Edible and Functionalized Films/Coatings—Performances and Perspectives
<p>Variation of polymers state with temperature.</p> "> Figure 2
<p>Starch structure emphasizing the two main components: amylose and amylopectin.</p> "> Figure 3
<p>Comparison among cellulose, chitin, and chitosan structures.</p> "> Figure 4
<p>Structure of the plant tissue and the zone where the middle lamella is situated.</p> "> Figure 5
<p>Structure of galacturonic acid and pectin.</p> "> Figure 6
<p>Main types of compounds included in waxes: hydrocarbons (<span class="html-italic">n</span>-alkanes where <span class="html-italic">n</span> = 22–36), fatty alcohols (<span class="html-italic">R</span> length is 12–34 carbon atoms), fatty acids (<span class="html-italic">R</span> length is 12–34 carbon), long-chain esters (<span class="html-italic">R</span><sub>1</sub> and <span class="html-italic">R</span><sub>2</sub> = 10–20 carbon atoms in length).</p> "> Figure 7
<p>Activity of plasticizer between protein chains.</p> "> Figure 8
<p>Natural antioxidants used in edible films/coatings preparation.</p> "> Figure 9
<p>Maillard reactions that are the source of efficient antioxidants.</p> "> Figure 10
<p>Centrifugal Partition Chromatography: a preparative scale method for plant extract fractionation.</p> "> Figure 11
<p>Influence of material size on coating selection techniques.</p> "> Figure 12
<p>Equilibrium of forces acting at solid–liquid–gas interfaces.</p> "> Figure 13
<p>Variation of θ with Tween 85 concentration for three coating mixtures.</p> "> Figure 14
<p>Mechanical parameters considered for the evaluation of edible films/coatings.</p> "> Figure 15
<p>Compounds used for edible films with lower water vapor permeability (WVP).</p> "> Figure 16
<p>Substances used for obtaining lower values of WVP ranked in terms of hydrophobicity.</p> "> Figure 17
<p>Typical thermal analysis of edible films.</p> "> Figure 18
<p>X-ray diffraction patterns of starch films emphasizing the amorphous and crystalline area.</p> "> Figure 19
<p>Example of response surface plots emphasizing the influence of independent variables (factors) interaction on the output variables (response).</p> ">
Abstract
:1. Introduction
2. Historical Consideration, Definition, Quality Parameters, and Technical Requirements of Edible Films/Coatings
- Acknowledgment about a food additive for which a regulation was issued as a result of public statements (e.g., petitions);
- Adequate mechanical properties for preventing the damaging of food surfaces during manipulation from field to supermarket;
- Adherent to food surface;
- Agreeable taste or tasteless;
- Stability in time and especially avoidance of mold development;
- Reduce water depletion of the enveloped product;
- Maintain an adequate gas transfer, especially for oxygen and carbon dioxide and to avoid the loss of components that are responsible for aroma, flavor, and nutritional value;
- Enhancement of structural properties;
- Appearance—overall presentation of the final product requires attaining classical package performances in terms of design. Otherwise, the product can be rejected by consumers;
- Costs—in order to justify a major change in food industry paradigm, the costs need to be lower than other approaches. In some areas, this technology has already attained maturity and the expenses are considerably lower;
- Application devices/methods—distribution of film/coatings formulations on different products in a consistent, efficient, and competitive manner is mandatory. The apparatus used for film preparation must be similar with the classic apparatus. The method of application must be compatible with current equipment;
- Manufacturing processes have to be easy and economically viable. Maintenance and cleaning of the devices used has to be easy to perform.
3. Building Blocks of Edible Coatings/Films Formulations
3.1. Basic Materials
3.1.1. Proteins
3.1.2. Polysaccharides
3.1.3. Lipids, Waxes, and Resins
3.2. Plasticizers
3.3. Additives
3.4. Solvents
3.5. Plant Extracts
4. Preparation and Characterization of Edible Films/Coatings
4.1. Techniques for Preparing Edible Films/Coatings
- Using essential oil in the formulation due to the low miscibility in protein or polysaccharides solution. For this problem, an adequate emulsifier is used in an appropriate concentration;
- The casting method is not so easy to apply at the industrial level compared with the extrusion method. In this respect, maintaining the required concentration of essential oil in the film is an aspect that requires further studies;
- Obtaining a complex material at a low price with high resistance to surrounding factors;
- Choosing the right material for film preparation from a wide range of options
4.2. Characterization of Edible Films/Coatings
4.2.1. Wettability of Coatings Formulations on Food Surface
4.2.2. Film/Coating Thickness, Mechanical, and Gas BARRIER properties
4.2.3. Mechanical Properties
4.2.4. Barrier Parameters
Oxygen and CO2 Permeability
4.2.5. Other Characterization Methods of Edible Films/Coatings
Color
Thermogravimetric Analysis
Film Morphology
FTIR Spectroscopy
X-ray Difraction
Antioxidant and Antimicrobial Activity
5. Statistical Analysis. Design of Experiments (DOE)
- Central composite designs;
- Box–Behnken designs.
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gustavsson, J.; Cederberg, C.; Sonesson, U. Global Food Losses and Food Waste–Extent, Causes and Prevention; FAO: Rome, Italy, 2011. [Google Scholar]
- Fierascu, R.C.; Fierascu, I.; Avramescu, S.M.; Sieniawska, E. Recovery of natural antioxidants from agro-industrial side streams through advanced extraction techniques. Molecules 2019, 24, 4212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhai, X.; Li, Z.; Zhang, J.; Shi, J.; Zou, X.; Huang, X.; Zhang, D.; Sun, Y.; Yang, Z.; Holmes, M.; et al. Natural biomaterial-based edible and pH-sensitive films combined with electrochemical writing for intelligent food packaging. J. Agric. Food Chem. 2018, 66, 12836–12846. [Google Scholar] [CrossRef] [PubMed]
- Enfrin, M.; Dumee, L.F.; Lee, J. Nano/microplastics in water and wastewater treatment processes–Origin, impact and potential solutions. Water Res. 2019, 161, 621–638. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.-C.; Lee, G.; Kwon, Y.; Lim, J.-H.; Jeong, J.-H. Recycling and management practices of plastic packaging waste towards a circular economy in South Korea. Resour. Conserv. Recycl. 2020, 158. [Google Scholar] [CrossRef]
- Fierascu, R.C.; Sieniawska, E.; Ortan, A.; Fierascu, I.; Xiao, J. Fruits by-products–A source of valuable active principles. A short review. Front. Bioeng. Biotechnol. 2020, 8. [Google Scholar] [CrossRef] [Green Version]
- Yeddes, W.; Djebali, K.; Aidi Wannes, W.; Horchani-Naifer, K.; Hammami, M.; Younes, I.; Saidani Tounsi, M. Gelatin-chitosan-pectin films incorporated with rosemary essential oil: Optimized formulation using mixture design and response surface methodology. Int. J. Biol. Macromol. 2020, 154, 92–103. [Google Scholar] [CrossRef]
- Valerio, F.; Volpe, M.G.; Santagata, G.; Boscaino, F.; Barbarisi, C.; Di Biase, M.; Bavaro, A.R.; Lonigro, S.L.; Lavermicocca, P. The viability of probiotic Lactobacillus paracasei IMPC2.1 coating on apple slices during dehydration and simulated gastro-intestinal digestion. Food Biosci. 2020, 34. [Google Scholar] [CrossRef]
- Khanzadi, S.; Keykhosravy, K.; Hashemi, M.; Azizzadeh, M. Alginate coarse/nanoemulsions containing Zataria multiflora Boiss essential oil as edible coatings and the impact on microbial quality of trout fillet. Aquac. Res. 2020, 51, 873–881. [Google Scholar] [CrossRef]
- Shamshina, J.L.; Kelly, A.; Oldham, T.; Rogers, R.D. Agricultural uses of chitin polymers. Environ. Chem. Lett. 2019, 18, 53–60. [Google Scholar] [CrossRef]
- Puscaselu, R.; Gutt, G.; Amariei, S. Rethinking the future of food packaging: Biobased edible films for powdered food and drinks. Molecules 2019, 24, 3136. [Google Scholar] [CrossRef] [Green Version]
- Pina-Barrera, A.M.; Alvarez-Roman, R.; Baez-Gonzalez, J.G.; Amaya-Guerra, C.A.; Rivas-Morales, C.; Gallardo-Rivera, C.T.; Galindo-Rodriguez, S.A. Application of a multisystem coating based on polymeric nanocapsules containing essential oil of thymus vulgaris L. to increase the shelf life of table grapes (Vitis Vinifera L.). IEEE Trans. Nanobiosci. 2019, 18, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Jeevahan, J.; Chandrasekaran, M. Nanoedible films for food packaging: A review. J. Mater. Sci. 2019, 54, 12290–12318. [Google Scholar] [CrossRef]
- Sofi, S.A.; Singh, J.; Rafiq, S.; Ashraf, U.; Dar, B.N.; Nayik, G.A. A comprehensive review on antimicrobial packaging and its use in food packaging. Curr. Nutr. Food Sci. 2018, 14, 305–312. [Google Scholar] [CrossRef]
- Singh, S.; Singh, G.; Arya, S.K. Mannans: An overview of properties and application in food products. Int. J. Biol. Macromol. 2018, 119, 79–95. [Google Scholar] [CrossRef] [PubMed]
- Umaraw, P.; Munekata, P.E.S.; Verma, A.K.; Barba, F.J.; Singh, V.P.; Kumar, P.; Lorenzo, J.M. Edible films/coating with tailored properties for active packaging of meat, fish and derived products. Trends Food Sci. Technol. 2020, 98, 10–24. [Google Scholar] [CrossRef]
- Imeson, A.P. Carrageenan and furcellaran. In Handbook of Hydrocolloids; Woodhead Publishing Limited: Cambridge, UK, 2009; pp. 164–185. [Google Scholar]
- Pavlath, A.; Orts, W. Edible films and coatings: Why, what, and how? In Edible Films and Coatings for Food Applications; Springer: New York, NY, USA, 2009; pp. 1–23. [Google Scholar] [CrossRef]
- Available online: https://www.grandviewresearch.com/industry-analysis/edible-packaging-market (accessed on 14 July 2020).
- Available online: https://www.mordorintelligence.com/industry-reports/edible-films-and-coating-market (accessed on 14 July 2020).
- Hernandez-Izquierdo, V.M.; Krochta, J. Thermoplastic processing of proteins for film formation—A review. J. Food Sci. 2008, 73, R30–R39. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Chen, M.; Warner, R.D.; Fang, Z. Incorporating nisin and grape seed extract in chitosan-gelatine edible coating and its effect on cold storage of fresh pork. Food Control 2020, 110. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, R.; Qin, W.; Dai, J.; Zhang, Q.; Lee, K.; Liu, Y. Physicochemical properties of gelatin films containing tea polyphenol-loaded chitosan nanoparticles generated by electrospray. Mater. Des. 2020, 185. [Google Scholar] [CrossRef]
- Pella, M.C.G.; Silva, O.A.; Pella, M.G.; Beneton, A.G.; Caetano, J.; Simoes, M.R.; Dragunski, D.C. Effect of gelatin and casein additions on starch edible biodegradable films for fruit surface coating. Food Chem. 2020, 309, 125764. [Google Scholar] [CrossRef]
- Khojah, S.M. Bio-based coating from fish gelatin, K-carrageenan and extract of pomegranate peels for maintaining the overall qualities of fish fillet. J. Aquat. Food Prod. Technol. 2020, 1–13. [Google Scholar] [CrossRef]
- Scartazzini, L.; Tosati, J.V.; Cortez, D.H.C.; Rossi, M.J.; Flores, S.H.; Hubinger, M.D.; Di Luccio, M.; Monteiro, A.R. Gelatin edible coatings with mint essential oil (Mentha arvensis): Film characterization and antifungal properties. J. Food Sci. Technol. 2019, 56, 4045–4056. [Google Scholar] [CrossRef] [PubMed]
- Jamroz, E.; Kulawik, P.; Krzysciak, P.; Talaga-Cwiertnia, K.; Juszczak, L. Intelligent and active furcellaran-gelatin films containing green or pu-erh tea extracts: Characterization, antioxidant and antimicrobial potential. Int. J. Biol. Macromol. 2019, 122, 745–757. [Google Scholar] [CrossRef] [PubMed]
- Handayasari, F.; Suyatma, N.E.; Nurjanah, S. Physiochemical and antibacterial analysis of gelatin–chitosan edible film with the addition of nitrite and garlic essential oil by response surface methodology. J. Food Process. Preserv. 2019, 43. [Google Scholar] [CrossRef]
- Char, C.; Padilla, C.; Campos, V.; Pepczynska, M.; Calderón, P.D.; Enrione, J.I. Characterization and testing of a novel sprayable crosslinked edible coating based on salmon gelatin. Coatings 2019, 9, 595. [Google Scholar] [CrossRef] [Green Version]
- Belan, D.L.; Flores, F.P.; Mopera, L.E. Optimization of antioxidant capacity and tensile strength of gelatin-carboxymethylcellulose film incorporated with bignay (Antidesma bunius (L.) Spreng.) crude phenolic extract. AIP Conf. Proc. 2018. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, A.; Wang, W.; Ye, R.; Liu, Y.; Xiao, J.; Wang, K. Characterisation of microemulsion nanofilms based on Tilapia fish skin gelatine and ZnO nanoparticles incorporated with ginger essential oil: Meat packaging application. Int. J. Food Sci. Technol. 2017, 52, 1670–1679. [Google Scholar] [CrossRef]
- Yang, H.-J.; Lee, J.-H.; Lee, K.-Y.; Bin Song, K. Application of gelatin film and coating prepared from dried alaska pollock by-product in quality maintanance of grape berries. J. Food Process. Preserv. 2017, 41. [Google Scholar] [CrossRef]
- Wang, W.; Wang, K.; Xiao, J.; Liu, Y.; Zhao, Y.; Liu, A. Performance of high amylose starch-composited gelatin films influenced by gelatinization and concentration. Int. J. Biol. Macromol. 2017, 94, 258–265. [Google Scholar] [CrossRef]
- Krishna, M.; Nindo, C.I.; Min, S.C. Development of fish gelatin edible films using extrusion and compression molding. J. Food Eng. 2012, 108, 337–344. [Google Scholar] [CrossRef]
- Xiong, Y.; Deng, B.; Warner, R.D.; Fang, Z. Reducing salt content in beef frankfurter by edible coating to achieve inhomogeneous salt distribution. Int. J. Food Sci. Technol. 2020. [Google Scholar] [CrossRef]
- Tosati, J.V.; Messias, V.C.; Carvalho, P.I.N.; Rodrigues Pollonio, M.A.; Meireles, M.A.A.; Monteiro, A.R. Antimicrobial effect of edible coating blend based on turmeric starch residue and gelatin applied onto fresh frankfurter sausage. Food Bioprocess. Technol. 2017, 10, 2165–2175. [Google Scholar] [CrossRef]
- Liang, C.; Jia, M.; Tian, D.; Tang, Y.; Ju, W.; Ding, S.; Tian, L.; Ren, X.; Wang, X. Edible sturgeon skin gelatine films: Tensile strength and UV light-barrier as enhanced by blending with esculine. J. Funct. Foods 2017, 37, 219–228. [Google Scholar] [CrossRef]
- Madhu, B.; Jagannadha Rao, P.V.K.; Patel, S. Moisture sorption isotherms of edible coated solid sugarcane jaggery. Sugar Tech. 2019, 22, 319–327. [Google Scholar] [CrossRef]
- Namratha, S.; Sreejit, V.; Preetha, R. Fabrication and evaluation of physicochemical properties of probiotic edible film based on pectin–alginate–casein composite. Int. J. Food Sci. Technol. 2020, 55, 1497–1505. [Google Scholar] [CrossRef]
- Volpe, S.; Cavella, S.; Torrieri, E. Biopolymer coatings as alternative to modified atmosphere packaging for shelf life extension of minimally processed apples. Coatings 2019, 9, 569. [Google Scholar] [CrossRef] [Green Version]
- Lopes, A.C.A.; Eda, S.H.; Andrade, R.P.; Amorim, J.C.; Duarte, W.F. New alcoholic fermented beverages—potentials and challenges. In Fermented Beverages; Woodhead Publishing Limited: Cambridge, UK, 2019; pp. 577–603. [Google Scholar]
- Fernandes, L.; Pereira, E.L.; Do Céu Fidalgo, M.; Gomes, A.; Ramalhosa, E. Physicochemical properties and microbial control of chestnuts (Castanea sativa) coated with whey protein isolate, chitosan and alginate during storage. Sci. Hortic. 2020, 263. [Google Scholar] [CrossRef]
- Song, J.; Jiang, B.; Wu, Y.; Chen, S.; Li, S.; Sun, H.; Li, X. Effects on surface and physicochemical properties of dielectric barrier discharge plasma-treated whey protein concentrate/wheat cross-linked starch composite film. J. Food Sci. 2019, 84, 268–275. [Google Scholar] [CrossRef]
- Pereira, J.O.; Soares, J.; Monteiro, M.J.P.; Amaro, A.; Gomes, A.; Pintado, M. Cereal bars functionalized through Bifidobacterium animalis subsp. lactis BB-12 and inulin incorporated in edible coatings of whey protein isolate or alginate. Food Funct. 2019, 10, 6892–6902. [Google Scholar] [CrossRef]
- Galus, S.; Lenart, A. Optical, mechanical, and moisture sorption properties of whey protein edible films. J. Food Process. Eng. 2019, 42. [Google Scholar] [CrossRef]
- Castro, F.V.R.; Andrade, M.A.; Sanches Silva, A.; Vaz, M.F.; Vilarinho, F. The contribution of a whey protein film incorporated with green tea extract to minimize the lipid oxidation of salmon (salmo salar L.). Foods 2019, 8, 327. [Google Scholar] [CrossRef] [Green Version]
- Andrade, M.A.; Ribeiro-Santos, R.; Costa Bonito, M.C.; Saraiva, M.; Sanches-Silva, A. Characterization of rosemary and thyme extracts for incorporation into a whey protein based film. LWT 2018, 92, 497–508. [Google Scholar] [CrossRef]
- Azevedo, V.M.; Borges, S.V.; Marconcini, J.M.; Yoshida, M.I.; Neto, A.R.S.; Pereira, T.C.; Pereira, C.F.G. Effect of replacement of corn starch by whey protein isolate in biodegradable film blends obtained by extrusion. Carbohydr. Polym. 2017, 157, 971–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, Z.S.; Badr, K.R.; ElGamal, M.S. Evaluation of the antimicrobial action of whey protein edible films incorporated with cinnamon, cumin and thyme against spoilage flora of fresh beef. Int. J. Agric. Res. 2014, 9, 242–250. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Pan, I.; Royo, M.; Ignacio Mate, J. Antimicrobial activity of whey protein isolate edible films with essential oils against food spoilers and foodborne pathogens. J. Food Sci. 2012, 77, M383–M390. [Google Scholar] [CrossRef] [PubMed]
- Gadang, V.P.; Hettiarachchy, N.S.; Johnson, M.G.; Owens, C. Evaluation of antibacterial activity of whey protein isolate coating incorporated with nisin, grape seed extract, malic acid, and EDTA on a Turkey frankfurter system. J. Food Sci. 2008, 73, M389–M394. [Google Scholar] [CrossRef]
- Gregirchak, N.; Stabnikova, O.; Stabnikov, V. Application of lactic acid bacteria for coating of wheat bread to protect it from microbial spoilage. Plant. Foods Hum. Nutr. 2020. [Google Scholar] [CrossRef]
- Chasquibol, N.A.; Gallardo, G.; Gomez-Coca, R.B.; Trujillo, D.; Moreda, W.; Perez-Camino, M.C. Glyceridic and unsaponifiable components of microencapsulated sacha inchi (Plukenetia huayllabambana L. and Plukenetia volubilis L.) edible oils. Foods 2019, 8, 671. [Google Scholar] [CrossRef] [Green Version]
- Soukoulis, C.; Yonekura, L.; Gan, H.H.; Behboudi-Jobbehdar, S.; Parmenter, C.; Fisk, I. Probiotic edible films as a new strategy for developing functional bakery products: The case of pan bread. Food Hydrocoll. 2014, 39, 231–242. [Google Scholar] [CrossRef]
- Yu, D.; Regenstein, J.M.; Xia, W. Bio-based edible coatings for the preservation of fishery products: A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 2481–2493. [Google Scholar] [CrossRef]
- Lacroix, M.; Vu, K.D. Edible coating and film materials. In Innovations in Food Packaging; Elsevier Science & Technology Books: Amsterdam, The Netherlands, 2014; pp. 277–304. [Google Scholar]
- Han, K.; Liu, Y.; Liu, Y.; Huang, X.; Sheng, L. Characterization and film-forming mechanism of egg white/pullulan blend film. Food Chem. 2020, 315, 126201. [Google Scholar] [CrossRef]
- Handa, A.; Gennadios, A.; Froning, G.W.; Kuroda, N.; Hanna, M.A. Tensile, solubility, and electrophoretic properties of egg white films as affected by surface sulfhydryl groups. J. Food Sci. 1999, 64, 82–85. [Google Scholar] [CrossRef]
- Gennadios, A.; Handa, A.; Froning, G.W.; Weller, C.L.; Hanna, M.A. Physical properties of egg white—Dialdehyde starch films. J. Agric. Food Chem. 1998, 46, 1297–1302. [Google Scholar] [CrossRef]
- Gennadios, A.; Weller, C.L.; Hanna, M.A.; Froning, G.W. Mechanical and barrier properties of egg albumen films. J. Food Sci. 1996, 61, 585–589. [Google Scholar] [CrossRef]
- Rhim, J.W.; Gennadios, A.; Fu, D.; Weller, C.L.; Hanna, M.A. Properties of ultraviolet irradiated protein films. LWT–Food Sci. Technol. 1999, 32, 129–133. [Google Scholar] [CrossRef]
- Sothornvit, R. Edible film formation and properties from different protein sources and orange coating application. Acta Hortic. 2005, 682, 1731–1738. [Google Scholar] [CrossRef]
- Peng, N.; Gu, L.; Li, J.; Chang, C.; Li, X.; Su, Y.; Yang, Y. Films based on egg white protein and succinylated casein cross-linked with transglutaminase. Food Bioprocess Technol. 2017, 10, 1422–1430. [Google Scholar] [CrossRef]
- Huang, X.; Luo, X.; Liu, L.; Dong, K.; Yang, R.; Lin, C.; Song, H.; Li, S.; Huang, Q. Formation mechanism of egg white protein/κ-Carrageenan composite film and its application to oil packaging. Food Hydrocoll. 2020, 105. [Google Scholar] [CrossRef]
- Mecitoğlu, Ç.; Yemenicioğlu, A.; Arslanoğlu, A.; Elmacı, Z.S.; Korel, F.; Çetin, A.E. Incorporation of partially purified hen egg white lysozyme into zein films for antimicrobial food packaging. Food Res. Int. 2006, 39, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, K.C.; Tello, F.; Bierhalz, A.C.K.; Garnica Romo, M.G.; Martínez Flores, H.E.; Grosso, C.R.F. Protein adsorption onto alginate-pectin microparticles and films produced by ionic gelation. J. Food Eng. 2015, 154, 17–24. [Google Scholar] [CrossRef]
- Rondhi, M.; Utami Hatmi, R.; Apriyati, E.; Cahyaningrum, N.; Addy, H.S. Edible coating quality with three types of starch and sorbitol plasticizer. E3S Web Conf. 2020, 142. [Google Scholar] [CrossRef]
- Baswal, A.K.; Dhaliwal, H.S.; Singh, Z.; Mahajan, B.V.C.; Kalia, A.; Gill, K.S. Influence of carboxy methylcellulose, chitosan and beeswax coatings on cold storage life and quality of Kinnow mandarin fruit. Sci. Hortic. 2020, 260. [Google Scholar] [CrossRef]
- Rinaudo, M. Physicochemical behaviour of semi-rigid biopolymers in aqueous medium. Food Hydrocoll. 2017, 68, 122–127. [Google Scholar] [CrossRef]
- Joerger, R.D. Antimicrobial films for food applications: A quantitative analysis of their effectiveness. Packag. Technol. Sci. 2007, 20, 231–273. [Google Scholar] [CrossRef]
- Iñiguez-Moreno, M.; Ragazzo-Sánchez, J.A.; Barros-Castillo, J.C.; Sandoval-Contreras, T.; Calderón-Santoyo, M. Sodium alginate coatings added with Meyerozyma caribbica: Postharvest biocontrol of Colletotrichum gloeosporioides in avocado (Persea americana Mill. cv. Hass). Postharvest Biol. Technol. 2020, 163. [Google Scholar] [CrossRef]
- Kaya, M.; Khadem, S.; Cakmak, Y.S.; Mujtaba, M.; Ilk, S.; Akyuz, L.; Salaberria, A.M.; Labidi, J.; Abdulqadir, A.H.; Deligöz, E. Antioxidative and antimicrobial edible chitosan films blended with stem, leaf and seed extracts of Pistacia terebinthus for active food packaging. Rsc Adv. 2018, 8, 3941–3950. [Google Scholar] [CrossRef] [Green Version]
- Tumbarski, Y.; Petkova, N.; Todorova, M.; Ivanov, I.; Deseva, I.; Mihaylova, D.; Ibrahim, S.A. Effects of pectin-based edible coatings containing a bacteriocin of bacillus methylotrophicus bm47 on the quality and storage life of fresh blackberries. Ital. J. Food Sci. 2020, 32, 420–437. [Google Scholar]
- Synowiec, A.; Gniewosz, M.; Kraśniewska, K.; Przybył, J.L.; Bączek, K.; Węglarz, Z. Antimicrobial and antioxidant properties of pullulan film containing sweet basil extract and an evaluation of coating effectiveness in the prolongation of the shelf life of apples stored in refrigeration conditions. Innov. Food Sci. Emerg. Technol. 2014, 23, 171–181. [Google Scholar] [CrossRef]
- Danalache, F.; Carvalho, C.Y.; Alves, V.D.; Moldao-Martins, M.; Mata, P. Optimisation of gellan gum edible coating for ready-to-eat mango (Mangifera indica L.) bars. Int. J. Biol. Macromol. 2016, 84, 43–53. [Google Scholar] [CrossRef]
- Golly, M.K.; Ma, H.; Sarpong, F.; Dotse, B.P.; Oteng-Darko, P.; Dong, Y. Shelf-life extension of grape (Pinot noir) by xanthan gum enriched with ascorbic and citric acid during cold temperature storage. J. Food Sci. Technol. 2019, 56, 4867–4878. [Google Scholar] [CrossRef]
- Yin, P.; Dong, X.; Zhou, W.; Zha, D.; Xu, J.; Guo, B.; Li, P. A novel method to produce sustainable biocomposites based on thermoplastic corn-starch reinforced by polyvinyl alcohol fibers. RSC Adv. 2020, 10, 23632–23643. [Google Scholar] [CrossRef]
- Kim, H.Y.; Lamsal, B.; Jane, J.l.; Grewell, D. Sheet-extruded films from blends of hydroxypropylated and native corn starches, and their characterization. J. Food Process. Eng. 2019, 43. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.Z.; Saha, T.; Monalisa, K.; Hoque, M.M. Effect of starch edible coating on drying characteristics and antioxidant properties of papaya. J. Food Meas. Charact. 2019, 13, 2951–2960. [Google Scholar] [CrossRef]
- Ferreira, D.C.M.; Molina, G.; Pelissari, F.M. Effect of edible coating from cassava starch and babassu flour (orbignya phalerata) on brazilian cerrado fruits quality. Food Bioprocess Technol. 2019, 13, 172–179. [Google Scholar] [CrossRef]
- Castillo, L.A.; Lopez, O.V.; Garcia, M.A.; Barbosa, S.E.; Villar, M.A. Crystalline morphology of thermoplastic starch/talc nanocomposites induced by thermal processing. Heliyon 2019, 5, e01877. [Google Scholar] [CrossRef] [Green Version]
- Ulyarti, U.; Maryana, E.; Rahmayani, I.; Nazarudin, N.; Susilawati, S.; Doyan, A. The characteristics of yam (dioscorea alata) starch edible film. J. Penelit. Pendidik IPA 2018, 5. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Liu, P.; Ji, N.; Hou, H.; Dong, H. Effects of various cross-linking agents on the physicochemical properties of starch/PHA composite films produced by extrusion blowing. Food Hydrocoll. 2018, 77, 964–975. [Google Scholar] [CrossRef]
- Désiré, A.Y.; Charlemagne, N.; Achille, T.F.; Anne-Catherine, D.; Georges, A.N.; Marianne, S. Water vapor permeability of edible films based on improved cassava (manihot esculenta crantz) native starches. J. Food Process. Technol. 2017, 8. [Google Scholar] [CrossRef]
- Saberi, B.; Thakur, R.; Vuong, Q.V.; Chockchaisawasdee, S.; Golding, J.B.; Scarlett, C.J.; Stathopoulos, C.E. Optimization of physical and optical properties of biodegradable edible films based on pea starch and guar gum. Ind. Crop. Prod. 2016, 86, 342–352. [Google Scholar] [CrossRef]
- Jaramillo, C.M.; Gutierrez, T.J.; Goyanes, S.; Bernal, C.; Fama, L. Biodegradability and plasticizing effect of yerba mate extract on cassava starch edible films. Carbohydr. Polym. 2016, 151, 150–159. [Google Scholar] [CrossRef]
- Andrade, R.M.; Ferreira, M.S.; Goncalves, E.C. Development and characterization of edible films based on fruit and vegetable residues. J. Food Sci. 2016, 81, E412–E418. [Google Scholar] [CrossRef]
- Mei, J.; Yuan, Y.; Guo, Q.; Wu, Y.; Li, Y.; Yu, H. Characterization and antimicrobial properties of water chestnut starch-chitosan edible films. Int. J. Biol. Macromol. 2013, 61, 169–174. [Google Scholar] [CrossRef] [PubMed]
- López, O.V.; Zaritzky, N.E.; Grossmann, M.V.E.; García, M.A. Acetylated and native corn starch blend films produced by blown extrusion. J. Food Eng. 2013, 116, 286–297. [Google Scholar] [CrossRef]
- Gao, W.; Dong, H.; Hou, H.; Zhang, H. Effects of clays with various hydrophilicities on properties of starch–clay nanocomposites by film blowing. Carbohydr. Polym. 2012, 88, 321–328. [Google Scholar] [CrossRef]
- Chaléat, C.M.; Halley, P.J.; Truss, R.W. Study on the phase separation of plasticised starch/poly (vinyl alcohol) blends. Polym. Degrad. Stab. 2012, 97, 1930–1939. [Google Scholar] [CrossRef]
- Bello-Pérez, L.A.; Agama-Acevedo, E.; Zamudio-Flores, P.B.; Mendez-Montealvo, G.; Rodriguez-Ambriz, S.L. Effect of low and high acetylation degree in the morphological, physicochemical and structural characteristics of barley starch. LWT–Food Sci. Technol. 2010, 43, 1434–1440. [Google Scholar] [CrossRef]
- Medina-Jaramillo, C.; Estevez-Areco, S.; Goyanes, S.; Lopez-Cordoba, A. Characterization of starches isolated from colombian native potatoes and their application as novel edible coatings for wild andean blueberries (vaccinium meridionale swartz). Polymers 2019, 11, 1937. [Google Scholar] [CrossRef] [Green Version]
- Santoso, B.; Hazirah, R.; Priyanto, G.; Hermanto, D.; Sugito, D. Utilization of Uncaria gambir Roxb filtrate in the formation of bioactive edible films based on corn starch. Food Sci. Technol. 2019, 39, 837–842. [Google Scholar] [CrossRef] [Green Version]
- Matta Fakhouri, F.; Nogueira, G.F.; De Oliveira, R.A.; Velasco, J.I. Bioactive edible films based on arrowroot starch incorporated with cranberry powder: Microstructure, thermal properties, ascorbic acid content and sensory analysis. Polymers 2019, 11, 1650. [Google Scholar] [CrossRef] [Green Version]
- Nagar, M.; Sharanagat, V.S.; Kumar, Y.; Singh, L. Development and characterization of elephant foot yam starch-hydrocolloids based edible packaging film: Physical, optical, thermal and barrier properties. J. Food Sci. Technol. 2020, 57, 1331–1341. [Google Scholar] [CrossRef]
- Dai, L.; Zhang, J.; Cheng, F. Cross-linked starch-based edible coating reinforced by starch nanocrystals and its preservation effect on graded Huangguan pears. Food Chem. 2020, 311, 125891. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Yu, S.; Sun, B.; Gao, S.; Guo, S.; Zhao, K. Biomedical applications of chitosan and its derivative nanoparticles. Polymers 2018, 10, 462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saikia, C.; Gogoi, P. Chitosan: A promising biopolymer in drug delivery applications. J. Mol. Genet. Med. 2015, S4. [Google Scholar] [CrossRef]
- Zhao, F.; Yao, D.; Guo, R.; Deng, L.; Dong, A.; Zhang, J. Composites of polymer hydrogels and nanoparticulate systems for biomedical and pharmaceutical applications. Nanomaterials 2015, 5, 2054–2130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tokatlı, K.; Demirdöven, A. Effects of chitosan edible film coatings on the physicochemical and microbiological qualities of sweet cherry (Prunus avium L.). Sci. Hortic. 2020, 259. [Google Scholar] [CrossRef]
- Chan, S.Y.; Choo, W.S.; Young, D.J.; Loh, X.J. Pectin as a rheology modifier: Origin, structure, commercial production and rheology. Carbohydr. Polym. 2017, 161, 118–139. [Google Scholar] [CrossRef]
- Hua, X.; Wang, K.; Yang, R.; Kang, J.; Zhang, J. Rheological properties of natural low-methoxyl pectin extracted from sunflower head. Food Hydrocoll. 2015, 44, 122–128. [Google Scholar] [CrossRef]
- Guo, X.; Han, D.; Xi, H.; Rao, L.; Liao, X.; Hu, X.; Wu, J. Extraction of pectin from navel orange peel assisted by ultra-high pressure, microwave or traditional heating: A comparison. Carbohydr. Polym. 2012, 88, 441–448. [Google Scholar] [CrossRef]
- Dranca, F.; Oroian, M. Extraction, purification and characterization of pectin from alternative sources with potential technological applications. Food Res. Int. 2018, 113, 327–350. [Google Scholar] [CrossRef] [PubMed]
- Ngo, T.M.P.; Nguyen, T.H.; Dang, T.M.Q.; Tran, T.X.; Rachtanapun, P. Characteristics and antimicrobial properties of active edible films based on pectin and nanochitosan. Int. J. Mol. Sci. 2020, 21, 2224. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, S.L.; Dos Santos, W.N.; Quintella, C.M.; Neto, B.B.; Bosque-Sendra, J.M. Doehlert matrix: A chemometric tool for analytical chemistry-review. Talanta 2004, 63, 1061–1067. [Google Scholar] [CrossRef]
- Mohamed, S.A.A.; El-Sakhawy, M.; El-Sakhawy, M.A. Polysaccharides, protein and lipid-based natural edible films in food packaging: A review. Carbohydr. Polym. 2020, 238, 116178. [Google Scholar] [CrossRef]
- Akin, M.; Saki, N.; Buyukbayram, M. Shellac and Carnauba Wax Based Edible Films Coating for Fruit Applications. In Proceedings of the International Science and Applications of Thin Films, Conference & Exhibition (SATF 2018), Izmir, Turkey, 17–21 September 2018. [Google Scholar]
- Zdanowicz, M.; Johansson, C. Mechanical and barrier properties of starch-based films plasticized with two- or three component deep eutectic solvents. Carbohydr. Polym. 2016, 151, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Fromme, H.; Bolte, G.; Koch, H.M.; Angerer, J.; Boehmer, S.; Drexler, H.; Mayer, R.; Liebl, B. Occurrence and daily variation of phthalate metabolites in the urine of an adult population. Int. J. Hyg. Environ. Health 2007, 210, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Heudorf, U.; Mersch-Sundermann, V.; Angerer, J. Phthalates: Toxicology and exposure. Int. J. Hyg. Environ. Health 2007, 210, 623–634. [Google Scholar] [CrossRef] [PubMed]
- Sothornvit, R.; Krochta, J.M. Plasticizers in edible films and coatings. In Innovations in Food Packaging; Han, J.H., Ed.; Academic Press: London, UK, 2005; pp. 403–433. [Google Scholar]
- Sahraee, S.; Milani, J.M.; Regenstein, J.M.; Kafil, H.S. Protection of foods against oxidative deterioration using edible films and coatings: A review. Food Biosci. 2019, 32. [Google Scholar] [CrossRef]
- Otoni, C.G.; Avena-Bustillos, R.J.; Azeredo, H.M.C.; Lorevice, M.V.; Moura, M.R.; Mattoso, L.H.C.; McHugh, T.H. Recent advances on edible films based on fruits and vegetables-A review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1151–1169. [Google Scholar] [CrossRef] [Green Version]
- Espitia, P.J.; Avena-Bustillos, R.J.; Du, W.X.; Chiou, B.S.; Williams, T.G.; Wood, D.; McHugh, T.H.; Soares, N.F. Physical and antibacterial properties of acai edible films formulated with thyme essential oil and apple skin polyphenols. J. Food Sci. 2014, 79, M903–M910. [Google Scholar] [CrossRef]
- Guerrero, A.; Ferrero, S.; Barahona, M.; Boito, B.; Lisbinski, E.; Maggi, F.; Sanudo, C. Effects of active edible coating based on thyme and garlic essential oils on lamb meat shelf life after long-term frozen storage. J. Sci. Food Agric. 2020, 100, 656–664. [Google Scholar] [CrossRef]
- Tzortzakis, N.; Xylia, P.; Chrysargyris, A. Sage essential oil improves the effectiveness of aloe vera gel on postharvest quality of tomato fruit. Agronomy 2019, 9, 635. [Google Scholar] [CrossRef] [Green Version]
- Kocić-Tanackov, S.; Dimić, G.; Jakšić, S.; Mojović, L.; Djukić-Vuković, A.; Mladenović, D.; Pejin, J. Effects of caraway and juniper essential oils on aflatoxigenic fungi growth and aflatoxins secretion in polenta. J. Food Process. Preserv. 2019, 43. [Google Scholar] [CrossRef]
- Khaledian, Y.; Pajohi-Alamoti, M.; Bazargani-Gilani, B. Development of cellulose nanofibers coating incorporated with ginger essential oil and citric acid to extend the shelf life of ready-to-cook barbecue chicken. J. Food Process. Preserv. 2019, 43. [Google Scholar] [CrossRef]
- Ekrami, M.; Emam-Djomeh, Z.; Ghoreishy, S.A.; Najari, Z.; Shakoury, N. Characterization of a high-performance edible film based on Salep mucilage functionalized with pennyroyal (mentha pulegium). Int. J. Biol. Macromol. 2019, 133, 529–537. [Google Scholar] [CrossRef]
- Dos Passos Braga, S.; Lundgren, G.A.; Macedo, S.A.; Tavares, J.F.; Dos Santos Vieira, W.A.; Camara, M.P.S.; De Souza, E.L. Application of coatings formed by chitosan and Mentha essential oils to control anthracnose caused by Colletotrichum gloesporioides and C. brevisporum in papaya (Carica papaya L.) fruit. Int. J. Biol. Macromol. 2019, 139, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Bolívar-Monsalve, J.; Ramírez-Toro, C.; Bolívar, G.; Ceballos-González, C. Mechanisms of action of novel ingredients used in edible films to preserve microbial quality and oxidative stability in sausages—A review. Trends Food Sci. Technol. 2019, 89, 100–109. [Google Scholar] [CrossRef]
- Benbettaieb, N.; Karbowiak, T.; Debeaufort, F. Bioactive edible films for food applications: Influence of the bioactive compounds on film structure and properties. Crit. Rev. Food Sci. Nutr. 2019, 59, 1137–1153. [Google Scholar] [CrossRef]
- Alak, G.; Guler, K.; Ucar, A.; Parlak, V.; Kocaman, E.M.; Yanık, T.; Atamanalp, M. Quinoa as polymer in edible films with essential oil: Effects on rainbow trout fillets shelf life. J. Food Process. Preserv. 2019, 43. [Google Scholar] [CrossRef]
- Senturk Parreidt, T.; Muller, K.; Schmid, M. Alginate-based edible films and coatings for food packaging applications. Foods 2018, 7, 170. [Google Scholar] [CrossRef] [Green Version]
- Valdés, A.; Burgos, N.; Jiménez, A.; Garrigós, M. Natural pectin polysaccharides as edible coatings. Coatings 2015, 5, 865–886. [Google Scholar] [CrossRef] [Green Version]
- Silva-Weiss, A.; Ihl, M.; Sobral, P.J.A.; Gómez-Guillén, M.C.; Bifani, V. Natural additives in bioactive edible films and coatings: Functionality and applications in foods. Food Eng. Rev. 2013, 5, 200–216. [Google Scholar] [CrossRef]
- Chaudhary, S.; Kumar, S.; Kumar, V.; Sharma, R. Chitosan nanoemulsions as advanced edible coatings for fruits and vegetables: Composition, fabrication and developments in last decade. Int. J. Biol. Macromol. 2020, 152, 154–170. [Google Scholar] [CrossRef]
- Mhd Haniffa, M.A.C.; Ching, Y.C.; Abdullah, L.C.; Poh, S.C.; Chuah, C.H. Review of bionanocomposite coating films and their applications. Polymers 2016, 8, 246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Honarkar, H.; Barikani, M. Applications of biopolymers I: Chitosan. Mon. Für Chem. Chem. Mon. 2009, 140, 1403–1420. [Google Scholar] [CrossRef]
- Ganduri, V.S.R. Evaluation of pullulan-based edible active coating methods on Rastali and Chakkarakeli bananas and their shelf-life extension parameters studies. J. Food Process. Preserv. 2020. [Google Scholar] [CrossRef]
- Nesic, A.; Cabrera-Barjas, G.; Dimitrijevic-Brankovic, S.; Davidovic, S.; Radovanovic, N.; Delattre, C. Prospect of polysaccharide-based materials as advanced food packaging. Molecules 2019, 25, 135. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Li, X.; Jiang, J.; Fan, X.; Du, M.; Shi, X.; Cao, R. Improvement in the oxidative stability of flaxseed oil using an edible guar gum-tannic acid nanofibrous mat. Eur. J. Lipid Sci. Technol. 2019, 121. [Google Scholar] [CrossRef]
- Kim, M.I.; Kim, J.H.; Syed, A.S.; Kim, Y.M.; Choe, K.K.; Kim, C.Y. Application of centrifugal partition chromatography for bioactivity-guided purification of antioxidant-response-element-inducing constituents from atractylodis rhizoma alba. Molecules 2018, 23, 2274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwienheer, C.; Krause, J.; Schembecker, G.; Merz, J. Modelling centrifugal partition chromatography separation behavior to characterize influencing hydrodynamic effects on separation efficiency. J. Chromatogr. A 2017, 1492, 27–40. [Google Scholar] [CrossRef]
- Issaadi, H.M.; Tsai, Y.C.; Chang, F.R.; Hunyadi, A. Centrifugal partition chromatography in the isolation of minor ecdysteroids from Cyanotis arachnoidea. J. Chromatogr. B 2017, 1054, 44–49. [Google Scholar] [CrossRef]
- Xiong, Y.; Li, S.; Warner, R.D.; Fang, Z. Effect of oregano essential oil and resveratrol nanoemulsion loaded pectin edible coating on the preservation of pork loin in modified atmosphere packaging. Food Control 2020, 114. [Google Scholar] [CrossRef]
- Shokri, S.; Parastouei, K.; Taghdir, M.; Abbaszadeh, S. Application an edible active coating based on chitosan- Ferulago angulata essential oil nanoemulsion to shelf life extension of Rainbow trout fillets stored at 4 degrees C. Int. J. Biol. Macromol. 2020, 153, 846–854. [Google Scholar] [CrossRef]
- Savadkouhi, N.R.; Ariaii, P.; Langerodi, M.C. The effect of encapsulated plant extract of hyssop (Hyssopus officinalis L.) in biopolymer nanoemulsions of Lepidium perfoliatum and Orchis mascula on controlling oxidative stability of soybean oil. Food Sci. Nutr. 2020, 8, 1264–1271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiarsi, Z.; Hojjati, M.; Behbahani, B.A.; Noshad, M. In vitro antimicrobial effects of Myristica fragrans essential oil on foodborne pathogens and its influence on beef quality during refrigerated storage. J. Food Saf. 2020. [Google Scholar] [CrossRef]
- Rezaeifar, M.; Mehdizadeh, T.; Langroodi, A.M.; Rezaei, F. Effect of chitosan edible coating enriched with lemon verbena extract and essential oil on the shelf life of vacuum rainbow trout (Oncorhynchus mykiss). J. Food Saf. 2020. [Google Scholar] [CrossRef]
- Keykhosravy, K.; Khanzadi, S.; Hashemi, M.; Azizzadeh, M. Chitosan-loaded nanoemulsion containing Zataria Multiflora Boiss and Bunium persicum Boiss essential oils as edible coatings: Its impact on microbial quality of turkey meat and fate of inoculated pathogens. Int. J. Biol. Macromol. 2020, 150, 904–913. [Google Scholar] [CrossRef] [PubMed]
- Kalkan, S.; Otag, M.R.; Engin, M.S. Physicochemical and bioactive properties of edible methylcellulose films containing Rheum ribes L. extract. Food Chem. 2020, 307, 125524. [Google Scholar] [CrossRef] [PubMed]
- Istúriz-Zapata, M.A.; Hernández-López, M.; Correa-Pacheco, Z.N.; Barrera-Necha, L.L. Quality of cold-stored cucumber as affected by nanostructured coatings of chitosan with cinnamon essential oil and cinnamaldehyde. LWT 2020, 123. [Google Scholar] [CrossRef]
- Etemadipoor, R.; Dastjerdi, A.M.; Ramezanian, A.; Ehteshami, S. Ameliorative effect of gum arabic, oleic acid and/or cinnamon essential oil on chilling injury and quality loss of guava fruit. Sci. Hortic. 2020, 266. [Google Scholar] [CrossRef]
- De Vasconcellos Santos Batista, D.; Reis, R.C.; Almeida, J.M.; Rezende, B.; Braganca, C.A.D.; Da Silva, F. Edible coatings in post-harvest papaya: Impact on physical-chemical and sensory characteristics. J. Food Sci. Technol. 2020, 57, 274–281. [Google Scholar] [CrossRef]
- Behbahani, B.A.; Noshad, M.; Jooyandeh, H. Improving oxidative and microbial stability of beef using Shahri Balangu seed mucilage loaded with Cumin essential oil as a bioactive edible coating. Biocatal. Agric. Biotechnol. 2020, 24. [Google Scholar] [CrossRef]
- Al-Hashimi, A.G.; Ammar, A.B.; G, L.; Cacciola, F.; Lakhssassi, N. Development of a millet starch edible film containing clove essential oil. Foods 2020, 9, 184. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Li, X.; Kang, H. Chitosan coatings incorporated with free or nano-encapsulated Paulownia Tomentosa essential oil to improve shelf-life of ready-to-cook pork chops. LWT 2019, 116. [Google Scholar] [CrossRef]
- Vieira, B.B.; Mafra, J.F.; Bispo, A.S.D.R.; Ferreira, M.A.; Silva, F.D.L.; Rodrigues, A.V.N.; Evangelista-Barreto, N.S. Combination of chitosan coating and clove essential oil reduces lipid oxidation and microbial growth in frozen stored tambaqui (colossoma macropomum) fillets. LWT 2019, 116. [Google Scholar] [CrossRef]
- Sapper, M.; Bonet, M.; Chiralt, A. Wettability of starch-gellan coatings on fruits, as affected by the incorporation of essential oil and/or surfactants. LWT 2019, 116. [Google Scholar] [CrossRef]
- Melo, P.T.S.; Nunes, J.C.; Otoni, C.G.; Aouada, F.A.; De Moura, M.R. Combining cupuassu (theobroma grandiflorum) puree, pectin, and chitosan nanoparticles into novel edible films for food packaging applications. J. Food Sci. 2019, 84, 2228–2233. [Google Scholar] [CrossRef]
- Matta, E.; Tavera-Quiroz, M.J.; Bertola, N. Active edible films of methylcellulose with extracts of green apple (Granny Smith) skin. Int. J. Biol. Macromol. 2019, 124, 1292–1298. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.; Seo, E.; Kim, Y. Physical, mechanical and water barrier properties of yuba films incorporated with various types of additives. J. Sci. Food Agric. 2019, 99, 2808–2817. [Google Scholar] [CrossRef]
- Khanzadi, S.; Hashemi, M.; Keykhosravy, K. Antimicrobial and antioxidant efficiency of nano emulsion-based edible coating containing ginger (Zingiber officinale) essential oil and its effect on safety and quality attributes of chicken breast fillets. Food Control 2019, 106. [Google Scholar] [CrossRef]
- Tovar, C.D.G.; Delgado-Ospina, J.; Porras, D.P.N.; Peralta-Ruiz, Y.; Cordero, A.P.; Castro, J.I.; Valencia, M.N.C.; Mina, J.H.; Lopez, C.C. Colletotrichum gloesporioides inhibition in situ by chitosan-ruta graveolens essential oil coatings: Effect on microbiological, physicochemical, and organoleptic properties of guava (Psidium guajava L.) during room temperature storage. Biomolecules 2019, 9, 399. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, K.Á.R.; Da Conceição, M.L.; De Oliveira, S.P.A.; Lima, M.d.S.; De Sousa Galvão, M.; Madruga, M.S.; Magnani, M.; De Souza, E.L. Postharvest quality improvements in mango cultivar Tommy Atkins by chitosan coating with Mentha piperita L. essential oil. J. Hortic. Sci. Biotechnol. 2019, 95, 260–272. [Google Scholar] [CrossRef]
- De Figueiredo Sousa, H.A.; De Oliveira Filho, J.G.; Egea, M.B.; Da Silva, E.R.; Macagnan, D.; Pires, M.; Peixoto, J. Active film incorporated with clove essential oil on storage of banana varieties. Nutr. Food Sci. 2019. [Google Scholar] [CrossRef]
- Rodsamran, P.; Sothornvit, R. Microencapsulation of Thai rice grass (O. Sativa cv. Khao Dawk Mali 105) extract incorporated to form bioactive carboxymethyl cellulose edible film. Food Chem. 2018, 242, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Pinzon, M.I.; Garcia, O.R.; Villa, C.C. The influence of Aloe vera gel incorporation on the physicochemical and mechanical properties of banana starch-chitosan edible films. J. Sci. Food Agric. 2018, 98, 4042–4049. [Google Scholar] [CrossRef] [PubMed]
- Noor, S.; Bhat, Z.F.; Kumar, S.; Mudiyanselage, R.J. Preservative effect of Asparagus racemosus: A novel additive for bioactive edible films for improved lipid oxidative stability and storage quality of meat products. Meat Sci. 2018, 139, 207–212. [Google Scholar] [CrossRef]
- Saberi, B.; Vuong, Q.V.; Chockchaisawasdee, S.; Golding, J.B.; Scarlett, C.J.; Stathopoulos, C.E. Physical, barrier, and antioxidant properties of pea starch-guar gum biocomposite edible films by incorporation of natural plant extracts. Food Bioprocess. Technol. 2017, 10, 2240–2250. [Google Scholar] [CrossRef] [Green Version]
- Alsaggaf, M.S.; Moussa, S.H.; Tayel, A.A. Application of fungal chitosan incorporated with pomegranate peel extract as edible coating for microbiological, chemical and sensorial quality enhancement of Nile tilapia fillets. Int. J. Biol. Macromol. 2017, 99, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Tongnuanchan, P.; Benjakul, S.; Prodpran, T.; Pisuchpen, S.; Osako, K. Mechanical, thermal and heat sealing properties of fish skin gelatin film containing palm oil and basil essential oil with different surfactants. Food Hydrocoll. 2016, 56, 93–107. [Google Scholar] [CrossRef]
- Rodriguez-Garcia, I.; Cruz-Valenzuela, M.R.; Silva-Espinoza, B.A.; Gonzalez-Aguilar, G.A.; Moctezuma, E.; Gutierrez-Pacheco, M.M.; Tapia-Rodriguez, M.R.; Ortega-Ramirez, L.A.; Ayala-Zavala, J.F. Oregano (Lippia graveolens) essential oil added within pectin edible coatings prevents fungal decay and increases the antioxidant capacity of treated tomatoes. J. Sci. Food Agric. 2016, 96, 3772–3778. [Google Scholar] [CrossRef] [PubMed]
- Kavas, N.; Kavas, G. Physical-chemical and antimicrobial properties of Egg White Protein Powder films incorporated with orange essential oil on Kashar Cheese. Food Sci. Technol. 2016, 36, 672–678. [Google Scholar] [CrossRef] [Green Version]
- Gallego, M.G.; Gordon, M.H.; Segovia, F.; Pablos, M.P.A. Gelatine-based antioxidant packaging containing caesalpinia decapetala and tara as a coating for ground beef patties. Antioxidants 2016, 5, 10. [Google Scholar] [CrossRef] [Green Version]
- Alexandre, E.M.C.; Lourenço, R.V.; Bittante, A.M.Q.B.; Moraes, I.C.F.; Sobral, P.J.D.A. Gelatin-based films reinforced with montmorillonite and activated with nanoemulsion of ginger essential oil for food packaging applications. Food Packag. Shelf Life 2016, 10, 87–96. [Google Scholar] [CrossRef]
- Pena-Rodriguez, C.; Martucci, J.F.; Neira, L.M.; Arbelaiz, A.; Eceiza, A.; Ruseckaite, R.A. Functional properties and in vitro antioxidant and antibacterial effectiveness of pigskin gelatin films incorporated with hydrolysable chestnut tannin. Food Sci. Technol. Int. 2015, 21, 221–231. [Google Scholar] [CrossRef]
- Zhu, L.; Olsen, C.; McHugh, T.; Friedman, M.; Jaroni, D.; Ravishankar, S. Apple, carrot, and hibiscus edible films containing the plant antimicrobials carvacrol and cinnamaldehyde inactivate Salmonella Newport on organic leafy greens in sealed plastic bags. J. Food. Sci. 2014, 79, M61–M66. [Google Scholar] [CrossRef] [PubMed]
- Otoni, C.G.; Pontes, S.F.; Medeiros, E.A.; Soares Nde, F. Edible films from methylcellulose and nanoemulsions of clove bud (Syzygium aromaticum) and oregano (Origanum vulgare) essential oils as shelf life extenders for sliced bread. J. Agric. Food Chem. 2014, 62, 5214–5219. [Google Scholar] [CrossRef] [PubMed]
- Kraśniewska, K.; Gniewosz, M.; Synowiec, A.; Przybył, J.L.; Bączek, K.; Węglarz, Z. The use of pullulan coating enriched with plant extracts from Satureja hortensis L. to maintain pepper and apple quality and safety. Postharvest Biol. Technol. 2014, 90, 63–72. [Google Scholar] [CrossRef]
- Ferreira, A.S.; Nunes, C.; Castro, A.; Ferreira, P.; Coimbra, M.A. Influence of grape pomace extract incorporation on chitosan films properties. Carbohydr. Polym. 2014, 113, 490–499. [Google Scholar] [CrossRef]
- Campos, D.; Piccirillo, C.; Pullar, R.C.; Castro, P.M.; Pintado, M.M. Characterization and antimicrobial properties of food packaging methylcellulose films containing stem extract of Ginja cherry. J. Sci. Food Agric. 2014, 94, 2097–2103. [Google Scholar] [CrossRef]
- Lopez-Garcia, J.; Kucekova, Z.; Humpolicek, P.; Mlcek, J.; Saha, P. Polyphenolic extracts of edible flowers incorporated onto atelocollagen matrices and their effect on cell viability. Molecules 2013, 18, 13435–13445. [Google Scholar] [CrossRef]
- Wang, S.; Marcone, M.; Barbut, S.; Lim, L.T. The impact of anthocyanin-rich red raspberry extract (ARRE) on the properties of edible soy protein isolate (SPI) films. J. Food Sci. 2012, 77, C497–C505. [Google Scholar] [CrossRef]
- Ravishankar, S.; Jaroni, D.; Zhu, L.; Olsen, C.; McHugh, T.; Friedman, M. Inactivation of Listeria monocytogenes on ham and bologna using pectin-based apple, carrot, and hibiscus edible films containing carvacrol and cinnamaldehyde. J. Food Sci. 2012, 77, M377–M382. [Google Scholar] [CrossRef]
- Moradi, M.; Tajik, H.; Rohani, S.M.R.; Oromiehie, A.R.; Malekinejad, H.; Aliakbarlu, J.; Hadian, M. Characterization of antioxidant chitosan film incorporated with Zataria multiflora Boiss essential oil and grape seed extract. LWT–Food Sci. Technol. 2012, 46, 477–484. [Google Scholar] [CrossRef]
- Lara, G.R.; Uemura, K.; Khalid, N.; Kobayashi, I.; Takahashi, C.; Nakajima, M.; Neves, M.A. Layer-by-layer electrostatic deposition of edible coatings for enhancing the storage stability of fresh-cut lotus root (Nelumbo nucifera). Food Bioprocess. Technol. 2020, 13, 722–726. [Google Scholar] [CrossRef]
- Lima, Á.M.; Cerqueira, M.A.; Souza, B.W.S.; Santos, E.C.M.; Teixeira, J.A.; Moreira, R.A.; Vicente, A.A. New edible coatings composed of galactomannans and collagen blends to improve the postharvest quality of fruits–Influence on fruits gas transfer rate. J. Food Eng. 2010, 97, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Novel sources of edible films and coatings. Stewart Postharvest Rev. 2010, 6, 1–8. [CrossRef]
- De Elguea-Culebras, G.O.; Bourbon, A.I.; Costa, M.J.; Muñoz-Tebar, N.; Carmona, M.; Molina, A.; Sánchez-Vioque, R.; Berruga, M.I.; Vicente, A.A. Optimization of a chitosan solution as potential carrier for the incorporation of Santolina chamaecyparissus L. solid by-product in an edible vegetal coating on ‘Manchego’ cheese. Food Hydrocoll. 2019, 89, 272–282. [Google Scholar] [CrossRef] [Green Version]
- Dhumal, C.V.; Ahmed, J.; Bandara, N.; Sarkar, P. Improvement of antimicrobial activity of sago starch/guar gum bi-phasic edible films by incorporating carvacrol and citral. Food Packag. Shelf Life 2019, 21. [Google Scholar] [CrossRef]
- Torres-León, C.; Vicente, A.A.; Flores-López, M.L.; Rojas, R.; Serna-Cock, L.; Alvarez-Pérez, O.B.; Aguilar, C.N. Edible films and coatings based on mango (var. Ataulfo) by-products to improve gas transfer rate of peach. LWT 2018, 97, 624–631. [Google Scholar] [CrossRef] [Green Version]
- Terpilowski, K.; Hołysz, L.; Rymuszka, D.; Banach, R. Comparison of contact angle measurement methods of liquids on metal alloys. Ann. UMCS, Chem. 2016, 71, 89. [Google Scholar] [CrossRef]
- Souza, V.G.L.; Pires, J.R.A.; Rodrigues, C.; Coelhoso, I.M.; Fernando, A.L. Chitosan composites in packaging industry-current trends and future challenges. Polymers 2020, 12, 417. [Google Scholar] [CrossRef] [Green Version]
- Medina-Pérez, G.; Hernández-Uribe, J.P.; Fernández-León, D.; Prince, L.; Fernández-Luqueño, F.; Campos-Montiel, R.G. Application of nanoemulsions (w/o) with active compounds of cactus pear fruit in starch films to improve antioxidant activity and incorporate antibacterial property. J. Food Process. Eng. 2019, 42. [Google Scholar] [CrossRef]
- Han, Y.; Wang, L. Sodium alginate/carboxymethyl cellulose films containing pyrogallic acid: Physical and antibacterial properties. J. Sci. Food Agric. 2017, 97, 1295–1301. [Google Scholar] [CrossRef] [PubMed]
- Eswaranandam, S.; Hettiarachchy, N.S.; Johnson, M.G. Antimicrobial activity of citric, lactic, malic, or tartaric acids and nisin-incorporated soy protein film against listeria monocytogenes, escherichia coli O157:H7, and salmonella gaminara. J. Food Sci. 2004, 69, FMS79–FMS84. [Google Scholar] [CrossRef]
- Fabra, M.J.; Talens, P.; Gavara, R.; Chiralt, A. Barrier properties of sodium caseinate films as affected by lipid composition and moisture content. J. Food Eng. 2012, 109, 372–379. [Google Scholar] [CrossRef]
- Amarante, C.; Banks, N.H. Postharvest physiology and quality of COATED fruits and Vegetables. In Horticultural Reviews; John Wiley & Sons, Inc.: Bridgewater, NJ, USA, 2000. [Google Scholar]
- Salama, H.E.; Abdel Aziz, M.S.; Alsehli, M. Carboxymethyl cellulose/sodium alginate/chitosan biguanidine hydrochloride ternary system for edible coatings. Int. J. Biol. Macromol. 2019, 139, 614–620. [Google Scholar] [CrossRef] [PubMed]
- Campos, C.A.; Gerschenson, L.N.; Flores, S.K. Development of edible films and coatings with antimicrobial activity. Food Bioprocess. Technol. 2010, 4, 849–875. [Google Scholar] [CrossRef]
- Rojas-Bravo, M.; Rojas-Zenteno, E.G.; Hernández-Carranza, P.; Ávila-Sosa, R.; Aguilar-Sánchez, R.; Ruiz-López, I.I.; Ochoa-Velasco, C.E. A potential application of mango (Mangifera indica L. cv Manila) peel powder to increase the total phenolic compounds and antioxidant capacity of edible films and coatings. Food Bioprocess. Technol. 2019, 12, 1584–1592. [Google Scholar] [CrossRef]
- Moreno, M.A.; Bojorges, H.; Falcó, I.; Sánchez, G.; López-Carballo, G.; López-Rubio, A.; Zampini, I.C.; Isla, M.I.; Fabra, M.J. Active properties of edible marine polysaccharide-based coatings containing Larrea nitida polyphenols enriched extract. Food Hydrocoll. 2020, 102. [Google Scholar] [CrossRef]
- Alkan, D.; Yemenicioğlu, A. Potential application of natural phenolic antimicrobials and edible film technology against bacterial plant pathogens. Food Hydrocoll. 2016, 55, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Wei, F.; Han, X. An edible film of sodium alginate/pullulan incorporated with capsaicin. New J. Chem. 2018, 42, 17756–17761. [Google Scholar] [CrossRef]
- Talon, E.; Trifkovic, K.T.; Nedovic, V.A.; Bugarski, B.M.; Vargas, M.; Chiralt, A.; Gonzalez-Martinez, C. Antioxidant edible films based on chitosan and starch containing polyphenols from thyme extracts. Carbohydr. Polym. 2017, 157, 1153–1161. [Google Scholar] [CrossRef]
- Castro e Silva, P.; Oliveira, A.C.S.; Pereira, L.A.S.; Valquíria, M.; Carvalho, G.R.; Miranda, K.W.E.; Marconcini, J.M.; Oliveira, J.E. Development of bionanocomposites of pectin and nanoemulsions of carnauba wax and neem oil pectin/carnauba wax/neem oil composites. Polym. Compos. 2019, 41, 858–870. [Google Scholar] [CrossRef]
- Dick, M.; Costa, T.M.; Gomaa, A.; Subirade, M.; Ade, O.R.; Flores, S.H. Edible film production from chia seed mucilage: Effect of glycerol concentration on its physicochemical and mechanical properties. Carbohydr. Polym. 2015, 130, 198–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.; Wang, D.; Deng, J.; Yang, J.; Shi, C.; Zhou, F.; Shi, Z. Activity and structural characteristics of peach gum exudates. Int. J. Polym. Sci. 2018, 2018, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Bonilla, J.; Bittante, A.M.Q.B.; Sobral, P.J.A. Thermal analysis of gelatin–chitosan edible film mixed with plant ethanolic extracts. J. Therm. Anal. Calorim. 2017, 130, 1221–1227. [Google Scholar] [CrossRef]
- Breda, C.A.; Morgado, D.L.; Assis, O.B.G.; Duarte, M.C.T. Processing and characterization of chitosan films with incorporation of ethanolic extract from “pequi” peels. Macromol. Res. 2017, 25, 1049–1056. [Google Scholar] [CrossRef]
- Ghadermazi, R.; Hamdipour, S.; Sadeghi, K.; Ghadermazi, R.; Asl, A.K. Effect of various additives on the properties of the films and coatings derived from hydroxypropyl methylcellulose—A review. Food Sci. Nutr. 2019, 7, 3363–3377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aisyah, Y.; Irwanda, L.P.; Haryani, S.; Safriani, N. Characterization of corn starch-based edible film incorporated with nutmeg oil nanoemulsion. IOP Conf. Ser. Mater. Sci. Eng. 2018, 352. [Google Scholar] [CrossRef]
- Funami, T. In vivo and rheological approaches for characterizing food oral processing and usefulness of polysaccharides as texture modifiers—A review. Food Hydrocoll. 2017, 68, 2–14. [Google Scholar] [CrossRef]
- Fuertes, S.; Laca, A.; Oulego, P.; Paredes, B.; Rendueles, M.; Díaz, M. Development and characterization of egg yolk and egg yolk fractions edible films. Food Hydrocoll. 2017, 70, 229–239. [Google Scholar] [CrossRef]
- Hosseini, S.F.; Rezaei, M.; Zandi, M.; Farahmandghavi, F. Fabrication of bio-nanocomposite films based on fish gelatin reinforced with chitosan nanoparticles. Food Hydrocoll. 2015, 44, 172–182. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, J.; Wang, X.-X.; Zhang, N.; Sun, X.-X.; Ma, Z.-S. The effects of ultrasonic/microwave assisted treatment on the water vapor barrier properties of soybean protein isolate-based oleic acid/stearic acid blend edible films. Food Hydrocoll. 2014, 35, 51–58. [Google Scholar] [CrossRef]
- Akhtar, M.J.; Jacquot, M.; Jasniewski, J.; Jacquot, C.; Imran, M.; Jamshidian, M.; Paris, C.; Desobry, S. Antioxidant capacity and light-aging study of HPMC films functionalized with natural plant extract. Carbohydr. Polym. 2012, 89, 1150–1158. [Google Scholar] [CrossRef] [PubMed]
- Romano, N.; Tavera-Quiroz, M.J.; Bertola, N.; Mobili, P.; Pinotti, A.; Gomez-Zavaglia, A. Edible methylcellulose-based films containing fructo-oligosaccharides as vehicles for lactic acid bacteria. Food Res. Int. 2014, 64, 560–566. [Google Scholar] [CrossRef] [PubMed]
- Alotaibi, M.A.; Tayel, A.A.; Zidan, N.S.; El Rabey, H.A. Bioactive coatings from nano-biopolymers/plant extract composites for complete protection from mycotoxigenic fungi in dates. J. Sci. Food Agric. 2019, 99, 4338–4343. [Google Scholar] [CrossRef] [PubMed]
- Criado, P.; Fraschini, C.; Salmieri, S.; Lacroix, M. Cellulose nanocrystals (CNCs) loaded alginate films against lipid oxidation of chicken breast. Food Res. Int. 2020, 132. [Google Scholar] [CrossRef]
- Tahir, H.E.; Zhihua, L.; Mahunu, G.K.; Xiaobo, Z.; Arslan, M.; Xiaowei, H.; Yang, Z.; Mariod, A.A. Effect of gum arabic edible coating incorporated with African baobab pulp extract on postharvest quality of cold stored blueberries. Food Sci. Biotechnol. 2020, 29, 217–226. [Google Scholar] [CrossRef]
- Sakooei-Vayghan, R.; Peighambardoust, S.H.; Hesari, J.; Peressini, D. Effects of osmotic dehydration (with and without sonication) and pectin-based coating pretreatments on functional properties and color of hot-air dried apricot cubes. Food Chem. 2020, 311, 125978. [Google Scholar] [CrossRef]
- Martínez-González, M.D.C.; Bautista-Baños, S.; Correa-Pacheco, Z.N.; Corona-Rangel, M.L.; Ventura-Aguilar, R.I.; Del Río-García, J.C.; Ramos-García, M.D.L. Effect of nanostructured chitosan/propolis coatings on the quality and antioxidant capacity of strawberries during storage. Coatings 2020, 10, 90. [Google Scholar] [CrossRef] [Green Version]
- Luo, P.; Li, F.; Liu, H.; Yang, X.; Duan, Z. Effect of fucoidan-based edible coating on antioxidant degradation kinetics in strawberry fruit during cold storage. J. Food Process. Preserv. 2020. [Google Scholar] [CrossRef]
- Emamifar, A.; Bavaisi, S. Nanocomposite coating based on sodium alginate and nano-ZnO for extending the storage life of fresh strawberries (Fragaria × ananassa Duch.). J. Food Meas. Charact. 2020, 14, 1012–1024. [Google Scholar] [CrossRef]
- El-Mogy, M.M.; Parmar, A.; Ali, M.R.; Abdel-Aziz, M.E.; Abdeldaym, E.A. Improving postharvest storage of fresh artichoke bottoms by an edible coating of Cordia myxa gum. Postharvest Biol. Technol. 2020, 163. [Google Scholar] [CrossRef]
- Valencia, G.A.; Zare, E.N.; Makvandi, P.; Gutiérrez, T.J. Self-assembled carbohydrate polymers for food applications: A review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 2009–2024. [Google Scholar] [CrossRef]
- Ulutasdemir, T.; Cagri-Mehmetoglu, A. Effects of edible coating containing Williopsis saturnus var. saturnus on fungal growth and aflatoxin production by Aspergillus flavus in peanuts. J. Food Saf. 2019, 39. [Google Scholar] [CrossRef]
- Totad, M.G.; Sharma, R.R.; Sethi, S.; Verma, M.K. Effect of edible coatings on ‘Misty’ blueberry (Vaccinium corymbosum) fruits stored at low temperature. Acta Physiol. Plant. 2019, 41. [Google Scholar] [CrossRef]
- Thakur, R.; Pristijono, P.; Scarlett, C.J.; Bowyer, M.; Singh, S.P.; Vuong, Q.V. Starch-based edible coating formulation: Optimization and its application to improve the postharvest quality of “Cripps pink” apple under different temperature regimes. Food Packag. Shelf Life 2019, 22. [Google Scholar] [CrossRef]
- Tarazona, A.; Gomez, J.V.; Mateo, E.M.; Jimenez, M.; Mateo, F. Antifungal effect of engineered silver nanoparticles on phytopathogenic and toxigenic Fusarium spp. and their impact on mycotoxin accumulation. Int. J. Food Microbiol. 2019, 306, 108259. [Google Scholar] [CrossRef] [PubMed]
- Tang, F.; Aldridge, D.C. Microcapsulated biocides for the targeted control of invasive bivalves. Sci. Rep. 2019, 9, 18787. [Google Scholar] [CrossRef]
- Khoshnoudi-Nia, S.; Sedaghat, N. Effect of active edible coating and temperature on quality properties of roasted pistachio nuts during storage. J. Food Process. Preserv. 2019, 43. [Google Scholar] [CrossRef]
- Khodaei, D.; Hamidi-Esfahani, Z. Influence of bioactive edible coatings loaded with Lactobacillus plantarum on physicochemical properties of fresh strawberries. Postharvest Biol. Technol. 2019, 156. [Google Scholar] [CrossRef]
- Barreto, M.R.; Aleixo, N.A.; Silvestre, R.B.; Fregonezi, N.F.; Barud, H.D.S.; Dias, D.D.S.; Ribeiro, C.A.; Resende, F.A. Genotoxicological safety assessment of puree-only edible films from onion bulb (Allium cepa L.) for use in food packaging-related applications. J. Food Sci. 2020, 85, 201–208. [Google Scholar] [CrossRef]
- Zhao, L.; Fan, H.; Zhang, M.; Chitrakar, B.; Bhandari, B.; Wang, B. Edible flowers: Review of flower processing and extraction of bioactive compounds by novel technologies. Food Res. Int. 2019, 126, 108660. [Google Scholar] [CrossRef]
- Sicari, V.; Loizzo, M.R.; Pellicanò, T.M.; Giuffrè, A.M.; Poiana, M. Evaluation of Aloe arborescens gel as new coating to maintain the organoleptic and functional properties of strawberry ( Fragaria × ananassa cv. Cadonga) fruits. Int. J. Food Sci. Technol. 2019, 55, 861–870. [Google Scholar] [CrossRef]
- Rastegar, S.; Khankahdani, H.H.; Rahimzadeh, M. Effectiveness of alginate coating on antioxidant enzymes and biochemical changes during storage of mango fruit. J. Food Biochem. 2019, 43, e12990. [Google Scholar] [CrossRef] [PubMed]
- Talmaciu, A.I.; Ravber, M.; Volf, I.; Knez, Ž.; Popa, V.I. Isolation of bioactive compounds from spruce bark waste using sub- and supercritical fluids. J. Supercrit. Fluids 2016, 117, 243–251. [Google Scholar] [CrossRef]
- Jacotet-Navarro, M.; Laguerre, M.; Fabiano-Tixier, A.S.; Tenon, M.; Feuillere, N.; Bily, A.; Chemat, F. What is the best ethanol-water ratio for the extraction of antioxidants from rosemary? Impact of the solvent on yield, composition, and activity of the extracts. Electrophoresis 2018. [Google Scholar] [CrossRef] [PubMed]
- Ganiari, S.; Choulitoudi, E.; Oreopoulou, V. Edible and active films and coatings as carriers of natural antioxidants for lipid food. Trends Food Sci. Technol. 2017, 68, 70–82. [Google Scholar] [CrossRef]
- Ramos, M.; Valdés, A.; Beltrán, A.; Garrigós, M. Gelatin-based films and coatings for food packaging applications. Coatings 2016, 6, 41. [Google Scholar] [CrossRef] [Green Version]
- Koubaa, M.; Barba, F.J.; Grimi, N.; Mhemdi, H.; Koubaa, W.; Boussetta, N.; Vorobiev, E. Recovery of colorants from red prickly pear peels and pulps enhanced by pulsed electric field and ultrasound. Innov. Food Sci. Emerg. Technol. 2016, 37, 336–344. [Google Scholar] [CrossRef]
- Choulitoudi, E.; Bravou, K.; Bimpilas, A.; Tsironi, T.; Tsimogiannis, D.; Taoukis, P.; Oreopoulou, V. Antimicrobial and antioxidant activity of Satureja thymbra in gilthead seabream fillets edible coating. Food Bioprod. Process. 2016, 100, 570–577. [Google Scholar] [CrossRef]
- Bonilla, J.; Sobral, P.J.A. Investigation of the physicochemical, antimicrobial and antioxidant properties of gelatin-chitosan edible film mixed with plant ethanolic extracts. Food Biosci. 2016, 16, 17–25. [Google Scholar] [CrossRef]
- Haddar, A.; Sellimi, S.; Ghannouchi, R.; Alvarez, O.M.; Nasri, M.; Bougatef, A. Functional, antioxidant and film-forming properties of tuna-skin gelatin with a brown algae extract. Int. J. Biol. Macromol. 2012, 51, 477–483. [Google Scholar] [CrossRef]
- Zhang, L.; Kou, X.; Huang, X.; Li, G.; Liu, J.; Ye, J. Peach-gum: A promising alternative for retarding the ripening and senescence in postharvest peach fruit. Postharvest Biol. Technol. 2020, 161. [Google Scholar] [CrossRef]
- Mohamed, C.; Elise, N.G.; Etienne, T.V.; Loiseau, G.; Montet, D. Antifungal activity of edible coating made from chitosan and lactoperoxidase system against Phomopsis sp. RP257 and Pestalotiopsis sp. isolated from mango. J. Food Saf. 2020. [Google Scholar] [CrossRef]
- Maringgal, B.; Hashim, N.; Amin Tawakkal, I.S.M.; Muda Mohamed, M.T.; Hazwan Hamzah, M.; Ali, M.M.; Abd Razak, M.F.H. Kinetics of quality changes in papayas (Carica papaya L.) coated with Malaysian stingless bee honey. Sci. Hortic. 2020, 267. [Google Scholar] [CrossRef]
- Li, D.; Karsli, B.; Rubio, N.K.; Janes, M.; Luo, Y.; Prinyawiwatkul, W.; Xu, W. Enhanced microbial safety of channel catfish (Ictalurus punctatus) fillet using recently invented medium molecular weight water-soluble chitosan coating. Lett. Appl. Microbiol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Arroyo, B.J.; Bezerra, A.C.; Oliveira, L.L.; Arroyo, S.J.; Melo, E.A.; Santos, A.M.P. Antimicrobial active edible coating of alginate and chitosan add ZnO nanoparticles applied in guavas (Psidium guajava L.). Food Chem. 2020, 309, 125566. [Google Scholar] [CrossRef]
- Zheng, K.; Xiao, S.; Li, W.; Wang, W.; Chen, H.; Yang, F.; Qin, C. Chitosan-acorn starch-eugenol edible film: Physico-chemical, barrier, antimicrobial, antioxidant and structural properties. Int. J. Biol. Macromol. 2019, 135, 344–352. [Google Scholar] [CrossRef]
- Lu, Y.; Zhao, X.; Fang, S. Characterization, antimicrobial properties and coatings application of gellan gum oxidized with hydrogen peroxide. Foods 2019, 8, 31. [Google Scholar] [CrossRef] [Green Version]
- Kulawik, P.; Jamróz, E.; Özogul, F. Chitosan role for shelf-life extension of seafood. Environ. Chem. Lett. 2019, 18, 61–74. [Google Scholar] [CrossRef]
- Shen, Z.; Kamdem, D.P. Antimicrobial activity of sugar beet lignocellulose films containing tung oil and cedarwood essential oil. Cellulose 2015, 22, 2703–2715. [Google Scholar] [CrossRef]
- Severino, R.; Ferrari, G.; Vu, K.D.; Donsì, F.; Salmieri, S.; Lacroix, M. Antimicrobial effects of modified chitosan based coating containing nanoemulsion of essential oils, modified atmosphere packaging and gamma irradiation against Escherichia coli O157:H7 and Salmonella Typhimurium on green beans. Food Control 2015, 50, 215–222. [Google Scholar] [CrossRef]
- Emam-Djomeh, Z.; Moghaddam, A.; Yasini Ardakani, S.A. Antimicrobial activity of pomegranate (Punica granatum L.) peel extract, physical, mechanical, barrier and antimicrobial properties of pomegranate peel extract-incorporated sodium caseinate film and application in packaging for ground beef. Packag. Technol. Sci. 2015, 28, 869–881. [Google Scholar] [CrossRef]
- Sanchez-Ortega, I.; Garcia-Almendarez, B.E.; Santos-Lopez, E.M.; Amaro-Reyes, A.; Barboza-Corona, J.E.; Regalado, C. Antimicrobial edible films and coatings for meat and meat products preservation. Sci. World J. 2014, 2014, 248935. [Google Scholar] [CrossRef]
- De Lacey, A.M.L.; López-Caballero, M.E.; Montero, P. Agar films containing green tea extract and probiotic bacteria for extending fish shelf-life. LWT–Food Sci. Technol. 2014, 55, 559–564. [Google Scholar] [CrossRef]
- Iturriaga, L.; Olabarrieta, I.; De Maranon, I.M. Antimicrobial assays of natural extracts and their inhibitory effect against Listeria innocua and fish spoilage bacteria, after incorporation into biopolymer edible films. Int. J. Food Microbiol. 2012, 158, 58–64. [Google Scholar] [CrossRef]
- Deng, Q.; Zhao, Y. Physicochemical, nutritional, and antimicrobial properties of wine grape (cv. Merlot) pomace extract-based films. J. Food Sci. 2011, 76, E309–E317. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Estaca, J.; De Lacey, A.L.; Lopez-Caballero, M.E.; Gomez-Guillen, M.C.; Montero, P. Biodegradable gelatin-chitosan films incorporated with essential oils as antimicrobial agents for fish preservation. Food Microbiol. 2010, 27, 889–896. [Google Scholar] [CrossRef] [PubMed]
- Ponce, A.G.; Roura, S.I.; Del Valle, C.E.; Moreira, M.R. Antimicrobial and antioxidant activities of edible coatings enriched with natural plant extracts: In vitro and in vivo studies. Postharvest Biol. Technol. 2008, 49, 294–300. [Google Scholar] [CrossRef]
- No, H.K.; Meyers, S.P.; Prinyawiwatkul, W.; Xu, Z. Applications of chitosan for improvement of quality and shelf life of foods: A review. J. Food Sci. 2007, 72, R87–R100. [Google Scholar] [CrossRef]
- Rudra, J.S.; Dave, K.; Haynie, D.T. Antimicrobial polypeptide multilayer nanocoatings. J. Biomater. Sci. Polym. Ed. 2006, 17, 1301–1315. [Google Scholar] [CrossRef]
- Pinzon, M.I.; Sanchez, L.T.; Garcia, O.R.; Gutierrez, R.; Luna, J.C.; Villa, C.C. Increasing shelf life of strawberries (Fragaria ssp) by using a banana starch-chitosan-Aloe vera gel composite edible coating. Int. J. Food Sci. Technol. 2019, 55, 92–98. [Google Scholar] [CrossRef]
- Kavas, G.; Kavas, N. Use of egg white protein powder based films fortified with sage and lemon balm essential oils in the storage of lor cheese. Mljekarstvo 2016, 66, 99–111. [Google Scholar] [CrossRef]
- Molina-Hernández, J.B.; Castro, A.E.; Martinez-Correa, H.A.; Andrade-Mahecha, M.M. Edible coating based on achira starch containing garlic/oregano oils to extend the shelf life of double cream cheese. Rev. Fac. Nac. Agron. Medellín 2020, 73, 9099–9108. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Guerrero, S.E.; Balois-Morales, R.; Palomino-Hermosillo, Y.A.; López-Guzmán, G.G.; Berumen-Varela, G.; Bautista-Rosales, P.U.; Alejo-Santiago, G. Novel edible coating of starch-based stenospermocarpic mango prolongs the shelf life of mango “ataulfo” fruit. J. Food Qual. 2020, 2020, 1–9. [Google Scholar] [CrossRef]
- Martínez-Ortiz, M.A.; Palma-Rodríguez, H.M.; Montalvo-González, E.; Sáyago-Ayerdi, S.G.; Utrilla-Coello, R.; Vargas-Torres, A. Effect of using microencapsulated ascorbic acid in coatings based on resistant starch chayotextle on the quality of guava fruit. Sci. Hortic. 2019, 256. [Google Scholar] [CrossRef]
- Bersaneti, G.T.; Garcia, S.; Mali, S.; Colabone Celligoi, M.A.P. Evaluation of the prebiotic activities of edible starch films with the addition of nystose from Bacillus subtilis natto. LWT 2019, 116. [Google Scholar] [CrossRef]
- Saberi, B.; Chockchaisawasdee, S.; Golding, J.B.; Scarlett, C.J.; Stathopoulos, C.E. Characterization of pea starch-guar gum biocomposite edible films enriched by natural antimicrobial agents for active food packaging. Food Bioprod. Process. 2017, 105, 51–63. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.; Hashmi, M.S. Chitosan–aloe vera gel coating delays postharvest decay of mango fruit. Hortic. Environ. Biotechnol. 2020. [Google Scholar] [CrossRef]
- Khatri, D.; Panigrahi, J.; Prajapati, A.; Bariya, H. Attributes of Aloe vera gel and chitosan treatments on the quality and biochemical traits of post-harvest tomatoes. Sci. Hortic. 2020, 259. [Google Scholar] [CrossRef]
- Sahu, P.; Giri, D.; Singh, R.; Pandey, P.; Gupta, S.; Shrivastava, A.; Kumar, A.; Pandey, K. Therapeutic and medicinal uses of aloe vera: A review. Pharmacol. Pharm. 2013, 4, 599–610. [Google Scholar] [CrossRef] [Green Version]
- Rosenbloom, R.A.; Wang, W.; Zhao, Y. Delaying ripening of ‘Bartlett’ pears (Pyrus communis) during long-term simulated industrial cold storage: Mechanisms and validation of chitosan coatings with cellulose nanocrystals Pickering emulsions. LWT 2020, 122. [Google Scholar] [CrossRef]
Product Preserved | Plant Extract | Film/Coating Base | References |
---|---|---|---|
Fish | Red radish anthocyanins extract | gelatin/gellan gum | [3] |
Rosemary essential oil—enriched films | Rosemary essential oil | glycerol, gelatin, chitosan, pectin | [7] |
Trout fillet | Zataria multiflora Boiss essential oil | Alginate coarse/nanoemulsions | [9] |
Table grapes (Vitis vinifera L.) | Thymus vulgaris L. essential oil | Pullulan and polymeric nanocapsules containing essential oil | [12] |
Edible film | Nitrite and garlic essential oil | Gelatin–chitosan | [28] |
Meat | Ginger essential oil | Microemulsion nanofilms: Tilapia fish skin gelatin and ZnO nanoparticles | [31] |
Edible film against food spoilers and foodborne pathogens | Oregano, clove, tea tree, coriander, mastic thyme, laurel, rosemary, and sage essential oils | Whey protein isolate | [50] |
Edible films | Yerba mate extract | Cassava starch | [86] |
Edible films | - | Water chestnut starch–chitosan | [88] |
Edible films | Thyme essential oil/apple skin polyphenols | Acai puree, pectin | [116] |
Lamb meat | Thyme and garlic essential oils | Alginate | [117] |
Tomato | Sage essential oil | Aloe vera gel | [118] |
In vitro and in the food model (polenta). | Caraway and juniper essential oils | - | [119] |
Ready-to-cook barbecue chicken | Ginger essential oil and citric acid | Cellulose nanofibers coating | [120] |
Papaya (Carica papaya L.) | Mentha essential oils | Chitosan | [122] |
Rainbow trout fillets | Lemon and sage essential oil | Quinoa | [125] |
Pork loin | Oregano essential oil, resveratrol nanoemulsion | Pectin | [138] |
Rainbow trout fillets | Ferulago angulata essential oil | Chitosan | [139] |
Soybean oil | Hyssop (Hyssopus officinalis L.) extract | biopolymer Nanoemulsions of Lepidium perfoliatum and Orchis mascula | [140] |
Beef | Myristica fragrans essential oil | Agar | [141] |
Rainbow trout | Lemon verbena extract/essential oil | Chitosan | [142] |
Turkey meat | Zataria Multiflora Boiss and Bunium persicum Boiss essential oils | Chitosan | [143] |
Antibacterial films | Rheum ribes L. extract | Methylcellulose film | [144] |
Cucumber | Cinnamon essential oil and cinnamaldehyde | chitosan | [145] |
Guava fruit | Cinnamon essential oil | Gum arabic, oleic acid | [146] |
Papaya | Clove essential oil | Manioc starch | [147] |
Beef | Cumin essential oil | Shahri Balangu seed mucilage | [148] |
Edible film | Clove essential oil | Millet starch | [149] |
Pork chops | Free or nano-encapsulated Paulownia Tomentosa essential oil | Chitosan | [150] |
Tambaqui (Colossoma macropomum) fillets | Clove essential oil | Chitosan | [151] |
Apple, tomato, and persimmon | Lecithin-encapsulated thyme essential oil | Starch–gellan | [152] |
Edible films | Cupuassu (Theobroma grandiflorum) Puree | Combining, pectin, and chitosan nanoparticles | [153] |
Edible films | Extracts of green apple (Granny Smith) skin | Methylcellulose | [154] |
Edible films | Oxidized ferulic acid | Yuba, carboxymethyl cellulose, beeswax, sodium pyrophosphate | [155] |
Chicken breast fillets | Ginger (Zingiber officinale) essential oil | nano emulsion-based edible coating containing | [156] |
Guava (Psidium guajava L.) | Ruta graveolens Essential Oil | Chitosan | [157] |
Mango cultivar Tommy Atkins | Mentha piperita L. essential oil | Chitosan | [158] |
Banana | Clove essential oil titratable | Cassava starch, polyvinyl polychloride | [159] |
edible film | Microencapsulation of Thai rice grass extract | Carboxymethyl cellulose | [160] |
Edible films | Aloe vera gel | Banana starch–chitosan | [161] |
Meat products | Asparagus racemosus | Calcium alginate edible film | [162] |
Edible films | Macadamia skin (Macadamia tetraphylla), banana peel, blueberry ash extracts | Pea starch–guar gum Biocomposite | [163] |
Nile tilapia fillets | Pomegranate peel extract as edible coating | Chitosan | [164] |
Edible films | Basil essential oil | Fish skin gelatin, palm oil, different surfactants | [165] |
Tomatoes | Oregano (Lippia graveolens) essential oil | Pectin | [166] |
Kashar cheese | Orange essential oil | Egg white protein | [167] |
Ground beef patties | Caesalpinia decapetala and Caesalpinia spinosa (Tara) extracts | gelatine | [168] |
Edible films | Ginger essential oil nanoemulsion | Gelatin, montmorillonite | [169] |
Edible films | Hydrolysable chestnut tannin | Pigskin gelatin films | [170] |
Organic leafy greens in sealed plastic bags | Carvacrol and cinnamaldehyde | Apple, carrot, and hibiscus | [171] |
Sliced bread | Clove bud (Syzygium aromaticum)/oregano (Origanum vulgare) nanoemulsions | Methylcellulose | [172] |
Apples | Satureja hortensis L. extracts | Pullulan | [173] |
Edible films | Grape pomace extract | Chitosan | [174] |
Edible films | Ginja extract cherry | Methylcellulose | [175] |
Edible films | Extracts of chives (Allium schoenoprasum), sage (Salvia pratensis, Lamiaceae), European elderberry (Sambucus nigra, Caprifoliaceae), dandelion (Taraxacum officinale) | Atelocollagen | [176] |
Edible films | Red raspberry extract | Soy protein isolate | [177] |
Ham | Carvacrol and cinnamaldehyde | Pectin-based apple, carrot, and hibiscus | [178] |
Edible films | Zataria multiflora Boiss essential oil /grape seed extract | Chitosan | [179] |
Formulation | Composition | Thickness (μm) | Tensile Strength (MPa) | EAB (%) | EM (MPa) | WVP 1010 | CO2 109 | O2 | Moisture Content (%) | References |
---|---|---|---|---|---|---|---|---|---|---|
(g m−1 s−1 Pa−1) | (cm3/m s Pa) | 1010 | ||||||||
(cm3/m s Pa) | ||||||||||
Fish skin gelatin (FSG), zinc oxide nanoparticle (ZnONP), ginger essential oils (GEO) different concentrations, Tween 20, glycerol | 0% | 90.59 | 18.1344 | 78.2348 | - | 6.42 | - | - | - | [31] |
10% | 104.9 | 15.5879 | 101.364 | 6.31 | ||||||
20% | 112.34 | 14.4574 | 111.028 | 5.94 | ||||||
40% | 122.96 | 13.0296 | 120.421 | 5.22 | ||||||
80% | 134.1 | 10.846 | 132.463 | 4.93 | ||||||
Fish gelatin, glycerol, water, extrusion and casting | Extrusion 20% (110 °C) | 450 | 2.41 | 282.6 | 99 | 1.51 | - | - | 21.4 | [34] |
Extrusion 20% (120 °C) | 580 | 1.51 | 256.3 | 118 | 1.97 | 19.4 | ||||
Extrusion 25% (110 °C) | 410 | 1.92 | 293.4 | 84 | 2.43 | 16.1 | ||||
Extrusion 25% (110 °C) | 340 | 1.87 | 237.2 | 132 | 2.92 | 27.7 | ||||
Casting 20% | 100 | 17.8 | 27.4 | 482 | 1.91 | 24.7 | ||||
Casting 25% | 100 | 7.7 | 49.4 | 259 | 2.5 | 21.4 | ||||
Gelatin from sturgeon skin, glycerol, solution | Control | 57.05 | 26.27 | 53.83 | - | 2.71 | - | - | - | [37] |
0.3% esculin | 55.82 | 34.26 | 52.37 | 2.67 | ||||||
0.6% esculin | 57.25 | 35.42 | 49.55 | 1.72 | ||||||
0.9% esculin | 56.92 | 35.87 | 42.86 | 1.32 | ||||||
Microparticles containing sunflower oil, alginate, pectin coated in protein | FP + WPC 3.75 | 112.7 | 32.8 | 9.4 | - | 6.7 | - | - | 10.8 | [66] |
FP + OVA 3.50 | 107.4 | 27.6 | 13.2 | 8.9 | 11.4 | |||||
FP3.75 | 81.1 | 28.2 | 5.9 | 11.5 | 17.1 | |||||
FP3.50 | 73.4 | 32.6 | 3 | 11.8 | 17 | |||||
Starch (3%, 4% and 5%) from cassava, arrowroot, and canna edulis | Cassava | - | - | - | - | - | [67] | |||
3% | 60 | 0.54 | 127.16 | 0.172 | 15.05 | |||||
4% | 90 | 0.093 | 107.47 | 0.214 | 11.34 | |||||
5% | 100 | 1.102 | 130.91 | 0.184 | 16.3 | |||||
Arrowroot | - | - | ||||||||
3% | 700 | 1.716 | 67.85 | 0.161 | 16.94 | |||||
4% | 85 | 1.633 | 84.37 | 0.157 | 11.34 | |||||
5% | 650 | 1.827 | 141.36 | 0.124 | 15.2 | |||||
Canna edulis | - | - | ||||||||
3% | 125 | 4.064 | 61.19 | 0.167 | 45.27 | |||||
4% | 90 | 2.438 | 52.23 | 0.225 | 43.39 | |||||
5% | 115 | 3.998 | 42.94 | 0.176 | 20.4 | |||||
Thermoplastic starch (TPS) reinforced with hexametaphosphate (SHMP) and polyvinyl alcohol fiber (PVAF) | TPS | - | 2.02 | 125.66 | - | - | - | - | - | [77] |
2% PVAF/TPS | 2.62 | 83.618 | ||||||||
SHMP/PVAF/TPS | 5.75 | 114.02 | ||||||||
Vegetable residue (FVR) and potato skin (P) flours | Fvr/P = 10:0 | Average: 242 | 27 | 31.38 | 3 | 2.45 | - | - | - | [87] |
Fvr/P = 8:0 | 28 | 30.51 | 3 | 2.48 | ||||||
Fvr/P = 8:2 | 70 | 32.01 | 3 | 2.6 | ||||||
Fvr/P = 8:4 | 84 | 34.49 | 4 | 2.78 | ||||||
Native starch, acetylated starch, glycerol (% w/w/w) | (10:70:20) | 80.53 | 27.09 | 4.73 | - | 1.41 | 5.04 | 4.13 | 1.41 | [89] |
(80:5:15) | 75.97 | 16.25 | 2.59 | 0.88 | 2.66 | 2.08 | 0.88 | |||
(75:5:20) | 122.93 | 10.31 | 20.14 | 1.31 | 4.13 | 3.31 | 1.31 | |||
(15:70:15) | 129.42 | 23.99 | 6.14 | 1.2 | 3.85 | 2.98 | 1.2 | |||
Corn starch, Uncaria gambir Roxb extract, glycerol | Extract concentration | - | - | - | - | - | - | [94] | ||
20% | 110 | 14.78 | 2.42 | |||||||
30% | 119 | 15.11 | 2.46 | |||||||
40% | 124 | 15.67 | 2.5 | |||||||
Elephant foot yam starch, hydrocolloids xanthan (XG) and agar–agar (AA) | EFYS 0% | 163 | 15.81 | 23.96 | 54.08 | 1.91 | - | 1.036 | 23.66 | [96] |
AAG 0.5% | 186 | 17.3 | 19.75 | 60.81 | 1.2 | 4.49 | 25.3 | |||
AAG 1% | 194 | 17.64 | 15.36 | 63.43 | 1.29 | 7.36 | 25.38 | |||
AAG 1.5% | 197 | 17.85 | 13.62 | 65.08 | 1.16 | 5.39 | 25.62 | |||
AAG 2% | 199 | 20.14 | 13.34 | 58.03 | 1.1 | 1.06 | 26.42 | |||
XG 0.5% | 158 | 19.27 | 21.52 | 56.15 | 2.47 | 7.59 | 25.21 | |||
XG 1% | 173 | 19.1 | 17.4 | 58.28 | 9.09 | 1.09 | 22.83 | |||
XG 1.5% | 186 | 19.34 | 15.36 | 64.03 | 1.04 | 1.19 | 23.17 | |||
XG 2% | 187 | 19.48 | 14.69 | 69.77 | 9.34 | 5.48 | 24.36 | |||
Cassava starch | CS | 43 | - | - | - | 0.37 | - | - | 18.3 | [159] |
Casava starch + clove essential oil | CS + 0.8% EO W/V | 51 | 0.3 | 16.24 | ||||||
Starch–glycerol whey protein (emulsifying) | Control | ~3000 | 3.17 | 48.91 | 1.34 | - | - | - | - | [188] |
WP 0.2% | 2.65 | 35.49 | 0.86 | |||||||
WP 0.4% | 2.02 | 34.66 | 0.7 | |||||||
WP 0.6% | 1.8 | 32.02 | 0.6 | |||||||
WP 0.8% | 1.81 | 31.74 | 0.64 | |||||||
Starch, sorbitol, mango peel, (NaOH solution up to 100%) | 5%/2%/0% | - | 10.17 | 2.75 | - | - | - | - | - | [195] |
5%/2%/2% | 15.2 | 5.53 | ||||||||
5%/2%/4% | 13.45 | 6.69 | ||||||||
Agar or/and alginate, glycerol, Larrea nitida extract | Ag | - | 27.5 | 19.7 | 992 | 8.47 | - | 13.95 | - | [196] |
Ag/Ln | 19.5 | 14.5 | 970 | 6.1 | 7.47 | |||||
Alg | 22.4 | 17.8 | 793 | 8.3 | 1.77 | |||||
Alg/Ln | 10.3 | 10.6 | 784 | 6.04 | 4.16 | |||||
Ag/Alg | 24 | 23.7 | 615 | 7.83 | 1.89 | |||||
Ag/Alg/Ln | 12.9 | 21.4 | 477 | 6.06 | 3.76 | |||||
Zein protein, polyphenols, and/or essential oil | Zein | 115.4 | 10.73 | 3.69 | 648.28 | - | - | - | - | [197] |
Zein + Gallic acid | 115.66 | 8.59 | 3.52 | 428.5 | ||||||
Zein + Vanillic acid | 124.98 | 6.99 | 2.75 | 445.49 | ||||||
Zein + Carvacrol | 129.7 | 4.68 | 8.76 | 226.82 | ||||||
Zein + Eugenol | 134.63 | 7.56 | 7.83 | 344.05 | ||||||
Zein + Citral | 157.8 | 4.32 | 1.21 | 412.16 | ||||||
sodium alginate/pullulan/capsaicin | SA/Pul/Cap–0% | 32 | 46.34 | 4.7 | - | 1.18 | - | - | 21.69 | [198] |
SA/Pul/Cap–2% | 33 | 53 | 3.58 | 1.93 | 19.4 | |||||
SA/Pul/Cap–4% | 35 | 54.1 | 3.22 | 1.99 | 17.4 | |||||
SA/Pul/Cap–6% | 36 | 54.41 | 3.16 | 2 | 16.72 | |||||
SA/Pul/Cap–8% | 38 | 55.25 | 3.08 | 3.06 | 15.2 | |||||
Chitosan, starch, thyme extract | CH:S | - | 9.5 | 90 | 17 | 9.6 | - | 6.6 | - | [199] |
CH:S:TE | 8.2 | 47 | 51 | 8.8 | 4.3 | |||||
Chitosan, lactoperoxidase with or without iodine | Chitosan | - | 388.73 | 20.39 | - | 7.89 | - | - | - | - |
Chitosan/LPOS | 574.42 | 18.31 | 5.61 | |||||||
Chitosan/LPOSI | 580 | 17.8 | 6 | |||||||
HDM, high methylester pectin; L232, polymer for industrial seed coating; Noil, nanocomposite of pectin and neem oil; Nwax, nanocomposite of pectin and carnauba wax. HDM pectin | HDM pectin | 76.67 | 28 | 1.08 | 1990.29 | - | - | - | - | [200] |
Nwax10 | 104.23 | 28.99 | 3.23 | 885.53 | ||||||
Nwax20 | 112.7 | 29.02 | 3.17 | 721.86 | ||||||
Nwax30 | 96.98 | 29.49 | 3.84 | 668.47 | ||||||
Noil10 | 112.14 | 29.86 | 3.38 | 525.99 | ||||||
Noil20 | 101.34 | 30.5 | 3.8 | 497.74 | ||||||
Noil30 | 123.28 | 30.28 | 4.28 | 493.19 | ||||||
Chia mucilage (CM) hydrocolloid glycerol (25%, 50%, and 75% w/w) | CM25 | - | 0.054 | 0.054 | - | 0.131 | - | - | 18.18 | [201] |
CM50 | 0.056 | 0.056 | 0.325 | 32 | ||||||
CM75 | 0.06 | 0.06 | 0.442 | 41.88 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avramescu, S.M.; Butean, C.; Popa, C.V.; Ortan, A.; Moraru, I.; Temocico, G. Edible and Functionalized Films/Coatings—Performances and Perspectives. Coatings 2020, 10, 687. https://doi.org/10.3390/coatings10070687
Avramescu SM, Butean C, Popa CV, Ortan A, Moraru I, Temocico G. Edible and Functionalized Films/Coatings—Performances and Perspectives. Coatings. 2020; 10(7):687. https://doi.org/10.3390/coatings10070687
Chicago/Turabian StyleAvramescu, Sorin Marius, Claudia Butean, Claudia Valentina Popa, Alina Ortan, Ionut Moraru, and Georgeta Temocico. 2020. "Edible and Functionalized Films/Coatings—Performances and Perspectives" Coatings 10, no. 7: 687. https://doi.org/10.3390/coatings10070687
APA StyleAvramescu, S. M., Butean, C., Popa, C. V., Ortan, A., Moraru, I., & Temocico, G. (2020). Edible and Functionalized Films/Coatings—Performances and Perspectives. Coatings, 10(7), 687. https://doi.org/10.3390/coatings10070687