Characterising Recycled Organic and Mineral Materials for Use as Filter Media in Biofiltration Systems
<p>Particle size distribution of raw materials used in this study, (<b>a</b>) RO-fine, (<b>b</b>) RO-medium, (<b>c</b>) Biochar, (<b>d</b>) CaCO3, (<b>e</b>) Washed sand, and (<b>f</b>) FAWB specification (M165).</p> "> Figure 2
<p>Particle size distribution of the design mix configurations, (<b>a</b>) DM1 and (<b>b</b>) DMS.</p> "> Figure 3
<p>Setup for the column leaching tests (note the improving clarity of the eluted samples).</p> "> Figure 4
<p>Setup in MUSIC v6 and the properties of the Bioretention Node (raingarden). Source—Screensnip from MUSIC v6.</p> "> Figure 4 Cont.
<p>Setup in MUSIC v6 and the properties of the Bioretention Node (raingarden). Source—Screensnip from MUSIC v6.</p> "> Figure 5
<p>The Bioretention Node parameters used in MUSIC v6. Source: User guideline for MUSIC v6.</p> "> Figure 6
<p>Change in EC based on applied volume.</p> "> Figure 7
<p>Change in pH based on applied volume.</p> "> Figure 8
<p>Nitrogen cycle.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Column Leaching Experiments
2.3. MUSIC v6 Modelling
3. Results & Discussion
3.1. Characterisation of Materials
3.2. Column Leaching Tests—Leaching Potential of Individual Materials and the Design Mixes (DM1 and DMS)
3.3. Column Leaching Tests—Pollutant Leaching
3.4. Column Leach Tests—Metals Removal
3.5. Comparison to Guidelines
3.6. MUSIC v6 Modelling
“The selection of appropriate k and C* values for modelling the removal of total nitrogen cannot easily follow the procedure applied for TSS and TP. The composition of particulate and soluble forms of N in stormwater is highly varied. There is significantly smaller particulate fraction of TN compared with TP, and even that fraction is associated with organic particles which have significantly lower specific gravities than sediment. Calibrated k values for TN in wastewater systems indicate significantly lower values (as much as two orders of magnitude) compared with TP and TSS. The default k and C* values for TN are thus based on very limited data. There is an expectation that the k values are likely to be an order of magnitude lower than corresponding values for TP, and that the ratios of C* to inflow event mean concentration (EMC) are likely to be higher for TN than for TP.”
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gertsakis, J.; Lewis, H. Sustainability and the Waste Management Hierachy–A Discussion Paper; EcoRecycle Victoria: Melbourne, Australia, 2003.
- Alexander, R. Compost: The Sustainable Solution. MSW Manag. 2016, 20. [Google Scholar] [CrossRef]
- Lou, X.F.; Nair, J. The impact of landfilling and compost on greenhouse gas emissions—A review. Bioresour. Technol. 2009, 100, 3792–3798. [Google Scholar] [CrossRef] [PubMed]
- Lucas, S.; Lee, C.C.; Love, E. The Performance of Recycled Organic and Mineral Materials as Reactive Filter Media. In Proceedings of the ICSWHK 2015–2nd International Conference on Solid Waste 2015: Innovation in Technology and Management, Hong Kong, China, 19–23 May 2015. [Google Scholar]
- Said-Pullicino, D.; Massaccesi, L.; Dixon, L.; Bol, R.; Gigliotti, G. Organic matter dynamics in a compost-amended anthropogenic landfill capping-soil. Eur. J. Soil Sci. 2010, 61, 35–47. [Google Scholar] [CrossRef]
- Xie, S.; O’Dwyer, T.; Freguia, S.; Pikaar, I.; Clarke, W.P. Effect of biomass concentration on methane oxidation activity using mature compost and graphite granules as substrata. Waste Manag. 2016, 56, 290–297. [Google Scholar] [CrossRef]
- Oldeman, L.R. The Global Extent of Soil Degradation. In Soil Resilience and Sustainable Land Use; Szabolcs, I., Ed.; CAB International: Oxon, UK, 1994; p. 115. [Google Scholar]
- Hazelton, P.; Murphy, B. Interpreting Soil Test Results: What Do All the Numbers Mean? NSW Department of Natural Resources, CSIRO Publishing: Clayton, Australia, 2007; ISBN 0 643 09225 0.
- Payne, E.G.I.; Hatt, B.E.; Deletic, A.; Dobbie, M.F.; McCarthy, D.T.; Chandrasena, G.I. Adoption Guidelines for Stormwater Biofiltration Systems-Summary Report; Cooperative Research Centre for Water Sensitive Cities: Melbourne, Australia, 2015. [Google Scholar]
- Davis, A.P.; Hunt, W.; Traver, R.; Clar, M. Bioretention technology: Overview of current practice and future needs. J. Environ. Eng. 2009, 135, 109–117. [Google Scholar] [CrossRef]
- Liu, J.; Sample, D.J.; Bell, C.; Guan, Y. Review and Research Needs of Bioretention Used for the Treatment of Urban Stormwater. Water 2014, 6, 1069–1099. [Google Scholar] [CrossRef] [Green Version]
- Palmer, E.T.; Poor, C.J.; Hinman, C.; Stark, J.D. Nitrate and phosphate removal through enhanced Bioretention media: Mesocosm study. Water Environ. Res. 2013, 85, 823–832. [Google Scholar] [CrossRef]
- Jones, P.S.; Davis, A.P. Spatial accumulation and strength of affiliation of heavy metals in Bioretention media. J. Environ. Eng. 2013, 139, 479–487. [Google Scholar] [CrossRef]
- Lim, H.S.; Lim, W.; Hu, J.Y.; Ziegler, A.; Ong, S.L. Comparison of filter media materials for heavy metal removal from urban stormwater runoff using biofiltration systems. J. Environ. Manag. 2015, 147, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Davis, A.P. Heavy metal capture and accumulation in bioretention media. Environ. Sci. Technol. 2008, 42, 5247–5253. [Google Scholar] [CrossRef] [PubMed]
- Hatt, B.E.; Steinel, A.; Deletic, A.; Fletcher, T.D. Retention of heavy metals by stormwater filtration systems: Breakthrough analysis. Water Sci. Technol. 2011, 64, 1913–1919. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.-H.; Davis, A.P. Evaluation and optimization of Bioretention media for treatment of urban storm water runoff. J. Environ. Eng. 2005, 131, 1521–1531. [Google Scholar] [CrossRef]
- Roy-Poirier, A.; Champagne, P.; Filion, Y. Bioretention processes for phosphorus pollution control. Environ. Rev. 2010, 18, 159–173. [Google Scholar] [CrossRef]
- Hunt, W.; Jarrett, A.; Smith, J.; Sharkey, L. Evaluating Bioretention hydrology and nutrient removal at three field sites in North Carolina. J. Irrig. Drain. Eng. 2006, 132, 600–608. [Google Scholar] [CrossRef]
- eWater Model for Urban Stormwater Improvement Conceptualisation (MUSIC v6). Available online: http://ewater.org.au/products/music/ (accessed on 21 November 2016).
- APHA. Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association/American Water Works Association/Water Environment Federation: Washington, DC, USA, 2005. [Google Scholar]
- ANZECC. Australian and New Zealand Guidelines for Fresh and Marine Water Quality-Volume 1; Australia and New Zealand Environment and Conservation Council (ANZECC) and the Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ): Canberra, Australia, 2000; ISBN 09578245 0 5.
- Rayment, G.E.; Lyon, D.J. Soil Chemical Methods–Australasia, Australian Soil and Land Survey Handbook Series; CSIRO Publishing: Clayton, Australia, 2010; ISBN 9780643067684. [Google Scholar]
- CORE. Performance & Validation Standards for Organic Bio-Filtration Media, CORE Standard CS-1510-18, CORE Water Division, a Report for the EPA NSW by the Centre for Organic Research and Education (CORE); CORE: North Sydney, Australia, 2018. [Google Scholar]
- Engineers Australia. Australian Runoff Quality (ARQ); Wong, T., Ed.; Engineers Australia: Melbourne, Australia, 2006; ISBN 0 85825 860 9. [Google Scholar]
- EPA. Soil Hazard Categorisation and Management, Industrial Waste Resource Guidelines; Environment Protection Agency-Victoria: Carlton, Australia, 2009; Publication IWRG621.
Material | Type |
---|---|
Recycled Organics (RO-fine) | Organic |
Recycled Organics (RO-medium) | Organic |
Biochar | Organic |
Calcium Carbonate (CaCO3) | Mineral |
Washed Sand | Mineral |
FAWB specification (sandy loam—M165) | Mineral (with <5% organic matter) |
Design Mix | RO | Sand | M165 | CaCO3 | Biochar |
---|---|---|---|---|---|
DM1 | 40 | 30 | 15 | 5 | 10 |
DMS | 50 | 35 | 0 | 0 | 15 |
Properties | M165 | DM1 | DMS |
---|---|---|---|
Low Flow by-pass (m3) | 0 | 0 | 0 |
High Flow by-pass (m3) | 100 | 100 | 100 |
Extended Detention depth (m) | 0.2 | 0.2 | 0.2 |
Surface Area (m2) | 100 | 100 | 100 |
Filter Area (m2) | 88 | 88 | 88 |
Unlined Filter Media (m) | 14 | 14 | 14 |
Saturated Hydraulic Conductivity (mm/h) | 300 | 300 | 300 |
Filter Depth (m) | 0.4 | 0.4 | 0.4 |
TN Content of Filter Media (mg/kg) | 235 | 1624 | 1745 |
Orthophosphate Content of Filter Media (mg/kg) | 11 | 38 | 45 |
Exfiltration Rate (mm/h) | 0 | 0 | 0 |
Test Parameter | Method Description | Method Reference | Units | RO Fine | RO Medium | Biochar | Washed Sand | M165 | DM1 | DMS |
---|---|---|---|---|---|---|---|---|---|---|
pH (1:5 in H20) | Electrode | R&L 4A2 | pH units | 7.76 | 7.87 | 9.23 | 7.72 | 6.80 | 8.29 | 7.74 |
pH (1:5 in CaCl2) | Electrode | R&L4B2 | pH units | 7.18 | 7.31 | 8.15 | 6.74 | 6.38 | 7.45 | 7.28 |
Chloride Soluble | Electrode | PMS-05 | mg/kg | 2810 | 3030 | 1585 | 4.6 | 212 | 310 | 362 |
Electrical Conductivity | Electrode | R&L 3A1 | dS/m | 1.93 | 2.1 | 1.86 | 0.02 | 0.3 | 0.54 | 0.36 |
Total N (LECO) | LECO | R&L 7A5 | mg/kg | 13,350 | 14,590 | 6870 | 82 | 235 | 1624 | 1745 |
Extractable Nitrate-N | H20/UV-Vis | PMS-08 | mg/kg | 50.7 | 52.9 | 2.34 | 4.4 | 4.28 | 10 | 9.4 |
Organic Carbon (LECO) | LECO | R&L 6B3 | % | 32 | 36.5 | 5.9 | 0.11 | 0.4 | 3.11 | 2.01 |
Total Carbon (LECO) | LECO | R&L 6B2a | % | 31.7 | 36.9 | 61.1 | 0.12 | 0.36 | 4.88 | 5.27 |
Phosphorus (Colwell) | Bicarb/UV-Vis | R&L 9B1 | mg/kg | 316 | 322 | 99.3 | 7.72 | 10.9 | 45.2 | 38 |
Sulphate-Sulphur | KCl40/ICP | R&L 10D1 | mg/kg | 144 | 78.7 | 91.2 | 3.19 | 115 | 31.2 | 13.6 |
Extractable Copper | DTPA/ICP | R&L 12A1 | mg/kg | 0.29 | <0.2 | 0.59 | 0.2 | 0.41 | 0.97 | 0.67 |
Extractable Zinc | DTPA/ICP | R&L 12A1 | mg/kg | 3.47 | 1.66 | 1.46 | 0.25 | 2.06 | 3.63 | 4.5 |
Extractable Manganese | DTPA/ICP | R&L 12A1 | mg/kg | 6.98 | 4.86 | 2.4 | <0.5 | 0.57 | 3.68 | 6.89 |
Extractable Iron | DTPA/ICP | R&L 12A1 | mg/kg | 6.52 | 6.05 | 4.91 | 7.7 | 19.5 | 15.9 | 30.3 |
Extractable Boron | Hot CaCl2/ICP | R&L 12C2 | mg/kg | 3.1 | 3.68 | 1.65 | 0.14 | 0.38 | 1.81 | 1.15 |
Exchangeable Potassium | NH4Cl/ICP | R&L 15A1 | mg/kg | 7386 | 7949 | 2534 | 10 | 161 | 850 | 723 |
Exchangeable Calcium | NH4Cl/ICP | R&L 15A1 | mg/kg | 8448 | 8380 | 3680 | 210 | 435 | 2194 | 2226 |
Exchangeable Magnesium | NH4Cl/ICP | R&L 15A1 | mg/kg | 1151 | 1197 | 124 | 18.4 | 73.4 | 161 | 255 |
Exchangeable Sodium | NH4Cl/ICP | R&L 15A1 | mg/kg | 452 | 483 | 142 | 19.2 | 88.9 | 101 | 249 |
Exchangeable Aluminium | KCl/ICP | R&L 15G1 | mg/kg | 0.7 | 0.6 | <0.5 | 3.55 | 11.8 | 0.81 | 0.65 |
Exchangeable Potassium | Calculation | PMS-15A1 | Cmol/kg | 18.9 | 20.4 | 6.5 | 0.0 | 0.4 | 2.2 | 1.9 |
Exchangeable Calcium | Calculation | PMS-15A1 | Cmol/kg | 42.2 | 41.9 | 18.4 | 1.1 | 2.2 | 11.0 | 11.1 |
Exchangeable Magnesium | Calculation | PMS-15A1 | Cmol/kg | 9.6 | 10.0 | 1.0 | 0.2 | 0.6 | 1.3 | 2.1 |
Exchangeable Sodium | Calculation | PMS-15A1 | Cmol/kg | 2.0 | 2.1 | 0.6 | 0.1 | 0.4 | 0.4 | 1.1 |
Exchangeable Aluminium | Calculation | R&L 15J1 | Cmol/kg | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 |
Effective Cation Exchange Capacity (ECEC) | Calculation | PMS-15A1 | Cmol/kg | 72.7 | 74.4 | 26.5 | 1.4 | 3.7 | 14.9 | 16.2 |
Ca/Mg Ratio | Calculation | PMS-15A1 | Cmol/kg | 4.4 | 4.2 | 17.8 | 6.8 | 3.6 | 8.2 | 5.2 |
K/Mg Ratio | Calculation | PMS-15A1 | Cmol/kg | 2.0 | 2.0 | 6.3 | 0.2 | 0.7 | 1.6 | 0.9 |
Air-dried Moisture | UoN | % | 28 | 33 | 9 | 2 | 8 | 10 | 13 | |
Moisture Holding Capacity | UoN | % | 66 | 62 | 52 | 19 | 22 | 33 | 33 | |
Bulk density | UoN | kg/m3 | 550 | 550 | 210 | 1520 | 1180 | 1100 | 1100 | |
Saturated Hydraulic Conductivity (Ksat) | Calculation | UoN | mm/hr | 720 | 1400 | 105 | 2100 | 840 | 840 | 840 |
Units | Storm Water1 | RO Fine | RO Medium | Storm Water2 | M165 | Coarse Sand | DM1 | DMS | ANZECC Trigger Value (AE) | ARQ (2006) | |
---|---|---|---|---|---|---|---|---|---|---|---|
pH | - | 7.5 | 7.7 | 7.6 | 7.5 | 7.4 | 7.5 | 7.5 | 7.6 | 6.5–8 | 6.2–7.6 |
EC | µS/cm | 655 | 670 | 670 | 915 | 915 | 900 | 925 | 935 | 125–2200 | - |
DO | mg/L | 8.53 | 9.08 | 9.25 | 8.64 | 8.99 | 9.11 | 9.04 | 9.06 | >6.5 | - |
TKN | mg/L | 0.5 | 0.8 | 0.8 | 0.8 | 2.2 | 0.8 | 0.8 | 1 | - | - |
TON | mg/L | 0.34 | 0.27 | 0.16 | 0.26 | 0.21 | 0.26 | 0.21 | 0.22 | 0.04 | - |
TN | mg/L | 0.84 | 1.07 | 0.96 | 1.06 | 2.41 | 1.06 | 1.01 | 1.22 | 0.5 | 1.5–6 |
PO43- | mg/L | 0.05 | 0.31 | 0.22 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | 0.02 | - |
TP | mg/L | 0.1 | 0.38 | 0.34 | 0.1 | 0.12 | 0.08 | 0.16 | 0.18 | 0.05 | 0.15–0.7 |
Turbidity | NTU | 20 | 17 | 27 | 9 | 12 | 10 | 9 | 8 | 6–50 | 50–350 * |
Cu | µg/L | 4.9 | 9 | 9 | 2.7 | 28 | 42 | 18 | 22 | 1.4 | 18–150 |
Zn | µg/L | 64 | 38 | 49 | 2.7 | 26 | 41 | 19 | 17 | 31 | 80–700 |
TOC | mg/L | 6.4 | 10.2 | 10.4 | 7.6 | 9 | 7.7 | 8.5 | 8.9 | - | 13–45 |
TOG | mg/L | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | - | 3–16 |
Inflow (µg/L) | After Elution (µg/L) | % Reduction | |||||
---|---|---|---|---|---|---|---|
Stormwater | M165 | DM1 | DMS | M165 | DM1 | DMS | |
Cu | 162 | 4.2 | 7.2 | 6.4 | 97 | 96 | 96 |
Pb | 0.4 | 0.4 | <0.2 | <0.2 | 0 | >50 | >50 |
Zn | 138 | 17 | 5 | 4 | 88 | 96 | 97 |
M165 | DM1 | DMS | IWRG (Upper Limit—Fill Material) | ||
---|---|---|---|---|---|
Cu | mg/kg | 4.2 | 7.2 | 6.4 | <100 |
Pb | mg/kg | 0.4 | <0.2 | <0.2 | <300 |
Zn | mg/kg | 17 | 5 | 4 | <200 |
Parameter | CRC Guideline Objective | RO Fine | RO Medium | Biochar | Washed Sand | M165 | DM1 | DMS |
---|---|---|---|---|---|---|---|---|
Material | Engineered soil/sand | NA | NA | NA | √ | √ | √ | √ |
Hydraulic Conductivity | 100–300 mm/h | √ | √ | √ | √ | √ | √ | √ |
Clay & Silt content | <3% | √ | √ | √ | √ | √ | √ | √ |
Grading of particles | 0.05–3.4 mm | NA | NA | NA | √ | √ | √ | √ |
Nutrient content | TN > 1000 mg/kg | 13,350 | 14,590 | 6870 | 82 | 235 | 1624 | 1745 |
Extractable Nitrate (no limit?) | 50.7 | 52.9 | 2.34 | 4.4 | 4.28 | 10 | 9.4 | |
Available P (Colwell) < 80 mg/kg | 316 | 322 | 99 | 8 | 11 | 45 | 38 | |
Organic matter | ≤5% | 100 | 100 | 100 | 0.1 | 0.4 | 50 | 65 |
Organic carbon | No data | 32 | 36.5 | 5.9 | 0.1 | 0.4 | 3.11 | 2.01 |
Total carbon | No data | 32 | 36.9 | 61.1 | 0.1 | 0.4 | 4.88 | 5.27 |
pH | 5.5–7.5 | 7.76 | 7.87 | 9.23 | 7.72 | 6.80 | 8.29 | 7.74 |
Electrical conductivity | <1.2 dS/m | 1.93 | 2.1 | 1.86 | 0.02 | 0.3 | 0.54 | 0.36 |
Horticultural suitability | To be assessed by horticulturalist | NA | NA | NA | NA | √ | √ | √ |
Particle size distribution | Fine sand (10–30%) | NA | NA | NA | √ | √ | √ | √ |
Depth | 400–600 cm | NA | NA | NA | √ | √ | √ | √ |
Once-off nutrient amelioration | Added to upper 10 cm | NA | NA | NA | Yes | Yes | No | No |
Submerged zone | High HC or shallow depth | NA | NA | NA | √ | √ | √ | √ |
M165 | Sources | Residual Load | % Reduction |
Flow (ML/year) | 1.96 | 1.86 | 5 |
Total Suspended Solids (kg/year) | 399 | 9.69 | 98 |
Total Phosphorous (kg/year) | 0.805 | 0.051 | 94 |
Total Nitrogen (kg/year) | 5.66 | 1.29 | 77 |
Gross Pollutants (kg/year) | 53.6 | 0 | 100 |
DM1 | Sources | Residual Load | % Reduction |
Flow (ML/year) | 1.96 | 1.86 | 5 |
Total Suspended Solids (kg/year) | 400 | 9.69 | 98 |
Total Phosphorous (kg/year) | 0.812 | 0.112 | 86 |
Total Nitrogen (kg/year) | 5.64 | 2.37 | 58 |
Gross Pollutants (kg/year) | 53.6 | 0 | 100 |
DMS | Sources | Residual Load | % Reduction |
Flow (ML/year) | 1.96 | 1.85 | 5 |
Total Suspended Solids (kg/year) | 400 | 9.63 | 98 |
Total Phosphorous (kg/year) | 0.812 | 0.051 | 80 |
Total Nitrogen (kg/year) | 5.64 | 1.29 | 52 |
Gross Pollutants (kg/year) | 53.6 | 0 | 100 |
Bioretention | TSS k | C* | TP k | C* | TN k | C* | |
---|---|---|---|---|---|---|---|
LOW | mg/kg | 4000 | 10 | 3000 | 0.08 | 250 | 1.1 |
Default | mg/kg | 8000 | 20 | 6000 | 0.13 | 500 | 1.4 |
HIGH | mg/kg | 15,000 | 30 | 12,000 | 0.18 | 1000 | 1.7 |
M165 | LOW | Default | High | Difference |
Flow | 5.3 | 5.3 | 5.3 | 0 |
Total Suspended Solids | 94.5 | 95.8 | 96.5 | 2 |
Total Phosphorous | 90 | 90.5 | 90.6 | 0.6 |
Total Nitrogen | 72.3 | 72.7 | 73.1 | 0.8 |
Gross Pollutants | 100 | 100 | 100 | 0 |
DM1 | LOW | Default | High | Difference |
Flow | 5.3 | 5.3 | 5.3 | 0 |
Total Suspended Solids | 94.6 | 95.6 | 95.5 | 0.9 |
Total Phosphorous | 83.4 | 84.1 | 86 | 2.6 |
Total Nitrogen | 52.6 | 55.5 | 69.5 | 16.9 |
Gross Pollutants | 100 | 100 | 100 | 0 |
DMS | LOW | Default | High | Difference |
Flow | 5.3 | 5.3 | 5.3 | 0 |
Total Suspended Solids | 94.2 | 95.3 | 95.6 | 1.4 |
Total Phosphorous | 77.3 | 77.9 | 79.7 | 2.4 |
Total Nitrogen | 47.6 | 50.2 | 66.6 | 19 |
Gross Pollutants | 100 | 100 | 100 | 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucas, S.A.; CC Lee, C.; Love, E. Characterising Recycled Organic and Mineral Materials for Use as Filter Media in Biofiltration Systems. Water 2019, 11, 1074. https://doi.org/10.3390/w11051074
Lucas SA, CC Lee C, Love E. Characterising Recycled Organic and Mineral Materials for Use as Filter Media in Biofiltration Systems. Water. 2019; 11(5):1074. https://doi.org/10.3390/w11051074
Chicago/Turabian StyleLucas, Steven A, Charles CC Lee, and Eric Love. 2019. "Characterising Recycled Organic and Mineral Materials for Use as Filter Media in Biofiltration Systems" Water 11, no. 5: 1074. https://doi.org/10.3390/w11051074
APA StyleLucas, S. A., CC Lee, C., & Love, E. (2019). Characterising Recycled Organic and Mineral Materials for Use as Filter Media in Biofiltration Systems. Water, 11(5), 1074. https://doi.org/10.3390/w11051074