[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

计算机科学 ›› 2019, Vol. 46 ›› Issue (7): 292-299.doi: 10.11896/j.issn.1002-137X.2019.07.045

• 交叉与前沿 • 上一篇    下一篇

基于时空特征的地铁客流预测

张和杰,马维华   

  1. (南京航空航天大学计算机科学与技术学院 南京211106)
  • 收稿日期:2018-06-05 出版日期:2019-07-15 发布日期:2019-07-15
  • 作者简介:张和杰(1992-),男,硕士生,主要研究方向为城市轨道交通客流预测、嵌入式系统,E-mail:978508554@qq.com;马维华(1960-),男,硕士,教授,主要研究方向为嵌入式系统及应用,E-mail:mwhua@nuaa.edu.cn(通信作者)。

Subway Passenger Flow Forecasting Model Based on Temporal and Spatial Characteristics

ZHANG He-jie,MA Wei-hua   

  1. (School of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China)
  • Received:2018-06-05 Online:2019-07-15 Published:2019-07-15

摘要: 随着城市轨道交通的迅速发展,地铁短期断面客流的预测有利于运营部门观测客流的实时变化,从而调整调度策略。客流具有时空特征,在10min粒度时间片下,客流变化存在周期性,在空间上客流波形存在差异性。使用凝聚层次聚类算法对不同站点在一周内的客流进行聚类分析,得到贴近站点特征的客流分类结果。根据分类结果,对不同类别客流时间片分别进行相关性分析,提出一种基于SVM的预测模型,将强相关性的时间片序列作为模型输入。同时,提出一种基于协同自适应调整的双种群萤火虫算法以寻优模型参数,算法中引入混沌吸引度来提高算法的全局搜索能力,避免由于初始值陷入局部最优;加入自适应搜索步长,以加快算法的收敛速度并提高求解精度。与其他模型和优化算法的对比表明,本模型具有较好的预测精度、稳定性和鲁棒性。

关键词: 混沌, 客流预测, 时间序列, 萤火虫算法, 支持向量机

Abstract: With the rapid development of urban rail transit,the short-term passenger flow forecast of the subway is conducive to the operation department to observe the real-time changes in passenger flow and adjust the scheduling strategy.This paper studied the temporal and spatial characteristics of passenger flow.Under the 10-minute granular time slice,there is a periodicity of passenger flow changes,and there are differences in the waveform of passenger flow in space.This paper used agglomerative hierarchical clustering algorithm to analyze the passenger flow of different stations for a week,and obtained the results of passenger flow close to the characteristics of the station.According to the results of classification,correlation analysis was performed on time slices of different types of historical passenger flow,and prediction models based on Support Vector Machine were proposed,regarding time slice sequences with strong correlation as input.Besides,a parameter optimization model for double-population firefly algorithm based on cooperative self-adaptive adjustment was proposed,in which the chaotic attraction was introduced to improve the global search ability,avoiding the initial value being trapped into a local optimum.The adaptive search step length was added to improve the convergence speed and solution accuracy.Compared with other models and optimization algorithms,the proposed model has better prediction accuracy,stability and robustness.

Key words: Chaos, FA, Forecast of passenger flow, SVM, Time series

中图分类号: 

  • TP391
[1]WANG P,WU C,GAO X.Research on subway passenger flow combination prediction model based on RBF neural networks and LSSVM[C]∥Control and Decision Conference.Las Vegas:IEEE Press,2016:6064-6068.
[2]AMALIAH B,ZEINITA A,SURYANI E.Dynamics simulation of air passenger forecasting and passenger terminal capacity expansion scenario in Yogyakarta Airport[C]∥International Conference on Information & Communication Technology and Systems.Surabaya:IEEE Press,2017:187-192.
[3]ESCOLANO C O,DADIOS E P,FILLONE A D.Fuzzy logic controlled adaptive scheduling of public utility buses in Metro Manila[C]∥International Conference on Humanoid,Nanotechnology,Information Technology,communication and Control,Environment and Management.Cebu City:IEEE,2016:1-5.
[4]DONG S W.Research on short-term passenger flow forecasting method based on improved BP neural network[D].Beijing:Beijing Jiaotong University,2013.(in Chinese)
董升伟.基于改进BP神经网络的轨道交通短时客流预测方法研究[D].北京:北京交通大学,2013.
[5]YANG X F,LIU L F.Short-time passenger flow forecasting based on AP clustering for bus stations in support vector[J].2016,40(1):36-40.(in Chinese)
杨信丰,刘兰芬.基于AP聚类的支持向量机公交站点短时客流预测[J].武汉理工大学学报(交通科学与工程版),2016,40(1):36-40.
[6]LERSPALUNGSANTI S,ALBERS A,OTT S,et al.Human ride comfort prediction of drive train using modeling method based on artificial neural networks[J].International Journal of Automotive Technology,2015,16(1):153-166.
[7] DOU Y,XIAO Z,XIE Y.Research on Hotspot Short-Term Passenger Flow Forecasting Based on Neural Network[C]∥Fifth International Conference on Multimedia Information NETWORKING and Security.Beijing:IEEE Computer Society,2013:332-335.
[8]SHARMA A,ZAIDI A,SINGH R,et al.Optimization of SVM classifier using Firefly algorithm[C]∥IEEE Second InternationalConference on Image Information Processing.Paris:IEEE,2014:198-202.
[9]JIANG G Y,KONG C L.Traffic Parameters Prediction Method Based on Rolling Time Series[J].Advanced Materials Research,2013,54(6):2946-2950.
[10]LU K Z,ZHANG Z Q,SUN J.Improved FA algorithm for maintaining individual activity[J].Journal of University of Science and Technology of China,2016,32(2):120-129.(in Chinese)
陆克中,章哲庆,孙俊.保持个体活性的改进FA算法[J].中国科学技术大学学报,2016,32(2):120-129.
[11]LI W,GE J,DAI G.Detecting Malware for Android Platform:An SVM-Based Approach[C]∥IEEE,International Conference on Cyber Security and Cloud Computing.Beijing:IEEE Press,2016:464-469.
[12]FLEURY A,VACHER M,NOURY N.SVM-Based Multimodal Classification of Activities of Daily Living in Health Smart Homes:Sensors,Algorithms,and First Experimental Results[J].IEEE Transactions on Information Technology in Biomedicine A Publication of the IEEE Engineering in Medicine & Bio-logy Society,2010,14(2):274-283.
[13] YILDIZ O T.VC-Dimension of Univariate Decision Trees[J].IEEE Transactions on Neural Networks & Learning Systems,2015,26(2):378-387.
[14]FENG C,TAGUCHI Y,KAMAT V R.Fast plane extraction in organized point clouds using agglomerative hierarchical clustering[C]∥IEEE International Conference on Robotics and Automation.Hong Kong:IEEE Press,2014:6218-6225.
[15] ALFRED R,TAN S F,TAHIR A,et al.Concepts Labeling of Document Clusters Using a Hierarchical Agglomerative Clustering (HAC) Technique[M]∥The 8th International Conference on Knowledge Management in Organizations.Berlin:Springer Netherlands,2014:263-272.
[16]SANTAMARIA-BONFIL G,REYES-BALLESTEROS A,GER- SHENSON C.Wind Speed Forecasting For Wind Farms:A Method Based on Support Vector Regression[J].RenewableEner-gy,2016,85(6):790-809.
[17]TSEKERIS T,STATHOPOULOS A.Short-Term Prediction of Urban Traffic Variability:Stochastic Volatility Modeling Approach[J].Journal of Transportation Engineering,2010,136(7):606-613.
[18]YANG W J.Research on Forecast of Railway Passenger Volume Based on BP Neural Network [J].Cooperative Economy & Technology,2010,34(13):18-19.(in Chinese)
杨伟静.基于BP神经网络的铁路客流量预测研究[J].合作经济与科技,2010,34(13):18-19.
[1] 周连兵, 周湘贞, 崔学荣.
基于双重二维混沌映射的压缩图像加密方案
Compressed Image Encryption Scheme Based on Dual Two Dimensional Chaotic Map
计算机科学, 2022, 49(8): 344-349. https://doi.org/10.11896/jsjkx.210700235
[2] 高振卓, 王志海, 刘海洋.
嵌入典型时间序列特征的随机Shapelet森林算法
Random Shapelet Forest Algorithm Embedded with Canonical Time Series Features
计算机科学, 2022, 49(7): 40-49. https://doi.org/10.11896/jsjkx.210700226
[3] 单晓英, 任迎春.
基于改进麻雀搜索优化支持向量机的渔船捕捞方式识别
Fishing Type Identification of Marine Fishing Vessels Based on Support Vector Machine Optimized by Improved Sparrow Search Algorithm
计算机科学, 2022, 49(6A): 211-216. https://doi.org/10.11896/jsjkx.220300216
[4] 刘宝宝, 杨菁菁, 陶露, 王贺应.
基于DE-LSTM模型的教育统计数据预测研究
Study on Prediction of Educational Statistical Data Based on DE-LSTM Model
计算机科学, 2022, 49(6A): 261-266. https://doi.org/10.11896/jsjkx.220300120
[5] 陈景年.
一种适于多分类问题的支持向量机加速方法
Acceleration of SVM for Multi-class Classification
计算机科学, 2022, 49(6A): 297-300. https://doi.org/10.11896/jsjkx.210400149
[6] 侯夏晔, 陈海燕, 张兵, 袁立罡, 贾亦真.
一种基于支持向量机的主动度量学习算法
Active Metric Learning Based on Support Vector Machines
计算机科学, 2022, 49(6A): 113-118. https://doi.org/10.11896/jsjkx.210500034
[7] 朱旭辉, 沈国娇, 夏平凡, 倪志伟.
基于螺旋进化萤火虫算法和BP神经网络的模型及其在PPP融资风险预测中的应用
Model Based on Spirally Evolution Glowworm Swarm Optimization and Back Propagation Neural Network and Its Application in PPP Financing Risk Prediction
计算机科学, 2022, 49(6A): 667-674. https://doi.org/10.11896/jsjkx.210800088
[8] 邢云冰, 龙广玉, 胡春雨, 忽丽莎.
基于SVM的类别增量人体活动识别方法
Human Activity Recognition Method Based on Class Increment SVM
计算机科学, 2022, 49(5): 78-83. https://doi.org/10.11896/jsjkx.210400024
[9] 赵耿, 王超, 马英杰.
基于混沌序列相关性的峰均比抑制研究
Study on PAPR Reduction Based on Correlation of Chaotic Sequences
计算机科学, 2022, 49(5): 250-255. https://doi.org/10.11896/jsjkx.210400292
[10] 赵耿, 李文健, 马英杰.
基于离散动力学反控制的混沌序列密码算法
Chaotic Sequence Cipher Algorithm Based on Discrete Anti-control
计算机科学, 2022, 49(4): 376-384. https://doi.org/10.11896/jsjkx.210300116
[11] 武玉坤, 李伟, 倪敏雅, 许志骋.
单类支持向量机融合深度自编码器的异常检测模型
Anomaly Detection Model Based on One-class Support Vector Machine Fused Deep Auto-encoder
计算机科学, 2022, 49(3): 144-151. https://doi.org/10.11896/jsjkx.210100142
[12] 高堰泸, 徐圆, 朱群雄.
基于A-DLSTM夹层网络结构的电能消耗预测方法
Predicting Electric Energy Consumption Using Sandwich Structure of Attention in Double -LSTM
计算机科学, 2022, 49(3): 269-275. https://doi.org/10.11896/jsjkx.210100006
[13] 赵耿, 宋鑫宇, 马英杰.
混沌子载波调制的无人机安全数据链路
Secure Data Link of Unmanned Aerial Vehicle Based on Chaotic Sub-carrier Modulation
计算机科学, 2022, 49(3): 322-328. https://doi.org/10.11896/jsjkx.210200022
[14] 侯春萍, 赵春月, 王致芃.
基于自反馈最优子类挖掘的视频异常检测算法
Video Abnormal Event Detection Algorithm Based on Self-feedback Optimal Subclass Mining
计算机科学, 2021, 48(7): 199-205. https://doi.org/10.11896/jsjkx.200800146
[15] 石克翔, 保利勇, 丁洪伟, 官铮, 赵雷.
基于生成时间序列均匀优化的混沌人工蜂群算法
Chaos Artificial Bee Colony Algorithm Based on Homogenizing Optimization of Generated Time Series
计算机科学, 2021, 48(7): 270-280. https://doi.org/10.11896/jsjkx.200800087
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!