răileanu, M.; Drăgan, N.; Crişan, D.; Ianculescu, A.; Niţoi, I.; Oancea, P.; Şomăcescu, S.; Stănică, N.; Vasile, B.; et al. Sol–gel iron-doped TiO2 nanopowders with photocatalytic activity. Appl. Catal. A Gen. 2015, 504, 130–142. [Google Scholar] [CrossRef]
- Avilés-García, O.; Espino-Valencia, J.; Romero-Romero, R.; Rico-Cerda, J.; Arroyo-Albiter, M.; Solís-Casados, D.; Natividad-Rangel, R. Enhanced Photocatalytic Activity of Titania by Co-Doping with Mo and W. Catalysts 2018, 8, 631. [Google Scholar] [CrossRef] [Green Version]
- Samet, L.; March, K.; Stephan, O.; Brun, N.; Hosni, F.; Bessousa, F.; Benasseur, J.; Chtourou, R. Radiocatalytic Cu-incorporated TiO2 nano-particles for the degradation of organic species under gamma irradiation. J. Alloys Compd. 2018, 743, 175–186. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Xu, L.J.; Zhu, Z.Q.; Liu, Q.J. Synthesis and properties of (Yb, N)-TiO2 photocatalyst for degradation of methylene blue (MB) under visible light irradiation. Mater. Res. Bull. 2015, 70, 358–364. [Google Scholar] [CrossRef]
- Payormhorm, J.; Idem, R. Synthesis of C-doped TiO2 by sol-microwave method for photocatalytic conversion of glycerol to value-added chemicals under visible light. Appl. Catal. A Gen. 2020, 590, 117362. [Google Scholar] [CrossRef]
- Bautista, E.; Ávila-Martínez, E.G.; Natividad, R.; Murcia, J.J.; Romero, R.; Cubillos, J.; Rojas, H.; Hernández, J.S.; Cárdenas, O.; Hidalgo, M.C.; et al. Fluorinated and Platinized Titania for Glycerol Oxidation. Mater. Proc. 2021, 4, 37. [Google Scholar] [CrossRef]
- Galindo, C.; Jacques, P.; Kalt, A. Photodegradation of the aminoazobenzene acid orange 52 by three advanced oxidation processes: UV/H2O2, UV/TiO2 and VIS/TiO2: Comparative mechanistic and kinetic investigations. J. Photochem. Photobiol. A Chem. 2000, 130, 35–47. [Google Scholar] [CrossRef]
- Chekuri, R.D.; Tirukkovalluri, S.R. One step synthesis and characterization of copper doped sulfated titania and its enhanced photocatalytic activity in visible light by degradation of methyl orange. Chin. J. Chem. Eng. 2016, 24, 475–483. [Google Scholar] [CrossRef]
- Jedsukontorn, T.; Ueno, T.; Saito, N.; Hunsom, M. Mechanistic aspect based on the role of reactive oxidizing species (ROS) in macroscopic level on the glycerol photooxidation over defected and defected-free TiO2. J. Photochem. Photobiol. A Chem. 2018, 367, 270–281. [Google Scholar] [CrossRef]
- Mendoza, A.; Romero, R.; Gutiérrez-Cedillo, G.P.; López-Tellez, G.; Lorenzo-González, O.; Gómez-Espinosa, R.M.; Natividad, R. Selective production of dihydroxyacetone and glyceraldehyde by photo-assisted oxidation of glycerol. Catal. Today 2020, 358, 149–154. [Google Scholar] [CrossRef]
- Hu, W.; Knight, D.; Lowry, B.; Varma, A. Selective Oxidation of Glycerol to Dihydroxyacetone over Pt−Bi/C Catalyst: Optimization of Catalyst and Reaction Conditions. Ind. Eng. Chem. Res. 2010, 49, 10876–10882. [Google Scholar] [CrossRef]
- Gil, S.; Marchena, M.; Sánchez-Silva, L.; Romero, A.; Sánchez, P.; Valverde, J.L. Effect of the operation conditions on the selective oxidation of glycerol with catalysts based on Au supported on carbonaceous materials. Chem. Eng. J. 2011, 178, 423–435. [Google Scholar] [CrossRef]
- Oliveira, V.L.; Morais, C.; Servat, K.; Napporn, T.W.; Olivi, P.; Kokoh, K.B.; Tremiliosi-Filho, G. Kinetic Investigations of Glycerol Oxidation Reaction on Ni/C. Electrocatalysis 2015, 6, 447–454. [Google Scholar] [CrossRef]
- Wu, G.; Liu, Y.; He, Y.; Feng, J.; Li, D. Reaction pathway investigation using in situ Fourier transform infrared technique over Pt/CuO and Pt/TiO2 for selective glycerol oxidation. Appl. Catal. B Environ. 2021, 291, 120061. [Google Scholar] [CrossRef]
- Jensen, W.A. Response Surface Methodology: Process and Product Optimization Using Designed Experiments. In Journal of Quality Technology, 4th ed.; Taylor & Francis: Oxfordshire, UK, 2017; Volume 49, pp. 186–188. [Google Scholar] [CrossRef]
- Augugliaro, V.; El Nazer, H.A.H.; Loddo, V.; Mele, A.; Palmisano, G.; Palmisano, L.; Yurdakal, S. Partial photocatalytic oxidation of glycerol in TiO2 water suspensions. Catal. Today 2010, 151, 21–28. [Google Scholar] [CrossRef]
- Yu, J.; Dappozze, F.; Martín-Gomez, J.; Hidalgo-Carrillo, J.; Marinas, A.; Vernoux, P.; Cravana, A.; Guillard, C. Glyceraldehyde production by photocatalytic oxidation of glycerol on WO3-based materials. Appl. Catal. B Environ. 2021, 299, 120616. [Google Scholar] [CrossRef]
- Hurtado, L.; Avilés, O.; Brewer, S.; Donkor, K.K.; Romero, R.; Gómez-Espinosa, R.M.; Alvarado, O.; Natividad, R. Al/Cu-PILC as a Photo-Fenton Catalyst: Paracetamol Mineralization. ACS Omega 2022, 7, 23821–23832. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Cherevan, A.S.; Hannecart, C.; Naghdi, S.; Nandan, S.P.; Gupta, T.; Eder, D. Ti-based MOFs: New insights on the impact of ligand composition and hole scavengers on stability, charge separation and photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2021, 283, 119626. [Google Scholar] [CrossRef]
- Wei, Y.; Cheng, G.; Xiong, J.; Zhu, J.; Gan, Y.; Zhang, M.; Li, Z.; Dou, S. Synergistic impact of cocatalysts and hole scavenger for promoted photocatalytic H2 evolution in mesoporous TiO2NiSx hybrid. J. Energy Chem. 2019, 32, 45–56. [Google Scholar] [CrossRef]
- Peralta, E.; Roa, G.; Hernandez-Servin, J.A.; Romero, R.; Balderas, P.; Natividad, R. Hydroxyl Radicals quantification by UV spectrophotometry. Electrochim. Acta 2014, 129, 137–141. [Google Scholar] [CrossRef]
- Alvarado-Rolon, O.; Natividad, R.; Ramírez-García, J.; Orozco-Velazco, J.; Hernandez-Servin, J.A.; Ramírez-Serrano, A. Kinetic modelling of paracetamol degradation by photocatalysis: Incorporating the competition for photons by the organic molecule and the photocatalyst. J. Photochem. Photobiol. A Chem. 2021, 412, 113252. [Google Scholar] [CrossRef]
Reaction Conditions | Studied Variables | Obtained Products | Selectivity (Principal Product) | Reference |
---|---|---|---|---|
Catalyst: Pt/TiO2 Catalyst: 0.5 g/L Glycerol: 1 M Temperature: 30 °C Reactor type: batch λ: simulated sunlight Reaction time: 6 h | Catalyst synthesis method | Compound (selectivity): Glyceraldehyde (46%) Glycolaldehyde (54%) | Glycolaldehyde (54%) | [21] |
Catalyst: Ag-AgBr/TiO2 Catalyst: 1 g/L Glycerol: 4.5 mM Temperature: 25 °C Reactor type: batch λ: simulated sunlight Reaction time: 4 h | Catalyst type | Compound (selectivity): Glyceraldehyde (52%) Dihydroxyacetone (36%) Glycolic acid (8%) Glyceric acid (4%) | Glyceraldehyde (52%) | [22] |
Catalyst: TiO2 Catalyst: 3 g/L Glycerol: 0.3 M Temperature: 25 °C Reactor type: batch λ: 100–600 nm Reaction time: 24 h | Catalyst synthesis method | Compound (yield): Glycolaldehyde (39.2%) Glyceraldehyde (4.9%) Dihydroxyacetone (3.3%) Glycolic acid (2.2%) Hydroxypyruvic acid (2.1%) Formic acid (26.6%) | Glycolaldehyde (50%) | [23] |
Catalyst: (Bi, Pd, Pt, Au)/TiO2 Catalyst: 3 g/L Glycerol: 0.3 M Temperature: 25 °C Reactor type: batch λ: 200–600 nm Reaction time: 14 h | Metal type | Compound (yield): Glyceraldehyde (23.1%) Dihydroxyacetone (12%) Glycolic acid (10.7%) Hydroxypyruvic acid (13.6%) Formic acid (15.3%) | Glyceraldehyde (31%) | [24] |
Catalyst: Au/TiO2 Catalyst: 1 g/L Glycerol: 0.05 M Temperature: 90 °C Reactor type: batch (5 bar) λ > 420 nm Reaction time: 5 h | Support type | Glyceraldehyde Dihydroxyacetone Glycolic acid Oxalic acid | Dihydroxyacetone (63%) | [25] |
Catalyst | Specific Surface Area (m2/g) | Pore Volume (cm3/g) | Pore Diameter (nm) | Band Gap (eV) |
---|---|---|---|---|
Cu/TiO2 | 242.4 | 0.48 | 5.7 | 2.55 |
TiO2 | 121.5 | 0.26 | 5.7 | 3.24 |
Catalyst | Anatase Plane (101) | Average Crystallite Size (nm) | Lattice Distortion (Ɛ) | Cu wt.% |
---|---|---|---|---|
Cu/TiO2 | 25.3 | 7.98 | 0.0198 | 3.8 |
TiO2 | 25.2 | 8.22 | 0.0193 | - |
Run | Independent Variables | Response Variables | ||||
---|---|---|---|---|---|---|
Catalyst Concentration (g/L) | Reaction Temperature (K) | Glycerol Concentration (mol/L) | GCD × 104 (mol/L) | FD × 104 (mol/L) | FA × 104 (mol/L) | |
1 | 0.40 | 313.15 | 0.0250 | 10.103 | 58.834 | 5.582 |
2 | 0.10 | 313.15 | 0.1000 | 17.648 | 36.328 | 7.507 |
3 | 0.10 | 305.65 | 0.0625 | 8.151 | 22.669 | 3.078 |
4 | 0.40 | 298.15 | 0.1000 | 13.772 | 25.308 | 4.762 |
5 | 0.25 | 298.15 | 0.0625 | 12.132 | 35.432 | 4.112 |
6 | 0.40 | 305.65 | 0.0625 | 16.862 | 51.647 | 5.304 |
7 | 0.40 | 298.15 | 0.0250 | 8.532 | 33.806 | 4.221 |
8 | 0.25 | 305.65 | 0.0625 | 14.667 | 42.121 | 5.061 |
9 | 0.10 | 298.15 | 0.0250 | 6.078 | 17.491 | 3.725 |
10 | 0.25 | 305.65 | 0.0625 | 14.697 | 42.160 | 5.079 |
11 | 0.25 | 305.65 | 0.0250 | 8.844 | 34.104 | 4.316 |
12 | 0.25 | 305.65 | 0.0625 | 14.637 | 42.082 | 5.043 |
13 | 0.25 | 305.65 | 0.0625 | 14.691 | 42.178 | 5.067 |
14 | 0.10 | 298.15 | 0.1000 | 4.863 | 8.761 | 2.309 |
15 | 0.25 | 313.15 | 0.0625 | 19.129 | 70.601 | 7.295 |
16 | 0.25 | 305.65 | 0.0625 | 14.644 | 42.065 | 5.055 |
17 | 0.10 | 313.15 | 0.0250 | 8.391 | 34.685 | 5.517 |
18 | 0.25 | 305.65 | 0.0625 | 14.731 | 42.273 | 5.089 |
19 | 0.25 | 305.65 | 0.1000 | 15.338 | 30.237 | 5.513 |
20 | 0.40 | 313.15 | 0.1000 | 32.834 | 84.294 | 11.613 |
Response Variables | Optimum × 104 (mol/L) | Experimental × 104 (mol/L) |
---|---|---|
Glyceraldehyde (GCD) | 32.267 | 32.834 |
Formaldehyde (FD) | 81.741 | 84.294 |
Formic acid (FA) | 11.465 | 11.613 |
Catalyst | Product | mol × 104/gcat·h | Reference |
---|---|---|---|
Pt/TiO2 | GCD | 11.000 | [21] |
Ag-AgBr/TiO2 | GCD | 3.250 | [22] |
TiO2 | GCD FD | 0.934 0.233 | [24] |
Bi/TiO2 | GCD FD | 0.807 0.339 | |
Pd/TiO2 | GCD FD | 1.255 0.388 | |
Pt/TiO2 | GCD FD | 1.680 0.425 | |
Au/TiO2 | GCD FD | 1.279 0.504 | |
Cu/TiO2 | GCD FD | 13.681 35.122 | This work |
Independent Variables | Levels | ||
---|---|---|---|
−1 | 0 | +1 | |
Catalyst amount (g/L) | 0.100 | 0.2500 | 0.40 |
Reaction temperature (K) | 298.150 | 305.6500 | 313.15 |
Glycerol concentration (mol/L) | 0.025 | 0.0625 | 0.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avilés-García, O.; Mendoza-Zepeda, A.; Regalado-Méndez, A.; Espino-Valencia, J.; Martínez-Vargas, S.L.; Romero, R.; Natividad, R. Photo-Oxidation of Glycerol Catalyzed by Cu/TiO2. Catalysts 2022, 12, 835. https://doi.org/10.3390/catal12080835
Avilés-García O, Mendoza-Zepeda A, Regalado-Méndez A, Espino-Valencia J, Martínez-Vargas SL, Romero R, Natividad R. Photo-Oxidation of Glycerol Catalyzed by Cu/TiO2. Catalysts. 2022; 12(8):835. https://doi.org/10.3390/catal12080835
Chicago/Turabian StyleAvilés-García, Osmín, Arisbeht Mendoza-Zepeda, Alejandro Regalado-Méndez, Jaime Espino-Valencia, Sandra L. Martínez-Vargas, Rubi Romero, and Reyna Natividad. 2022. "Photo-Oxidation of Glycerol Catalyzed by Cu/TiO2" Catalysts 12, no. 8: 835. https://doi.org/10.3390/catal12080835
APA StyleAvilés-García, O., Mendoza-Zepeda, A., Regalado-Méndez, A., Espino-Valencia, J., Martínez-Vargas, S. L., Romero, R., & Natividad, R. (2022). Photo-Oxidation of Glycerol Catalyzed by Cu/TiO2. Catalysts, 12(8), 835. https://doi.org/10.3390/catal12080835