Evidence of Strange Attractors in Class C Amplifier with Single Bipolar Transistor: Polynomial and Piecewise-Linear Case
<p>General circuit concepts analyzed in this paper: (<b>a</b>) fundamental cell of class C amplifier, (<b>b</b>) equivalent schematic of class C amplifier for useful small-amplitude AC (Alternating Current) signals.</p> "> Figure 2
<p>Plane projection <span class="html-italic">v</span><sub>1</sub> vs. <span class="html-italic">v</span><sub>2</sub> (black) and rainbow colored three-dimensional perspective views on the typical strange attractors generated by: (<b>a</b>) parameter set <b>Ψ</b><sub>1</sub> substituted into the expression (1), (<b>b</b>) parameter set <b>Ψ</b><sub>1</sub> substituted into system (6), (<b>c</b>) parameter set <b>Ψ</b><sub>2</sub> substituted into differential Equation (1), (<b>d</b>) parameter set <b>Ψ</b><sub>2</sub> substituted into jerk dynamics (6), (<b>e</b>) parameter set <b>Ψ</b><sub>3</sub> numerically integrated using Equation (1), (<b>f</b>) integration of system (1) with parameter set <b>Ψ</b><sub>4</sub>, (<b>g</b>) parameter set <b>Ψ</b><sub>5</sub> substituted into Equation (1), and (<b>h</b>) parameter set <b>Ψ</b><sub>6</sub> substituted into system (1) and integrated.</p> "> Figure 3
<p>Sensitivity to tiny changes of initial condition demonstrated for first case of chaotic system: starting situation (red points), short time evolution (green points), average time evolution (blue dots) and long time separation (black dots). Nominal starting position is chosen as follows: (<b>a</b>) <b>x</b><sub>0</sub> = (1, 0, 0)<sup>T</sup>, (<b>b</b>) <b>x</b><sub>0</sub> = (−1, 0, 0)<sup>T</sup>, (<b>c</b>) <b>x</b><sub>0</sub> = (0, −1, 0)<sup>T</sup> and (<b>d</b>) <b>x</b><sub>0</sub> = (0, 1, 0)<sup>T</sup>. Magnified areas showing states are demonstrated.</p> "> Figure 4
<p>Horizontal state space slices given by <span class="html-italic">z</span> = <span class="html-italic">const</span>. showing kinetic energy distribution of typical chaotic attractors of case <b>Ψ</b><sub>1</sub> system, associated Poincaré sections (black dots). Figures sorted from left to right and up to down: <span class="html-italic">z</span> = −0.9, <span class="html-italic">z</span> = −0.7, <span class="html-italic">z</span> = −0.5, <span class="html-italic">z</span> = −0.2, <span class="html-italic">z</span> = 0, <span class="html-italic">z</span> = 0.3, <span class="html-italic">z</span> = 1, <span class="html-italic">z</span> = 1.5, <span class="html-italic">z</span> = 2, <span class="html-italic">z</span> = 2.4, and <span class="html-italic">z</span> = 2.47.</p> "> Figure 5
<p>Horizontal state space slices defined by the plane <span class="html-italic">z = const</span>. and providing dynamical energy distribution of typical chaotic attractors of case <b>Ψ</b><sub>2</sub> system (white curve), associated Poincaré sections (black dots). Figures sorted from left to right and up to down: <span class="html-italic">z =</span> −3.3, <span class="html-italic">z =</span> −3, <span class="html-italic">z =</span> −2.5, <span class="html-italic">z =</span> −2, <span class="html-italic">z =</span> −1.5, <span class="html-italic">z =</span> −1, <span class="html-italic">z =</span> −0.8, <span class="html-italic">z =</span> −0.6, <span class="html-italic">z =</span> −0.4, <span class="html-italic">z =</span> −0.2, and <span class="html-italic">z =</span> 0.</p> "> Figure 6
<p>Horizontal state space slices given by plane <span class="html-italic">z = const</span>. providing rainbow scaled dynamical energy distribution of the typical chaotic attractors of case <b>Ψ</b><sub>3</sub> system, associated Poincaré sections (black dots). Individual figures are sorted from left to right and up to down with respect to the planes: <span class="html-italic">z =</span> −9.4, <span class="html-italic">z =</span> −9, <span class="html-italic">z =</span> −8.5, <span class="html-italic">z =</span> −8, <span class="html-italic">z =</span> −7, <span class="html-italic">z =</span> −6.5, <span class="html-italic">z =</span> −6, <span class="html-italic">z =</span> −4, <span class="html-italic">z =</span> −2, <span class="html-italic">z =</span> −1, and <span class="html-italic">z =</span> 0.</p> "> Figure 7
<p>Horizontal state space slices given by plane <span class="html-italic">z = const</span>. providing rainbow scaled dynamical energy distribution of the typical chaotic attractors of case <b>Ψ</b><sub>4</sub> system (white trajectory), and associated Poincaré sections (black dots). Figures sorted from left to right and up to down: <span class="html-italic">z =</span> −0.4, <span class="html-italic">z =</span> −0.2, <span class="html-italic">z =</span> 0, <span class="html-italic">z =</span> 0.2, <span class="html-italic">z =</span> 0.3, <span class="html-italic">z =</span> 0.5, <span class="html-italic">z =</span> 0.8, <span class="html-italic">z =</span> 1.2, <span class="html-italic">z =</span> 1.6, <span class="html-italic">z =</span> 2, and <span class="html-italic">z =</span> 2.5.</p> "> Figure 8
<p>Horizontal state space slices given by plane <span class="html-italic">z = const</span>. providing rainbow scaled dynamical energy distribution of the typical chaotic attractors of case <b>Ψ</b><sub>5</sub> system (white trajectory), and associated Poincaré sections (black dots). Individual figures are sorted from left to right and up to down: <span class="html-italic">z =</span> −1, <span class="html-italic">z =</span> −0.8, <span class="html-italic">z =</span> −0.6, <span class="html-italic">z =</span> −0.2, <span class="html-italic">z =</span> 0.4, <span class="html-italic">z =</span> 0.6, <span class="html-italic">z =</span> 1, <span class="html-italic">z =</span> 1.5, <span class="html-italic">z =</span> 2, <span class="html-italic">z =</span> 2.5, and <span class="html-italic">z =</span> 2.9.</p> "> Figure 9
<p>Horizontal state space slices defined by plane <span class="html-italic">z = const</span>. providing rainbow scaled dynamical energy distribution of typical chaotic attractors of case <b>Ψ</b><sub>6</sub> system (white state trajectory), associated Poincaré sections (black dots). Figures sorted from left to right and up to down are given by: <span class="html-italic">z =</span>−3.3, <span class="html-italic">z =</span> −2.7, <span class="html-italic">z =</span> −2, <span class="html-italic">z =</span> −1.2, <span class="html-italic">z =</span> −0.7, <span class="html-italic">z =</span> 0, <span class="html-italic">z =</span> 0.4, <span class="html-italic">z =</span> 1, <span class="html-italic">z =</span> 1.7, <span class="html-italic">z =</span> 2.3, and <span class="html-italic">z =</span> 3.3.</p> "> Figure 10
<p>Horizontal state space slices given by plane <span class="html-italic">z = const</span>. providing rainbow scaled dynamical energy distribution of the typical chaotic attractors of case <b>Ψ</b><sub>7</sub> system (white trajectory), and associated Poincaré sections (black dots). Individual figures sorted from left to right and up to down are given by: <span class="html-italic">z =</span> −1.4, <span class="html-italic">z =</span> −1, <span class="html-italic">z =</span> −0.5, <span class="html-italic">z =</span> −0.2, <span class="html-italic">z =</span> 0, <span class="html-italic">z =</span> 0.2, <span class="html-italic">z =</span> 0.5, <span class="html-italic">z =</span> 1, <span class="html-italic">z =</span> 1.5, <span class="html-italic">z =</span> 1.8, <span class="html-italic">z =</span> 2.2, and <span class="html-italic">z =</span> 2.7.</p> "> Figure 11
<p>Rainbow scaled surface-contour plot of the largest Lyapunov exponent as two-dimensional function of nonlinear feedback, calculated for <b>Ψ</b><sub>1</sub> case of chaotic circuit and total range of parameters is <span class="html-italic">a</span>∈(0, 3) and <span class="html-italic">b</span>∈(−3, 0).</p> "> Figure 12
<p>Rainbow scaled surface-contour plot of the largest Lyapunov exponent as two-dimensional function of nonlinear feedback, area covering both <b>Ψ</b><sub>2</sub>, <b>Ψ</b><sub>5</sub>, and <b>Ψ</b><sub>7</sub> with dissipation coefficient <span class="html-italic">y</span><sub>11</sub> = 0.4, total range of parameters is <span class="html-italic">c</span>∈(2, 5) and <span class="html-italic">e</span>∈(−3, 0).</p> "> Figure 13
<p>Rainbow scaled surface-contour plot of the largest Lyapunov exponent as two-dimensional function of nonlinear feedback, area covering case <b>Ψ</b><sub>3</sub> and total range of parameters is <span class="html-italic">a</span>∈(3, 6) along with <span class="html-italic">b</span>∈(−3, 0).</p> "> Figure 14
<p>Rainbow scaled surface-contour plot of the largest Lyapunov exponent as two-dimensional function of nonlinear feedback, area covering case <b>Ψ</b><sub>4</sub> and total range of parameters is <span class="html-italic">b</span>∈(0, 3) along with <span class="html-italic">d</span>∈(−3, 0).</p> "> Figure 15
<p>Rainbow scaled surface-contour plot of the largest Lyapunov exponent as two-dimensional function of nonlinear feedback, area covering case <b>Ψ</b><sub>6</sub> and total range of parameters is <span class="html-italic">a</span>∈(1, 4) along with <span class="html-italic">e</span>∈(−3, 0).</p> "> Figure 16
<p>Rainbow scaled plot showing flow quantification for the individual cases <b>Ψ</b><sub>1–6</sub> (rows 1 to 6) of chaotic class C amplifier and increased value of system dissipation <span class="html-italic">y</span><sub>11</sub> = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 (columns from left to right), see text for better clarification.</p> "> Figure 17
<p>Colored basins of attraction, individual slices are the horizontal planes: (<b>a</b>) z0 = −3, (<b>b</b>) z0 = −2.5, (<b>c</b>) z0 = −2, (<b>d</b>) z0 = −1.5, (<b>e</b>) z0 = −1.25, (<b>f</b>) z0 = −1, (<b>g</b>) z0 = −0.75, (<b>h</b>) z0 = −0.5, (<b>i</b>) z0 = −0.3, (<b>j</b>) z0 = −0.1, (<b>k</b>) z0 = 0.0, (<b>l</b>) z0 = 0.1, (<b>m</b>) z0 = 0.2, (<b>n</b>) z0 = 0.3, (<b>o</b>) z0 = 0.4, (<b>p</b>) z0 = 0.5, (<b>q</b>) z0 = 0.75, (<b>r</b>) z0 = 1.0, (<b>s</b>) z0 = 1.5, and (<b>t</b>) z0 = 2.</p> "> Figure 18
<p>Idealized circuit realization of a chaotic system with the emulated bipolar transistor stage: (<b>a</b>) case <b>Ψ</b><sub>1</sub> system with parameters taken from <a href="#entropy-23-00175-t001" class="html-table">Table 1</a>, (<b>b</b>) case <b>Ψ</b><sub>3</sub> system with parameter set taken from <a href="#entropy-23-00175-t001" class="html-table">Table 1</a>, (<b>c</b>) Monge projections <span class="html-italic">v<sub>y</sub></span><sub>1</sub> vs. <span class="html-italic">v<sub>x</sub></span><sub>1</sub> (blue) and <span class="html-italic">i<sub>L</sub></span><sub>1</sub> vs. <span class="html-italic">v<sub>x</sub></span><sub>1</sub> (red), (<b>d</b>) frequency spectrum of generated signal <span class="html-italic">v<sub>x</sub></span><sub>1</sub> (blue) and <span class="html-italic">v<sub>y</sub></span><sub>1</sub> (red). Red areas represent polynomial feedback transfer functions.</p> "> Figure 19
<p>Chaotic system with emulated bipolar transistor stage: (<b>a</b>) circuit realization of differential Equations (1) and (3) and parameter set <b>Ψ</b><sub>3</sub> taken from <a href="#entropy-23-00175-t001" class="html-table">Table 1</a>, (<b>b</b>) circuit implementation of Equations (1) and (3) and parameter set <b>Ψ</b><sub>1</sub> or <b>Ψ</b><sub>4</sub> taken from <a href="#entropy-23-00175-t001" class="html-table">Table 1</a>.</p> "> Figure 20
<p>Photos captured during experimental investigation: (<b>a</b>) PCB showing two two-ports where transconductances <span class="html-italic">y</span><sub>12</sub> and <span class="html-italic">y</span><sub>21</sub> are polynomials up to the fourth-order, (<b>b</b>) two views onto breadboard with designed chaotic oscillator based on generalized class C amplifier.</p> "> Figure 21
<p>Dynamical system (1) with (3) and values <b>Ψ</b><sub>3</sub> from <a href="#entropy-23-00175-t001" class="html-table">Table 1</a>, Comparison between numerical integration process (blue) and laboratory experiment (green): (<b>a</b>,<b>b</b>) <span class="html-italic">v</span><sub>1</sub> vs. <span class="html-italic">v</span><sub>3</sub> plane, (<b>c</b>,<b>d</b>) <span class="html-italic">v</span><sub>2</sub> vs. <span class="html-italic">v</span><sub>3</sub> plane, (<b>e</b>,<b>f</b>) <span class="html-italic">v</span><sub>1</sub> vs. <span class="html-italic">v</span><sub>2</sub> plane.</p> "> Figure 22
<p>Dynamical system (1) with (3) and values <b>Ψ</b><sub>1</sub> from <a href="#entropy-23-00175-t001" class="html-table">Table 1</a>, comparison between numerical integration process (blue) and laboratory experiment (green): (<b>a</b>,<b>b</b>) <span class="html-italic">v</span><sub>1</sub> vs. <span class="html-italic">v</span><sub>3</sub> plane, (<b>c</b>,<b>d</b>) <span class="html-italic">v</span><sub>1</sub> vs. <span class="html-italic">v</span><sub>2</sub> plane, (<b>e</b>,<b>f</b>) <span class="html-italic">v</span><sub>2</sub> vs. <span class="html-italic">v</span><sub>3</sub> plane.</p> "> Figure 23
<p>Different Monge projections of strange attractors not mutually connected with numerical analysis of generalized chaotic class C amplifier.</p> "> Figure 24
<p>Two alternative lumped circuitry implementations of class C potentially chaotic amplifier: (<b>a</b>) principal schematic of dynamical system with passive approximated fractional-order inductor, (<b>b</b>) realization based directly on the state model (20).</p> ">
Abstract
:1. Introduction
2. Single Transistor Stage
2.1. Local Polynomial Backward Trans-Conductance
2.2. Local Piecewise-Linear Backward Trans-Conductance
2.3. Alternative Mathematical Models of Class C Amplifier
2.4. Searching for Chaotic Case
3. Numerical Results
4. Design of Flow-Equivalent Chaotic Oscillator
5. Experimental Verification
Fractional-Order Chaotified Class C Amplifier
6. Discussion
- General mathematical models analyzed in this paper (3) and (10) contain normalized values of all accumulation elements. After optimization, to observe strange attractors, resulting parasitic capacitance as well as capacitance and inductance located within the LC resonant tank are of comparable orders. Therefore, parasitic accumulation elements turn into functional. This fact increases the intrinsic number of degrees of freedom and forces a naturally non-chaotic analogue building block to behave chaotically. Because of the internal structure of bipolar transistors commonly used in class C amplifiers, this kind of motion is possible only for assumed high-frequency operation. In practice, generated chaotic waveform can be easily misinterpreted as noise.
- The second condition for chaos evolution is the presence of a specific local nonlinear feedback. In the mathematical model of the analyzed dynamical system, either polynomial or PWL scalar function is the only nonlinearity.
- The third specific property of a bipolar transistor is linear backward trans-conductance. Its value is non-zero and relatively large.
7. Conclusions
- Parasitic capacitors are working ones,
- Nonlinearity is typical for a large signal model of a bipolar transistor,
- An additional degree of freedom is presented because driving force (processed signal) changes the operational point of an analyzed circuit.
Funding
Acknowledgments
Conflicts of Interest
References
- Matsumoto, T. A chaotic attractor from Chua’s circuit. IEEE Trans. Circuits Syst. 1984, 31, 1055–1058. [Google Scholar] [CrossRef]
- Galajda, P.; Guzan, M.; Spany, V. The state space mystery with negative load in multiple-valued logic. Radioengineering 2008, 17, 19–24. [Google Scholar]
- Hassler, M.J. Electrical circuit with chaotic behavior. Proc. IEEE 1987, 75, 1009–1021. [Google Scholar] [CrossRef]
- Lai, Q.; Akgul, A.; Li, C.H.; Xu, G.; Cavusoglu, U. A new chaotic system with multiple attractors: Dynamic analysis, circuit realization and S-box design. Entropy 2018, 20, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pham, V.T.; Ali, D.S.; Al-Saidi, N.M.G.; Rajagopal, K.; Alsaadi, F.E.; Jafari, S. A novel mega-stable chaotic circuit. Radioengineering 2020, 29, 140–146. [Google Scholar] [CrossRef]
- Delgado-Restituto, M.; Linan, M.; Ceballos, J.; Rodriguez-Vazquez, A. Bifurcations and Synchronization using an integrated programmable chaotic circuit. Int. J. Bifurc. Chaos 1997, 7, 1737–1773. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, T. Chaos in electronic circuits. Proc. IEEE 1987, 75, 1033–1057. [Google Scholar] [CrossRef]
- Guzan, M. Variations of boundary surface in Chua´s circuit. Radioengineering 2015, 24, 814–823. [Google Scholar] [CrossRef]
- Rodriguez-Vazquez, A.; Huertas, J.; Chua, L.O. Chaos in switched-capacitor circuit. IEEE Trans. Circuits Syst. 1985, 32, 1083–1085. [Google Scholar] [CrossRef]
- Dai, D.; Ma, X.; Zhang, B.; Tse, C.H.K. Hopf bifurcation and chaos from torus breakdown in voltage-mode controlled DC drive systems. Chaos Solitons Fractals 2009, 41, 1027–1033. [Google Scholar] [CrossRef]
- Hamill, D.C.; Jeffries, D.J. Subharmonics and chaos in a controlled switched-mode power converter. IEEE Trans. Circuits Syst. 1988, 35, 1059–1061. [Google Scholar] [CrossRef]
- Zhou, X.; Li, J.; Youjie, M. Chaos phenomena in dc-dc converter and chaos control. Procedia Eng. 2012, 29, 470–473. [Google Scholar] [CrossRef] [Green Version]
- Endo, T.; Chua, L.O. Chaos from phase-locked loops. IEEE Trans. Circuits Syst. 1988, 35, 987–1003. [Google Scholar] [CrossRef]
- Petrzela, J. Multi-valued static memory with resonant tunneling diodes as natural source of chaos. Nonlinear Dyn. 2018, 93, 1–21. [Google Scholar] [CrossRef]
- Petrzela, J. Strange attractors generated by multiple-valued static memory cell with polynomial approximation of resonant tunneling diodes. Entropy 2018, 20, 697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennedy, M.P. Chaos in the Colpitts oscillator. IEEE Trans. Circuits Syst. 1994, 41, 771–774. [Google Scholar] [CrossRef]
- Kvarda, P. Chaos in Hartley´s oscillator. Int. J. Bifurc. Chaos 2011, 12, 2229–2232. [Google Scholar]
- Kilic, R.; Yildrim, F. A survey of Wien bridge-based chaotic oscillators: Design and experimental issues. Chaos Solitons Fractals 2008, 38, 1394–1410. [Google Scholar] [CrossRef]
- Rajagopal, K.; Li, C.H.; Nazarimehr, F.; Karthikeyan, A.; Duraisamy, P.; Jafari, S. Chaotic dynamics of modified Wien bridge oscillator with fractional order memristor. Radioengineering 2019, 28, 165–174. [Google Scholar] [CrossRef]
- Petrzela, J. Generalized single stage class C amplifier: Analysis from the viewpoint of chaotic behavior. Appl. Sci. 2020, 10, 5025. [Google Scholar] [CrossRef]
- Petrzela, J. New chaotic oscillator derived from class C single transistor-based amplifier. Math. Probl. Eng. 2020, 2020, 2640629. [Google Scholar] [CrossRef]
- Minati, L.; Frasca, M.; Oswiecimka, P.; Faes, L.; Drozd, S. Atypical transistor-based chaotic oscillators: Design, realization, and diversity. Chaos 2017, 27, 073113. [Google Scholar] [CrossRef] [PubMed]
- Petrzela, J. On the existence of chaos in the electronically adjustable structures of state variable filters. Int. J. Circuit Theory Appl. 2016, 11, 605–653. [Google Scholar] [CrossRef]
- Itoh, M. Spread spectrum communication via chaos. Int. J. Bifurc. Chaos 1999, 9, 155–213. [Google Scholar] [CrossRef]
- Jafari, S.; Sprott, J.C.; Nazarimehr, F. Recent new examples of hidden attractors. Eur. Phys. J. Spec. Top. 2015, 224, 1469–1476. [Google Scholar] [CrossRef]
- Jafari, S.; Sprott, J.C.; Pham, V.-T.; Golpayegani, S.M.R.H. A new cost function for parameter estimation of chaotic systems using return maps as fingerprints. Int. J. Bifurc. Chaos 2014, 24, 1567–1580. [Google Scholar] [CrossRef]
- Sprott, J.C. Some simple chaotic jerk functions. Am. J. Phys. 1997, 65, 537–543. [Google Scholar] [CrossRef]
- Sprott, J.C. Simplest dissipative chaotic flow. Phys. Lett. A 1997, 228, 271–274. [Google Scholar] [CrossRef]
- Sprott, J.C.; Linz, S.J. Algebraically simple chaotic flows. Int. J. Chaos Theory Appl. 2000, 5, 3–22. [Google Scholar]
- Grygiel, K.; Szlachetka, P. Lyapunov exponent analysis of autonomous and nonautonomous set of ordinary differential equations. Acta Phys. Pol. B 1995, 26, 1321–1331. [Google Scholar]
- Sprott, J.C. Chaos and Time Series Analysis; Oxford University Press: Oxford, UK, 2001; pp. 104–123. [Google Scholar]
- Doyne Farmer, J.; Ott, E.; Yorke, J.A. The dimension of chaotic attractors. Phys. D Nonlinear Phenom. 1983, 7, 153–180. [Google Scholar] [CrossRef] [Green Version]
- Kuznetsov, N.V. The Lyapunov dimension and its estimation via the Leonov method. Phys. Lett. A 2016, 380, 2142–2149. [Google Scholar] [CrossRef] [Green Version]
- Eckmann, J.P.; Ruelle, D. Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 1985, 57, 617–656. [Google Scholar] [CrossRef]
- Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delgado-Bonal, A.; Marshak, A. Approximate entropy and sample entropy: A comprehensive tutorial. Entropy 2019, 21, 541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrzela, J. Optimal piecewise-linear approximation of quadratic chaotic dynamics. Radioengineering 2012, 21, 20–28. [Google Scholar]
- Itoh, M. Synthesis of electronic circuits for simulating nonlinear dynamics. Int. J. Bifurc. Chaos 2011, 11, 605–653. [Google Scholar] [CrossRef]
- Petrzela, J.; Gotthans, T.; Guzan, M. Current-mode network structures dedicated for simulation of dynamical systems with plane continuum of equilibrium. J. Circuits Syst. Comput. 2018, 27, 1830004. [Google Scholar] [CrossRef]
- Valsa, J.; Dvorak, P.; Friedl, M. Network model of the CPE. Radioengineering 2011, 20, 619–626. [Google Scholar]
- Petrzela, J. Fractional-order chaotic memory with wideband constant phase elements. Entropy 2020, 22, 422. [Google Scholar] [CrossRef] [Green Version]
- Tchitnga, R.; Fotsin, H.S.; Nana, B.; Fotso, P.H.L.; Woafo, P. Hartley´s oscillator: The simplest chaotic two-component circuit. Chaos Solitons Fractals 2012, 45, 306–313. [Google Scholar] [CrossRef]
Case | y11 | a | b | c | d | e |
---|---|---|---|---|---|---|
Ψ1 | 0.56 | 0 | 2.1 | 0 | −1.1 | 0 |
Ψ2 | 0.50 | 0 | 0 | 3 | 0 | −1.5 |
Ψ3 | 0.30 | 5 | 0 | −2 | 0 | 0 |
Ψ4 | 0.40 | 0 | 2.7 | 0 | −2 | 0 |
Ψ5 | 0.30 | 0 | 0 | 3 | 0 | −2 |
Ψ6 | 0.50 | 2 | 0 | 0 | 0 | −0.5 |
Ψ7 | 0.40 | 0 | 0 | 2 | 0 | –1 |
Case | y11 | ϕ | ϕ1 | ϕ2 | ρ0 | ρ1 | ρ2 |
---|---|---|---|---|---|---|---|
Ψ8 | 0.56 | 1.1 | NA | NA | 1 | −4.3 | NA |
Ψ9 | 0.5 | NA | 0.3 | 1.1 | 0.3 | 2 | −7 |
Ψ10 | 0.3 | NA | 0.6 | 1.18 | 4.6 | 0.6 | −9.9 |
Ψ11 | 0.3 | NA | 0.4 | 1 | 0.2 | 1.5 | −9.5 |
Case | LLE | KYD | CD | ApEn |
---|---|---|---|---|
Ψ1 | 0.071 | 2.113 | 2.15 | 0.539 |
Ψ2 | 0.156 | 2.239 | 2.24 | 0.558 |
Ψ3 | 0.045 | 2.132 | 2.14 | 0.440 |
Ψ4 | 0.020 | 2.050 | 2.10 | 0.503 |
Ψ5 | 0.069 | 2.186 | 2.20 | 0.564 |
Ψ6 | 0.047 | 2.081 | 2.15 | 0.518 |
Ψ7 | 0.050 | 2.160 | 2.13 | 0.620 |
Ra | R1 | R2 | R3 | R4 | R5 | R6 | R7 |
---|---|---|---|---|---|---|---|
0.6 Ω | 3.3 Ω | 22.7 Ω | 153 Ω | 1031 Ω | 6944 Ω | 46.7 kΩ | 313 kΩ |
La | L1 | L2 | L3 | L4 | L5 | L6 | L7 |
144 mH | 120 mH | 98 mH | 79 mH | 64 mH | 52 mH | 42 mH | 37 mH |
Ra | R1 | R2 | R3 | R4 | R5 | R6 | R7 |
---|---|---|---|---|---|---|---|
1 Ω | 6.3 Ω | 44.4 Ω | 319 Ω | 2286 Ω | 16.4 kΩ | 118 kΩ | 833 kΩ |
La | L1 | L2 | L3 | L4 | L5 | L6 | L7 |
203 mH | 230 mH | 194 mH | 152 mH | 120 mH | 93 mH | 73 mH | 62 mH |
Ra | R1 | R2 | R3 | R4 | R5 | R6 | R7 |
---|---|---|---|---|---|---|---|
1.1 Ω | 4.7 Ω | 25.8 Ω | 141 Ω | 769 Ω | 4184 Ω | 22.7 kΩ | 133 kΩ |
La | L1 | L2 | L3 | L4 | L5 | L6 | L7 |
35 mH | 237 mH | 155 mH | 101 mH | 66 mH | 43 mH | 28 mH | 22 mH |
Ra | R1 | R2 | R3 | R4 | R5 | R6 | R7 |
---|---|---|---|---|---|---|---|
1.2 Ω | 4.5 Ω | 22 Ω | 108 Ω | 526 Ω | 2591 Ω | 12.7 kΩ | 55.6 kΩ |
La | L1 | L2 | L3 | L4 | L5 | L6 | L7 |
13 mH | 210 mH | 132 mH | 78 mH | 46 mH | 27 mH | 16 mH | 10 mH |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrzela, J. Evidence of Strange Attractors in Class C Amplifier with Single Bipolar Transistor: Polynomial and Piecewise-Linear Case. Entropy 2021, 23, 175. https://doi.org/10.3390/e23020175
Petrzela J. Evidence of Strange Attractors in Class C Amplifier with Single Bipolar Transistor: Polynomial and Piecewise-Linear Case. Entropy. 2021; 23(2):175. https://doi.org/10.3390/e23020175
Chicago/Turabian StylePetrzela, Jiri. 2021. "Evidence of Strange Attractors in Class C Amplifier with Single Bipolar Transistor: Polynomial and Piecewise-Linear Case" Entropy 23, no. 2: 175. https://doi.org/10.3390/e23020175
APA StylePetrzela, J. (2021). Evidence of Strange Attractors in Class C Amplifier with Single Bipolar Transistor: Polynomial and Piecewise-Linear Case. Entropy, 23(2), 175. https://doi.org/10.3390/e23020175