Abstract
Global degree-1 coefficients are derived by means of the method by Swenson et al. (2008) from a model of ocean mass variability and RL05 GRACE monthly mean gravity fields. Since an ocean model consistent with the GRACE GSM fields is required to solely include eustatic sea-level variability which can be safely assumed to be globally homogeneous, it can be empirically derived from GRACE aswell, thereby allowing to approximate geocenter motion entirely out of the GRACE monthly mean gravity fields. Numerical experiments with a decade-long model time-series reveal that the methodology is generally robust both with respect to potential errors in the atmospheric part of AOD1B and assumptions on global degree-1 coefficients for the eustatic sea-level model. Good correspondence of the GRACE RL05-based geocenter estimates with independent results let us conclude that this approximate method for the geocenter motion is well suited to be used for oceanographic and hydrological applications of regional mass variability from GRACE,where otherwise an important part of the signal would be omitted.
References
Blewitt G., Lavallee D., Clarke P. and Nurutdinov K. (2001), A new global mode of Earth deformation: Seasonal cycle detected, Science, 294, 5550, 2342-2345, 10.1126/science.1065328.Search in Google Scholar
Chambers D. P. and Willis J. K. (2009), Low-frequency exchange of mass between ocean basins (2009), J. Geophys. Res., 114, C11008, 10.1029/2009JC005518.Search in Google Scholar
Chambers D. P. (2004), Preliminary observations of global ocean mass variations with GRACE, Geophys. Res. Lett., 31, 13, L13310, 10.1029/2004GL020461.Search in Google Scholar
Chen J.L., Rodell M., Wilson C.R. and Famiglietti J.S. (2005), Low degree spherical harmonic influences on Gravity Recovery and Climate Experiment (GRACE) water storage estimates, Geophys. Res. Lett., 32, L14405, 10.1029/2005GL022964.Search in Google Scholar
Chen J., Wilson C., Eanes R. and Nerem R. (1999), Geophysical interpretation of observed geocenter variations, J. Geophys. Res., 104, B2, 2683-2690, 10.1029/1998JB900019.Search in Google Scholar
Cheng M., Tapley B. and Ries J. (2010), Geocenter Variations from Analysis of SLR data, IAG Commission 1 Symposium (2010), Reference Frames for Application in Geosciences (REFAG2010), Marne-La-Vallee, France.Search in Google Scholar
Cretaux J., Soudarin L., Davidson F., Gennero M., Berge-Nguyen M. and Cazenave A. (2002), Seasonal and interannual geocenter motion from SLR and DORIS measurements: Comparison with surface loading data, J. Geophys. Res., 107, B12, 10.1029/2002JB001820.Search in Google Scholar
Dahle C., Flechtner F., Gruber C., König R., Michalak G. and Neumayer K.-H. (2012), GFZ GRACE Level-2 Processing Standards Document for Level-2-Product Release 0005, Tech. rep., 10.2312/GFZ.b103-12-20.Search in Google Scholar
Davis J., Elosequi P., Mitrovica J. and Tamisiea M. (2004), Climatedriven deformation of the solid Earth from GRACE and GPS, Geophys. Res. Lett., 31, 24, 10.1029/2004GL021435.Search in Google Scholar
Dee D. P., Uppala S. M., Simmons A. J., Berrisford P., Poli P., Kobayashi S., Andrae U., Balmaseda M. A., Balsamo G., Bauer P., Bechtold P., Beljaars A. C. M., van de Berg L., Bidlot J., Bormann N., Delsol C., Dragani R., Fuentes M., Geer A. J., Haimberger L., Healy S. B., Hersbach H., Holm E. V., Isaksen L., Kallberg P., Koehler M., Matricardi M., McNally A. P., Monge-Sanz B. M., Morcrette J. -J., Park B. -K., Peubey C., de Rosnay P., Tavolato C., Thepaut J. -N. and Vitart F. (2011), The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 656A, 553-597, 10.1002/qj.828.Search in Google Scholar
Dill R. and Dobslaw H. (2013), Numerical simulations of global-scale high-resolution hydrological crustal deformations, J. Geophys. Res., 118, 9, 5008-5017, 10.1002/jgrb.50353.Search in Google Scholar
Dobslaw H. and Thomas M. (2007), Impact of river run-off on global ocean mass redistribution, Geophys. J. Int., 168, 2, 10.1111/j.1365-246X.2006.03247.x.Search in Google Scholar
Dobslaw H., Flechtner F., Bergmann-Wolf I., Dahle C., Dill R., Esselborn S., Sasgen I. and Thomas M. (2013), Simulating highfrequency atmosphere-ocean mass variability for dealiasing of satellite gravity observations: AOD1B RL05, J. Geophys. Res., 10.1002/jgrc.20271.Search in Google Scholar
Eanes R. (2000), SLR solutions from the University of Texas Center for Space Research, Geocenter from TOPEX SLR/DORIS, 1992-2000, http://sbgg.jpl.nasa.gov/dataset.html, IERS Spec. Bur. for Gravity/ Geocent., Pasadena, Calif.Search in Google Scholar
Ettema J., van den Broeke M. R., van Meijgaard E., van de Berg W. J., Bamber J. L., Box J. E. and Bales R. C. (2009), Higher surface mass balance of the Greenland ice sheet revealed by highresolution climate modeling, Geophys. Res. Lett., 36, L12501, 10.1029/2009GL038110.Search in Google Scholar
Fasullo J. T., Boening C., Landerer F. W. and Nerem R. S. (2013), Australia’s unique influence on global sea level in 2010-2011, Geophys. Res. Lett., 40, 16, 4368-4373, 10.1002/grl.50834.Search in Google Scholar
Flechtner F. and Dobslaw H. (2013), AOD1B Product Description Document for Product Release 05, Tech. rep..Search in Google Scholar
Fritsche M., Dietrich R., Ruelke A., Rothacher M. and Steigenberger P. (2010), Low-degree earth deformation from reprocessed GPS observations, GPS Solut., 14, 2, 165-175, 10.1007/s10291-009-0130-7.Search in Google Scholar
Gruber Th., Bamber J. L., Bierkens M. F. P., Dobslaw H., Murböck M., Thomas M., van Beek L. P. H., van Dam T., Vermeersen L. L. A. and Visser P. N. A. M. (2011), Simulation of the time-variable gravity field by means of coupled geophysical models, Earth System Science Data, 3, 1, 19-35,10.5194/essd-3-19-2011.Search in Google Scholar
Hughes, C. W., Tamisea, M. E., Bingham, R. J. and Williams, J. (2012), Weighing the ocean: Using a single mooring tomeasure changes in the mass of the ocean, Geophys. Res. Lett., 39, 7, L17602, 10.1029/2012GL052935.Search in Google Scholar
Jansen M. J. F., Gunter B. C. and Kusche J. (2009), The impact of GRACE, GPS and OBP data on estimates of global mass redistribution, Geophys. J. Int., 177, 1, 1-13, 10.1111/j.1365-246X.2008.04031.x.Search in Google Scholar
Klees R., Zapreeva E. H.,Winsemius H. C. and Savenije H. H. G. (2007), The bias in GRACE estimates of continental water storage variations, Hydrol. Earth Syst. Sci., 11, 4, 1227-1241, 10.5194/hessd-3-3557-2006.Search in Google Scholar
Kuhlmann J., Dobslaw H. and Thomas M. (2011), Improved modeling of sea level patterns by incorporating self-attraction and loading, J. Geophys. Res., 116, C11036,10.1029/2011JC007399.Search in Google Scholar
Kusche J. (2007), Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models, J. Geod., 81, 11, 733-749, 10.1007/s00190-007-0143-3.Search in Google Scholar
Lavallée D., van Dam T., Blewitt G. and Clarke P. (2006), Geocenter motions from GPS: A unified observation model, J. Geophys. Res., 111, B5, 10.1029/2005JB003784.Search in Google Scholar
Lorbacher K., Marsland S. J., Church J. A., Griffies S. M. and Stammer D. (2012), Rapid barotropic sea level rise from ice sheet melting, J. Geophys. Res., 117, C06003, 10.1029/2011JC007733.Search in Google Scholar
Paulson A., Zhong S. andWahr J. (2007), Inference ofmantle viscosity from GRACE and relative sea level data, Geophys. J. Int., 171, 2, 497-508, 10.1111/j.1365-246X.2007.03556.x.Search in Google Scholar
Petit G., and Luzum B. (2010), IERS Convention (2010), IERS Technical Note 36, Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am Main.Search in Google Scholar
Rietbroek, R., Brunnabend, S.-E., Dahle, C., Kusche, J., Flechtner, F., Schröter, J. and Timmermann, R. (2009), Changes in total ocean mass derived from GRACE, GPS, and ocean modeling with weekly resolution, J. Geophys. Res., 114, C11, C11004, 10.1029/2009JC005449.Search in Google Scholar
Rietbroek R., Fritsche M., Brunnabend S.-E., Daras I., Kusche J., Schröter J., Flechtner F. and Dietrich R. (2012), Global surface mass from a new combination of GRACE, modelled OBP and reprocessed GPS data, J. Geodyn., 59-60, 64-71, 10.1016/j.jog.2011.02.003.Search in Google Scholar
Siegismund F., Romanova V., Köhl A. and Stammer D. (2011), Ocean bottom pressure variations estimated from gravity, nonsteric sea surface height and hydrodynamic model simulations, J. Geophys. Res., 116, C7, C07021, 10.1029/2010JC006727.Search in Google Scholar
Swenson S. and Wahr J. (2002), Methods for inferring regional surface-mass anomalies from Gravity Recovery and Climate Experiment (GRACE)measurements of time-variable gravity, J. Geophys. Res., 107, B9, 2193, 10.1029/2001JB000576.Search in Google Scholar
Swenson, S., Chambers, D. andWahr, J. (2008), Estimating geocenter variations from a combination of GRACE and ocean model output, J. Geophys. Res., 113, B8, B08410, 10.1029/2007JB005338.Search in Google Scholar
Tamisiea, Mark E. (2011), Ongoing glacial isostatic contributions to observations of sea level change, Geophys. J. Int., 186, 3, 1036-1044, 10.1111/j.1365-246X.2011.05116.x.Search in Google Scholar
Wahr J., Molenaar M. and Bryan F. (1998), Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE, J. Geophys. Res., 103, B12, 30205-30229, 10.1029/98JB02844.Search in Google Scholar
Wouters B., Riva R. E. M., Lavallee D. A. and Bamber J. L. (2011), Seasonal variations in sea level induced by continental water mass: First results from GRACE, Geophys. Res. Lett., 38, L03303, 10.1029/2010GL046128.Search in Google Scholar
Zenner L., Fagiolini E., Daras I., Flechtner F., Gruber T., Schmidt T. and Schwarz G. (2012), Non-tidal atmospheric and oceanicmass variations and their impact on GRACE data analysis, J. Geodyn., 59, SI, 9-15, 10.1016/j.jog.2012.01.010.Search in Google Scholar
© by Inga Bergmann-Wolf
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.