Green Infrastructures in Stormwater Control and Treatment Strategies †
Abstract
:1. Introduction
2. Main Functions of Stormwater Management Green Infrastructures
2.1. Detention/Retention
2.2. Treatment
2.3. Infiltration
2.4. Amenity and Ecosystem Services
3. Review on the Efficiency of Different GI
3.1. Green Roofs
3.2. Bioretention Systems
3.3. Filter Strips and Vegetated Swales
3.4. Trenches
4. Comparative Analysis and Discussion
5. Conclusions
Acknowledgments
Conflicts of Interest
Abbreviations
BOD | Biochemical Oxygen Demand |
COD | Chemical Oxygen Demand |
CSO | Combined Sewer Overflows |
EMC | Event Mean Concentration |
FFE | First Flush Effect |
GI | Green Infrastructures |
SUDS | Sustainable Urban Drainage Systems |
TN | Total Nitrogen |
TP | Total Phosphorus |
TSS | Total Suspended Solids |
References
- Barbosa, A.; Fernandes, J.; David, L. Key issues for sustainable urban stormwater management. Water Res. 2012, 46, 6787–6798. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Wenger, S.; Fletcher, T.; Walsh, C.; Ladson, A.; Shuster, W.; Thurston, H.; Brown, R. Impediments and solutions to sustainable, watershed-scale urban stormwater management: Lessons from Australia and the United States. Environ. Manag. 2008, 42, 344–359. [Google Scholar] [CrossRef] [PubMed]
- Klijn, F.; Bruijn, K.; Ölfert, A.; Penning-Rowsell, E.; Simm, J.; Wallis, M. Flood Risk Assessment and Flood Risk Management: An Introduction and Guidance Based on Experiences and Findings of FLOODsite; Deltares/Delft Hydraulics: Delft, The Netherlands, 2009; Volume 143. [Google Scholar]
- Goulden, S.; Portman, M.; Carmon, N.; Alon-Mozes, T. From conventional drainage to sustainable stormwater management: Beyond the technical challenges. J. Environ. Manag. 2018, 219, 37–45. [Google Scholar] [CrossRef]
- Eckart, K.; McPhee, Z.; Bolisetti, T. Performance and implementation of low impact development – A review. Sci. Total Environ. 2017, 607–608, 413–432. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Chui, T. Optimizing surface and contributing areas of bioretention cells for stormwater runoff quality and quantity management. J. Environ. Manag. 2018, 206, 1090–1103. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.; Brown, R. The water sensitive city: Principles for practice. Water Sci. Technol. 2009, 60, 673–682. [Google Scholar] [CrossRef]
- Hoyer, J.; Dickhaut, W.; Kronawitter, L.; Weber, B. Water Sensitive Urban Design. Principles and Inspiration for Sustainable Stormwater Management in the City of the Future. Manual; JOVIS: Berlin, Germany, 2011; p. 143. [Google Scholar]
- Scholz, M. Sustainable drainage systems. Water 2015, 7, 2272–2274. [Google Scholar] [CrossRef]
- Ghofrani, Z.; Sposito, V.; Faggian, R. A Comprehensive Review of Blue-Green Infrastructure Concepts. Int. J. Environ. Sustain. 2017, 6, 15–36. [Google Scholar] [CrossRef]
- Kerkez, B.; Gruden, C.; Lewis, M.; Montestruque, L.; Quigley, M.; Wong, B.; Bedig, A.; Kertesz, R.; Braun, T.; Cadwalader, O.; et al. Smarter stormwater systems. Environ. Sci. Technol. 2016, 50, 7267–7273. [Google Scholar] [CrossRef]
- Burns, M.; Fletcher, T.; Walsh, C.; Ladson, A.; Hatt, B. Hydrologic shortcomings of conventional urban stormwater management and opportunities for reform. Landsc. Urban Plan. 2012, 105, 230–240. [Google Scholar] [CrossRef]
- Vogel, J.; Moore, T.; Coffman, R.; Rodie, S.; Hutchinson, S.; McDonough, K.; McLemore, A.; McMaine, J. Critical Review of Technical Questions Facing Low Impact Development and Green Infrastructure: A Perspective from the Great Plains. Water Environ. Res. 2015, 87, 849–862. [Google Scholar] [CrossRef] [PubMed]
- Dhakal, K.; Chevalier, L. Managing urban stormwater for urban sustainability: Barriers and policy solutions for green infrastructure application. J. Environ. Manag. 2017, 203, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Coutts, C.; Hahn, M. Green infrastructure, ecosystem services, and human health. Int. J. Environ. Res. Public Health 2015, 12, 9768–9798. [Google Scholar] [CrossRef]
- Fratini, C.; Geldof, G.; Kluck, J.; Mikkelsen, P. Three Points Approach (3PA) for urban flood risk management: A tool to support climate change adaptation through transdisciplinarity and multifunctionality. Urban Water J. 2012, 9, 317–331. [Google Scholar] [CrossRef]
- Cruijsen, A. Design Opportunities for Flash Flood Reduction by Improving the Quality of the Living Environment: A Hoboken City Case Study of Environmental Driven Urban Water Management. PhD Thesis, Delft University of Technology, Delft, The Netherlands, 2015. [Google Scholar]
- Davis, A.; Traver, R.; Hunt, W. Improving Urban Stormwater Quality: Applying Fundamental Principles. J. Contemp. Water Res. Educ. 2010, 146, 3–10. [Google Scholar] [CrossRef]
- Kurzbaum, E.; Kirzhner, F.; Armon, R. Improvement of water quality using constructed wetland systems. Rev. Environ. Health. 2012, 27, 59–64. [Google Scholar] [CrossRef]
- Locatelli, L.; Mark, O.; Mikkelsen, P.; Arnbjerg-Nielsen, K.; Deletic, A.; Roldin, M.; Binning, P. Hydrologic impact of urbanization with extensive stormwater infiltration. J. Hydrol. 2017, 544, 524–537. [Google Scholar] [CrossRef]
- Zhang, K.; Chui, T. Linking hydrological and bioecological benefits of green infrastructures across spatial scales—A literature review. Sci. Total Environ. 2019, 646, 1219–1231. [Google Scholar] [CrossRef]
- Fletcher, T.; Shuster, W.; Hunt, W.; Ashley, R.; Butler, D.; Arthur, S.; Trowsdale, S.; Barraud, S.; Semadeni-Davies, A.; Bertrand-Krajewski, J.; et al. SUDS, LID, BMPs, WSUD and more—The evolution and application of terminology surrounding urban drainage. Urban Water J. 2015, 12, 525–542. [Google Scholar] [CrossRef]
- Vanuytrecht, E.; Van Mechelen, C.; Van Meerbeek, K.; Willems, P.; Hermy, M.; Raes, D. Runoff and vegetation stress of green roofs under different climate change scenarios. Landsc. Urban Plan. 2014, 122, 68–77. [Google Scholar] [CrossRef]
- Stovin, V.; Vesuviano, G.; Kasmin, H. The hydrological performance of a green roof test bed under UK climatic conditions. J. Hydrol. 2012, 414–415, 148–161. [Google Scholar] [CrossRef]
- Soulis, K.; Ntoulas, N.; Nektarios, P.; Kargas, G. Runoff reduction from extensive green roofs having different substrate depth and plant cover. Ecol. Eng. 2017, 102, 80–89. [Google Scholar] [CrossRef]
- Wang, X.; Tian, Y.; Zhao, X. The influence of dual-substrate-layer extensive green roofs on rainwater runoff quantity and quality. Sci. Total Environ. 2017, 592, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Morgan, S.; Alyaseri, I.; Retzlaff, W. Suspended solids in and turbidity of runoff from green roofs. Int. J. Phytoremediat. 2011, 13, 179–193. [Google Scholar] [CrossRef]
- Alsup, S.; Ebbs, S.; Retzlaff, W. The exchangeability and leachability of metals from select green roof growth substrates. Urban Ecosyst. 2010, 13, 91–111. [Google Scholar] [CrossRef]
- Viola, F.; Hellies, M.; Deidda, R. Retention performance of green roofs in representative climates worldwide. J. Hydrol. 2017, 553, 763–772. [Google Scholar] [CrossRef]
- Davis, A.; Hunt, W.; Traver, R.; Clar, M. Bioretention Technology: Overview of Current Practice and Future Needs. J. Environ. Eng. 2009, 135, 109–117. [Google Scholar] [CrossRef]
- Jia, Z.; Tang, S.; Luo, W.; Li, S.; Zhou, M. Small scale green infrastructure design to meet different urban hydrological criteria. J. Environ. Manag. 2016, 171, 92–100. [Google Scholar] [CrossRef]
- Muerdter, C.; Wong, C.; Lefevre, G. Emerging investigator series: The role of vegetation in bioretention for stormwater treatment in the built environment: Pollutant removal, hydrologic function, and ancillary benefits. Environ. Sci. Water Res. Technol. 2018, 4, 592–612. [Google Scholar] [CrossRef]
- Jiang, C.; Li, J.; Li, H.; Li, Y. Experiment and simulation of layered bioretention system for hydrological performance. J. Water Reuse Desalin. 2019, 9, 319–329. [Google Scholar] [CrossRef]
- Milandri, S.; Winter, K.; Chimphango, S.; Armitage, N.; Mbui, D.; Jackson, G.; Liebau, V. The performance of plant species in removing nutrients from stormwater in biofiltration systems in Cape Town. Water SA. 2012, 38, 655–662. [Google Scholar] [CrossRef]
- Goh, H.; Lem, K.; Azizan, N.; Chang, C.; Talei, A.; Leow, C.; Zakaria, N. A review of bioretention components and nutrient removal under different climates-future directions for tropics. Environ. Sci. Pollut. Res. 2019, 26, 14904–14919. [Google Scholar] [CrossRef] [PubMed]
- Lucas, S.; Lee, C.; Love, E. Characterising recycled organic and mineral materials for use as filter media in biofiltration systems. Water 2019, 11, 1074. [Google Scholar] [CrossRef]
- Glaister, B.; Fletcher, T.; Cook, P.; Hatt, B. Interactions between design, plant growth and the treatment performance of stormwater biofilters. Ecol. Eng. 2017, 105, 21–31. [Google Scholar] [CrossRef]
- Barron, N.; Deletic, A.; Jung, J.; Fowdar, H.; Chen, Y.; Hatt, B. Dual-mode stormwater-greywater biofilters: The impact of alternating water sources on treatment performance. Water Res. 2019, 159, 521–537. [Google Scholar] [CrossRef]
- Al-Ameri, M.; Hatt, B.; Le Coustumer, S.; Fletcher, T.; Payne, E.; Deletic, A. Accumulation of heavy metals in stormwater bioretention media: A field study of temporal and spatial variation. J. Hydrol. 2018, 567, 721–731. [Google Scholar] [CrossRef]
- Boger, A.; Ahiablame, L.; Mosase, E.; Beck, D. Effectiveness of roadside vegetated filter strips and swales at treating roadway runoff: A tutorial review. Environ. Sci. Water Res. Technol. 2018, 4. [Google Scholar] [CrossRef]
- Kellagher, R.; Ballard, B.; Martin, P.; Jefferies, C.; Bray, R.; Shaffer, P.; Wallingford, H. The SUDS Manual; CIRIA: London, UK, 2015; pp. 174–180. [Google Scholar]
- Knight, E.; Hunt, W.; Winston, R. Side-by-side evaluation of four level spreader-vegetated filter strips and a swale in eastern North Carolina. J. Soil Water Conserv. 2013, 68, 60–72. [Google Scholar] [CrossRef]
- Young, B.; Hathaway, J.; Lisenbee, W.; He, Q. Assessing the runoffreduction potential of highway swales and WinSLAMM as a predictive tool. Sustainability 2018, 10, 2871. [Google Scholar] [CrossRef]
- Wu, J.; Allan, C. Vegetated Swales for Managing Stormwater Runoff from Secondary Roads. J. Environ. Eng. 2018, 144, 04018097. [Google Scholar] [CrossRef]
- Yuan, D.; He, J.; Li, C.; Guo, X.; Xiong, Y.; Yan, C. Insights into the pollutant-removal performance and DOM characteristics of stormwater runoff during grassy-swales treatment. Environ. Technol. 2019, 40, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Fardel, A.; Peyneau, P.; Béchet, B.; Lakel, A.; Rodriguez, F. Analysis of swale factors implicated in pollutant removal efficiency using a swale database. Environ. Sci. Pollut. Res. 2019, 26, 1287–1302. [Google Scholar] [CrossRef] [PubMed]
- Revitt, D.; Ellis, J.; Lundy, L. Assessing the impact of swales on receiving water quality. Urban Water J. 2017, 14, 839–845. [Google Scholar] [CrossRef]
- Flanagan, K.; Branchu, P.; Boudahmane, L.; Caupos, E.; Demare, D.; Deshayes, S.; Dubois, P.; Meffray, L.; Partibane, C.; Saad, M.; et al. Field performance of two biofiltration systems treating micropollutants from road runoff. Water Res. 2018, 145, 562–578. [Google Scholar] [CrossRef] [PubMed]
- Danfoura, M.; Gurdak, J. Redox dynamics and oxygen reduction rates of infiltrating urban stormwater beneath low impact development (LID). Water 2016, 8, 435. [Google Scholar] [CrossRef]
- Szota, C.; Coutts, A.; Thom, J.; Virahsawmy, H.; Fletcher, T.; Livesley, S. Street tree stormwater control measures can reduce runoff but may not benefit established trees. Landsc. Urban Plan. 2019, 182, 144–155. [Google Scholar] [CrossRef]
- Cederkvist, K.; Jensen, M.; Ingvertsen, S.; Holm, P. Controlling stormwater quality with filter soil-event and dry weather testing. Water 2016, 8, 349. [Google Scholar] [CrossRef]
- Maniquiz-Redillas, M.; Kim, L. Evaluation of the capability of low-impact development practices for the removal of heavy metal from urban stormwater runoff. Environ. Technol. 2016, 37, 2265–2272. [Google Scholar] [CrossRef]
- Yu, J.; Yu, H.; Xu, L. Performance evaluation of various stormwater best management practices. Environ. Sci. Pollut. Res. 2013, 20, 6160–6171. [Google Scholar] [CrossRef]
- Ainan, A.; Zakaria, N.; Ghani, A.; Abdullah, R.; Sidek, L.; Yusof, M.; Wong, L. Peak flow attenuation using ecological swale and dry pond. Adv. HydroSci. Eng. 2004, 6, 9. [Google Scholar]
- Stagge, J. Field Evaluation of Hydrologic and Water Quality Benefits of Grass Swales for Managing Highway Runoff. Master’s Thesis, University of Maryland, College Park, MD, USA, 2006. [Google Scholar]
- Wu, J.; Allan, C.; Saunders, W.; Evett, J. Characterization and Pollutant Loading Estimation for Highway Runoff. J. Environ. Eng. 1998, 124, 584–592. [Google Scholar] [CrossRef]
- Goncalves, M.; Zischg, J.; Rau, S.; Sitzmann, M.; Rauch, W.; Kleidorfer, M. Modeling the effects of introducing low impact development in a tropical city: A case study from Joinville, Brazil. Sustainability 2018, 10, 728. [Google Scholar] [CrossRef]
- Maniquiz, M.; Lee, S.; Kim, L. Long-Term Monitoring of Infiltration Trench for Nonpoint Source Pollution Control. Water Air Soil Pollut. 2010, 212, 13–26. [Google Scholar] [CrossRef]
Green Roofs | Bioretention Systems | Filter Strips/Vegetated Swales | Trenches | ||
---|---|---|---|---|---|
Hydraulic performance | Peak flow attenuation | 17–100% 1 60% (mean) | 72–87% | 10–56% [54,55,56] | 20–46% [57] |
Volume reduction | 2–100% 1 43–70% 2 (mean) | 59–68% 5% 3 | 23–100% | 5–44% 18% (mean) | |
Pollutant removal | TSS | 54–71% 63% (mean) | 53–>90% 4 98%3 | 17–98%6 | 27–89% 18% (mean) |
Metals | 80–97% | 0 5–97% | 4 6–93% | 60–90% [58] | |
TP | 27–79% | 12–98% | - 126–70% | - 29–74% 23% (mean) | |
TN | 52–78% | 1–99% | - 1–59% | - 54–59% 23% (mean) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, B.; David, L.M.; Galvão, A. Green Infrastructures in Stormwater Control and Treatment Strategies. Proceedings 2020, 48, 7. https://doi.org/10.3390/ECWS-4-06526
Pereira B, David LM, Galvão A. Green Infrastructures in Stormwater Control and Treatment Strategies. Proceedings. 2020; 48(1):7. https://doi.org/10.3390/ECWS-4-06526
Chicago/Turabian StylePereira, Bárbara, Luís Mesquita David, and Ana Galvão. 2020. "Green Infrastructures in Stormwater Control and Treatment Strategies" Proceedings 48, no. 1: 7. https://doi.org/10.3390/ECWS-4-06526
APA StylePereira, B., David, L. M., & Galvão, A. (2020). Green Infrastructures in Stormwater Control and Treatment Strategies. Proceedings, 48(1), 7. https://doi.org/10.3390/ECWS-4-06526