计算机科学 ›› 2019, Vol. 46 ›› Issue (7): 292-299.doi: 10.11896/j.issn.1002-137X.2019.07.045
张和杰,马维华
ZHANG He-jie,MA Wei-hua
摘要: 随着城市轨道交通的迅速发展,地铁短期断面客流的预测有利于运营部门观测客流的实时变化,从而调整调度策略。客流具有时空特征,在10min粒度时间片下,客流变化存在周期性,在空间上客流波形存在差异性。使用凝聚层次聚类算法对不同站点在一周内的客流进行聚类分析,得到贴近站点特征的客流分类结果。根据分类结果,对不同类别客流时间片分别进行相关性分析,提出一种基于SVM的预测模型,将强相关性的时间片序列作为模型输入。同时,提出一种基于协同自适应调整的双种群萤火虫算法以寻优模型参数,算法中引入混沌吸引度来提高算法的全局搜索能力,避免由于初始值陷入局部最优;加入自适应搜索步长,以加快算法的收敛速度并提高求解精度。与其他模型和优化算法的对比表明,本模型具有较好的预测精度、稳定性和鲁棒性。
中图分类号:
[1]WANG P,WU C,GAO X.Research on subway passenger flow combination prediction model based on RBF neural networks and LSSVM[C]∥Control and Decision Conference.Las Vegas:IEEE Press,2016:6064-6068. [2]AMALIAH B,ZEINITA A,SURYANI E.Dynamics simulation of air passenger forecasting and passenger terminal capacity expansion scenario in Yogyakarta Airport[C]∥International Conference on Information & Communication Technology and Systems.Surabaya:IEEE Press,2017:187-192. [3]ESCOLANO C O,DADIOS E P,FILLONE A D.Fuzzy logic controlled adaptive scheduling of public utility buses in Metro Manila[C]∥International Conference on Humanoid,Nanotechnology,Information Technology,communication and Control,Environment and Management.Cebu City:IEEE,2016:1-5. [4]DONG S W.Research on short-term passenger flow forecasting method based on improved BP neural network[D].Beijing:Beijing Jiaotong University,2013.(in Chinese) 董升伟.基于改进BP神经网络的轨道交通短时客流预测方法研究[D].北京:北京交通大学,2013. [5]YANG X F,LIU L F.Short-time passenger flow forecasting based on AP clustering for bus stations in support vector[J].2016,40(1):36-40.(in Chinese) 杨信丰,刘兰芬.基于AP聚类的支持向量机公交站点短时客流预测[J].武汉理工大学学报(交通科学与工程版),2016,40(1):36-40. [6]LERSPALUNGSANTI S,ALBERS A,OTT S,et al.Human ride comfort prediction of drive train using modeling method based on artificial neural networks[J].International Journal of Automotive Technology,2015,16(1):153-166. [7] DOU Y,XIAO Z,XIE Y.Research on Hotspot Short-Term Passenger Flow Forecasting Based on Neural Network[C]∥Fifth International Conference on Multimedia Information NETWORKING and Security.Beijing:IEEE Computer Society,2013:332-335. [8]SHARMA A,ZAIDI A,SINGH R,et al.Optimization of SVM classifier using Firefly algorithm[C]∥IEEE Second InternationalConference on Image Information Processing.Paris:IEEE,2014:198-202. [9]JIANG G Y,KONG C L.Traffic Parameters Prediction Method Based on Rolling Time Series[J].Advanced Materials Research,2013,54(6):2946-2950. [10]LU K Z,ZHANG Z Q,SUN J.Improved FA algorithm for maintaining individual activity[J].Journal of University of Science and Technology of China,2016,32(2):120-129.(in Chinese) 陆克中,章哲庆,孙俊.保持个体活性的改进FA算法[J].中国科学技术大学学报,2016,32(2):120-129. [11]LI W,GE J,DAI G.Detecting Malware for Android Platform:An SVM-Based Approach[C]∥IEEE,International Conference on Cyber Security and Cloud Computing.Beijing:IEEE Press,2016:464-469. [12]FLEURY A,VACHER M,NOURY N.SVM-Based Multimodal Classification of Activities of Daily Living in Health Smart Homes:Sensors,Algorithms,and First Experimental Results[J].IEEE Transactions on Information Technology in Biomedicine A Publication of the IEEE Engineering in Medicine & Bio-logy Society,2010,14(2):274-283. [13] YILDIZ O T.VC-Dimension of Univariate Decision Trees[J].IEEE Transactions on Neural Networks & Learning Systems,2015,26(2):378-387. [14]FENG C,TAGUCHI Y,KAMAT V R.Fast plane extraction in organized point clouds using agglomerative hierarchical clustering[C]∥IEEE International Conference on Robotics and Automation.Hong Kong:IEEE Press,2014:6218-6225. [15] ALFRED R,TAN S F,TAHIR A,et al.Concepts Labeling of Document Clusters Using a Hierarchical Agglomerative Clustering (HAC) Technique[M]∥The 8th International Conference on Knowledge Management in Organizations.Berlin:Springer Netherlands,2014:263-272. [16]SANTAMARIA-BONFIL G,REYES-BALLESTEROS A,GER- SHENSON C.Wind Speed Forecasting For Wind Farms:A Method Based on Support Vector Regression[J].RenewableEner-gy,2016,85(6):790-809. [17]TSEKERIS T,STATHOPOULOS A.Short-Term Prediction of Urban Traffic Variability:Stochastic Volatility Modeling Approach[J].Journal of Transportation Engineering,2010,136(7):606-613. [18]YANG W J.Research on Forecast of Railway Passenger Volume Based on BP Neural Network [J].Cooperative Economy & Technology,2010,34(13):18-19.(in Chinese) 杨伟静.基于BP神经网络的铁路客流量预测研究[J].合作经济与科技,2010,34(13):18-19. |
[1] | 周连兵, 周湘贞, 崔学荣. 基于双重二维混沌映射的压缩图像加密方案 Compressed Image Encryption Scheme Based on Dual Two Dimensional Chaotic Map 计算机科学, 2022, 49(8): 344-349. https://doi.org/10.11896/jsjkx.210700235 |
[2] | 高振卓, 王志海, 刘海洋. 嵌入典型时间序列特征的随机Shapelet森林算法 Random Shapelet Forest Algorithm Embedded with Canonical Time Series Features 计算机科学, 2022, 49(7): 40-49. https://doi.org/10.11896/jsjkx.210700226 |
[3] | 单晓英, 任迎春. 基于改进麻雀搜索优化支持向量机的渔船捕捞方式识别 Fishing Type Identification of Marine Fishing Vessels Based on Support Vector Machine Optimized by Improved Sparrow Search Algorithm 计算机科学, 2022, 49(6A): 211-216. https://doi.org/10.11896/jsjkx.220300216 |
[4] | 刘宝宝, 杨菁菁, 陶露, 王贺应. 基于DE-LSTM模型的教育统计数据预测研究 Study on Prediction of Educational Statistical Data Based on DE-LSTM Model 计算机科学, 2022, 49(6A): 261-266. https://doi.org/10.11896/jsjkx.220300120 |
[5] | 陈景年. 一种适于多分类问题的支持向量机加速方法 Acceleration of SVM for Multi-class Classification 计算机科学, 2022, 49(6A): 297-300. https://doi.org/10.11896/jsjkx.210400149 |
[6] | 侯夏晔, 陈海燕, 张兵, 袁立罡, 贾亦真. 一种基于支持向量机的主动度量学习算法 Active Metric Learning Based on Support Vector Machines 计算机科学, 2022, 49(6A): 113-118. https://doi.org/10.11896/jsjkx.210500034 |
[7] | 朱旭辉, 沈国娇, 夏平凡, 倪志伟. 基于螺旋进化萤火虫算法和BP神经网络的模型及其在PPP融资风险预测中的应用 Model Based on Spirally Evolution Glowworm Swarm Optimization and Back Propagation Neural Network and Its Application in PPP Financing Risk Prediction 计算机科学, 2022, 49(6A): 667-674. https://doi.org/10.11896/jsjkx.210800088 |
[8] | 邢云冰, 龙广玉, 胡春雨, 忽丽莎. 基于SVM的类别增量人体活动识别方法 Human Activity Recognition Method Based on Class Increment SVM 计算机科学, 2022, 49(5): 78-83. https://doi.org/10.11896/jsjkx.210400024 |
[9] | 赵耿, 王超, 马英杰. 基于混沌序列相关性的峰均比抑制研究 Study on PAPR Reduction Based on Correlation of Chaotic Sequences 计算机科学, 2022, 49(5): 250-255. https://doi.org/10.11896/jsjkx.210400292 |
[10] | 赵耿, 李文健, 马英杰. 基于离散动力学反控制的混沌序列密码算法 Chaotic Sequence Cipher Algorithm Based on Discrete Anti-control 计算机科学, 2022, 49(4): 376-384. https://doi.org/10.11896/jsjkx.210300116 |
[11] | 武玉坤, 李伟, 倪敏雅, 许志骋. 单类支持向量机融合深度自编码器的异常检测模型 Anomaly Detection Model Based on One-class Support Vector Machine Fused Deep Auto-encoder 计算机科学, 2022, 49(3): 144-151. https://doi.org/10.11896/jsjkx.210100142 |
[12] | 高堰泸, 徐圆, 朱群雄. 基于A-DLSTM夹层网络结构的电能消耗预测方法 Predicting Electric Energy Consumption Using Sandwich Structure of Attention in Double -LSTM 计算机科学, 2022, 49(3): 269-275. https://doi.org/10.11896/jsjkx.210100006 |
[13] | 赵耿, 宋鑫宇, 马英杰. 混沌子载波调制的无人机安全数据链路 Secure Data Link of Unmanned Aerial Vehicle Based on Chaotic Sub-carrier Modulation 计算机科学, 2022, 49(3): 322-328. https://doi.org/10.11896/jsjkx.210200022 |
[14] | 侯春萍, 赵春月, 王致芃. 基于自反馈最优子类挖掘的视频异常检测算法 Video Abnormal Event Detection Algorithm Based on Self-feedback Optimal Subclass Mining 计算机科学, 2021, 48(7): 199-205. https://doi.org/10.11896/jsjkx.200800146 |
[15] | 石克翔, 保利勇, 丁洪伟, 官铮, 赵雷. 基于生成时间序列均匀优化的混沌人工蜂群算法 Chaos Artificial Bee Colony Algorithm Based on Homogenizing Optimization of Generated Time Series 计算机科学, 2021, 48(7): 270-280. https://doi.org/10.11896/jsjkx.200800087 |
|