On the Possibility of Chaos in a Generalized Model of Three Interacting Sectors
<p>Transition to Shilnikov chaos in the system (<a href="#FD7-entropy-22-01388" class="html-disp-formula">7</a>). The values of system parameters are <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>η</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>η</mi> <mn>4</mn> </msub> <mo>=</mo> <mn>0.02</mn> </mrow> </semantics></math>. We vary only the value of <math display="inline"><semantics> <msub> <mi>η</mi> <mn>3</mn> </msub> </semantics></math>. Figure (<b>a</b>): <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. There is a stable equilibrium state. Figure (<b>b</b>): <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>1.391</mn> </mrow> </semantics></math>. The cyclic state after the Hopf bifurcation is purely presented. Figure (<b>c</b>): <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>1.4</mn> </mrow> </semantics></math>. The trajectory spirals onto the limit cycle. Figure (<b>d</b>): <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>1.5</mn> </mrow> </semantics></math>. The saddle focus <math display="inline"><semantics> <msub> <mi>E</mi> <mn>6</mn> </msub> </semantics></math> already has approached. Figure (<b>e</b>): <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>1.7</mn> </mrow> </semantics></math>. The unstable manifold of the saddle focus is clearly visible. Figure (<b>f</b>): <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>1.9</mn> </mrow> </semantics></math>. Periodic motion is observed. Figure (<b>g</b>): <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>. Period double cascade is observed. A homoclinic loop appears. Figure (<b>h</b>): <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>2.3</mn> </mrow> </semantics></math>. Chaotic motion already exists. With further increasing value of <math display="inline"><semantics> <msub> <mi>η</mi> <mn>3</mn> </msub> </semantics></math> the attractor again is reduced to a multi–periodic cycle, as at <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>2.5</mn> </mrow> </semantics></math> the periodic motion vanishes.</p> "> Figure 1 Cont.
<p>Transition to Shilnikov chaos in the system (<a href="#FD7-entropy-22-01388" class="html-disp-formula">7</a>). The values of system parameters are <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>η</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>η</mi> <mn>4</mn> </msub> <mo>=</mo> <mn>0.02</mn> </mrow> </semantics></math>. We vary only the value of <math display="inline"><semantics> <msub> <mi>η</mi> <mn>3</mn> </msub> </semantics></math>. Figure (<b>a</b>): <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. There is a stable equilibrium state. Figure (<b>b</b>): <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>1.391</mn> </mrow> </semantics></math>. The cyclic state after the Hopf bifurcation is purely presented. Figure (<b>c</b>): <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>1.4</mn> </mrow> </semantics></math>. The trajectory spirals onto the limit cycle. Figure (<b>d</b>): <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>1.5</mn> </mrow> </semantics></math>. The saddle focus <math display="inline"><semantics> <msub> <mi>E</mi> <mn>6</mn> </msub> </semantics></math> already has approached. Figure (<b>e</b>): <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>1.7</mn> </mrow> </semantics></math>. The unstable manifold of the saddle focus is clearly visible. Figure (<b>f</b>): <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>1.9</mn> </mrow> </semantics></math>. Periodic motion is observed. Figure (<b>g</b>): <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>. Period double cascade is observed. A homoclinic loop appears. Figure (<b>h</b>): <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>2.3</mn> </mrow> </semantics></math>. Chaotic motion already exists. With further increasing value of <math display="inline"><semantics> <msub> <mi>η</mi> <mn>3</mn> </msub> </semantics></math> the attractor again is reduced to a multi–periodic cycle, as at <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>2.5</mn> </mrow> </semantics></math> the periodic motion vanishes.</p> ">
Abstract
:1. Introduction
2. Mathematical Formulation of the Problem
3. Appearance of Shilnikov Chaos in the System (3)
4. Numerical Results
5. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Chian, A.C.-L. Complex Systems Approach to Economic Dynamics; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 978-3-540-39752-6. [Google Scholar]
- Metcalfe, J.F.; Foster, J. Evolution and Economic Complexity; Edward Elgar Publishing: Cheltenham, UK, 2004; ISBN 1-84376-526-8. [Google Scholar]
- Brian Arthur, W. Complexity and the Economy; Oxford University Press: Oxford, UK, 2015; ISBN 978-0-19-933429-2. [Google Scholar]
- Schulz, M. Statistical Physics and Economics; Springer: New York, NY, USA, 2003; ISBN 0-387-00282-0. [Google Scholar]
- Richmond, P.; Mimkes, J.; Hutzler, S. Econophysics and Physical Economics; Oxford University Press: Oxford, UK, 2013; ISBN 978-0-19-967470-1. [Google Scholar]
- Mantegna, R.N.; Stanley, H.E. Introduction to Econophysics; Cambridge University Press: Cambridge, UK, 2004; ISBN 0-511-03502-0. [Google Scholar]
- Zhang, W.-B. Differential Equations, Bifurcations and Chaos in Economics; World Scientific: Singapore, 2005; ISBN 981-256-333-4. [Google Scholar]
- Rosser, J.B., Jr. From Catastrophe to Chaos: A General Theory of Economic Discontinuities; Springer: New York, NY, USA, 2000; ISBN 978-94-017-1615-4. [Google Scholar]
- Lorenz, H.-W. Nonlinear Dynamical Economics and Chaotic Motion; Springer: Berlin/Heidelberg, Germany, 1989; ISBN 978-3-540-51413-8. [Google Scholar]
- Braat, L.C.; van Lierop, W.F.J. Economic-Ecological Modeling; North Holland: Amsterdam, The Netherlands, 1987; ISBN 978-0-444-70298-2. [Google Scholar]
- Dendrinos, D. The Dynamics of Cities: Ecological Determinism, Dualism and Chaos; Routledge: London, UK, 1992; ISBN 0-203-41769-0. [Google Scholar]
- Lotka, A.J. Contribution to the Theory of Periodic Reaction. J. Phys. Chem. 1910, 4, 271–274. [Google Scholar] [CrossRef] [Green Version]
- Lotka, A.J. Elements of Physical Biology; Williams & Wilkins Company: Baltimore, MD, USA, 1925. [Google Scholar]
- Volterra, V. Lessons on the Mathematical Theory of Struggle for Life (Original: Leçons sur la théorie mathématique de la Lutte pour la vie); Gauthier-Villars: Paris, France, 1931. [Google Scholar]
- Nijkamp, P.; Reggiani, A. The Economics of Complex Spatial Systems; North-Holland: Amsterdam, The Netherlands, 1998; ISBN 0-444-82931-8. [Google Scholar]
- Arbia, G. Spatial Econometrics; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 978-3-540-32304-4. [Google Scholar]
- Dimitrova, Z.I.; Vitanov, N.K. Influence of Adaptation on the Nonlinear Dynamics of a System of Competing Populations. Phys. Lett. A 2000, 272, 368–380. [Google Scholar] [CrossRef]
- Dimitrova, Z.I.; Vitanov, N.K. Adaptation and its Impact on the Dynamics of a System of Three Competing Populations. Physica A 2001, 300, 91–115. [Google Scholar] [CrossRef]
- Dimitrova, Z.I.; Vitanov, N.K. Chaotic Pairwise Competition. Theor. Popul. Biol. 2004, 66, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Dimitrova, Z.I.; Vitanov, N.K. Dynamical Consequences of Adaptation of the Growth Rates in a System of Three Competing Populations. J. Phys. A Math. Gen. 2001, 34, 7459–7473. [Google Scholar] [CrossRef]
- Dimitrova, Z.I.; Vitanov, N.K. Shilnikov Chaos in a Generalized System for Modeling Dynamics of Competing Populations. C. R. L’Acade’Mie Bulg. Des Sci. 2005, 58, 257–264. [Google Scholar]
- Palatella, L.; Perell, J.; Montero, M.; Masoliver, J. Activity Autocorrelation in Financial Markets. Eur. Phys. J. B 2004, 38, 671–677. [Google Scholar] [CrossRef] [Green Version]
- Sonubi, A.; Arcagni, A.; Stefani, S.; Ausloos, M. Effects of Competition and Cooperation Interaction Between Agents on Networks in the Presence of a Market Capacity. Phys. Rev. E 2016, 94, 022303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabatelli, L.; Richmond, P. A Consensus-Based Dynamics for Market Volumes. Physica A 2004, 344, 62–66. [Google Scholar] [CrossRef]
- Richmond, P.; Sabatelli, L. Langevin Processes, Agent Models and Socio-Economic Systems. Physica A 2004, 336, 27–38. [Google Scholar] [CrossRef] [Green Version]
- Vitanov, N.K.; Dimitrova, Z.I.; Ausloos, M. Verhulst–Lotka–Volterra (VLV) Model of Ideological Struggle. Physica A 2010, 389, 4970–4980. [Google Scholar] [CrossRef] [Green Version]
- Vitanov, N.K.; Ausloos, M.; Rotundo, G. Discrete Model of Ideological Struggle Accounting for Migration. Adv. Complex Syst. 2012, 15 (Suppl. 1), 1250049. [Google Scholar] [CrossRef]
- Ausloos, M.; Diricks, M. (Eds.) The Logistic Map and the Route to Chaos; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 978-3-540-28366-9. [Google Scholar]
- Vano, J.V.; Wildenberg, J.C.; Anderson, M.B.; Noel, J.K.; Sprott, J.C. Chaos in Low-Dimensional Lotka–Volterra Models of Competition. Nonlinearity 2006, 19, 2391–2404. [Google Scholar] [CrossRef] [Green Version]
- Roques, L.; Chekroun, M.D. Probing Chaos and Biodiversity in a Simple Competition Model. Ecol. Complex. 2011, 8, 98–104. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Xiao, D. Bifurcations and Chaotic Dynamics in a 4-dimensional Competitive Lotka–Volterra System. Nonlinear Dyn. 2010, 59, 411–422. [Google Scholar] [CrossRef]
- Shilnikov, L.P. A Case of the Existence of a Denumerable Set of Periodic Motions. Sov. Math. Dokl. 1965, 6, 163–166. [Google Scholar]
- Arneodo, A.; Coullet, P.; Tresser, C. Occurence of Strange Attractors in Three-Dimensional Volterra Equations. Phys. Lett. A 1980, 79, 259–263. [Google Scholar] [CrossRef]
- Afraimovich, V.S.; Gonchenko, S.V.; Lerman, L.M.; Shilnikov, A.L.; Turaev, D.V. Scientific heritage of L.P. Shilnikov. Regul. Chaotic Dyn. 2014, 19, 435–460. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikolova, E.V.; Vitanov, N.K. On the Possibility of Chaos in a Generalized Model of Three Interacting Sectors. Entropy 2020, 22, 1388. https://doi.org/10.3390/e22121388
Nikolova EV, Vitanov NK. On the Possibility of Chaos in a Generalized Model of Three Interacting Sectors. Entropy. 2020; 22(12):1388. https://doi.org/10.3390/e22121388
Chicago/Turabian StyleNikolova, Elena V., and Nikolay K. Vitanov. 2020. "On the Possibility of Chaos in a Generalized Model of Three Interacting Sectors" Entropy 22, no. 12: 1388. https://doi.org/10.3390/e22121388
APA StyleNikolova, E. V., & Vitanov, N. K. (2020). On the Possibility of Chaos in a Generalized Model of Three Interacting Sectors. Entropy, 22(12), 1388. https://doi.org/10.3390/e22121388