[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

计算机科学 ›› 2022, Vol. 49 ›› Issue (6A): 667-674.doi: 10.11896/jsjkx.210800088

• 交叉&应用 • 上一篇    下一篇

基于螺旋进化萤火虫算法和BP神经网络的模型及其在PPP融资风险预测中的应用

朱旭辉, 沈国娇, 夏平凡, 倪志伟   

  1. 合肥工业大学管理学院 合肥 230009
    合肥工业大学过程优化与智能决策教育部重点实验室 合肥 230009
  • 出版日期:2022-06-10 发布日期:2022-06-08
  • 通讯作者: 倪志伟(zhiwein@163.com)
  • 作者简介:(zhuxuhui@hfut.edu.cn)
  • 基金资助:
    国家自然科学基金(91546108,71521001);安徽省自然科学基金(1908085QG298,1908085MG232);中央高校基本科研业务费专项资金(JZ2019HGTA0053,JZ2019HGBZ0128);安徽省科技重大专项(201903a05020020);过程优化与智能决策教育部重点实验室开放课题

Model Based on Spirally Evolution Glowworm Swarm Optimization and Back Propagation Neural Network and Its Application in PPP Financing Risk Prediction

ZHU Xu-hui, SHEN Guo-jiao, XIA Ping-fan, NI Zhi-wei   

  1. School of Management,Hefei University of Technology,Hefei 230009,China
    Key Laboratory of Process Optimization and Intelligent Decision-making,Ministry of Education,Hefei 230009,China
  • Online:2022-06-10 Published:2022-06-08
  • About author:ZHU Xu-hui,born in 1991,Ph.D,lectu-rer,master supervisor,is a member of China Computer Federation.His main research interests include evolutionary computing and ensemble learning.
    NI Zhi-wei,born in 1963,Ph.D,professor,Ph.D supervisor.His main research interests include artificial intelligence,machine learning and edge computing.
  • Supported by:
    National Natural Science Foundation of China(91546108,71521001),Natural Science Foundation of Anhui Province(1908085QG298,1908085MG232),Fundamental Research Funds for the Central Universities(JZ2019HGTA0053,JZ2019HGBZ0128),Anhui Provincial Science and Technology Major Projects(201903a05020020) and Open Research Fund Program of Key Laboratory of Process Optimization and Intelligent Decision-making (Hefei University of Technology),Ministry of Education.

摘要: 政府和社会资本合作(PPP) 项目能够完善基础设施建设、保障民生与促进经济发展,但也存在资金退出困难、建设周期长、参与主体多等缺陷,项目运营失败将直接损害各方投资者的收益,造成社会资源的浪费,故亟需对PPP融资风险进行科学、准确地预测。文中提出一种基于螺旋进化萤火虫算法(SEGSO) 和BP神经网络(BPNN) 的预测模型,并将其应用于PPP融资模式风险预测。首先采用佳点集理论进行种群初始化,引入交互机制、精英种群策略以及螺旋进化方式,提出螺旋进化萤火虫算法。然后运用SEGSO算法进行参数寻优,搜索BPNN的最优参数组合,构建基于SEGSO和BPNN的预测模型SEGSO-BPNN。最后在5个测试函数上验证了SEGSO算法的性能优势,在7个UCI标准数据集上的实验结果表明了所提模型的显著性和有效性。将所提模型应用于中国PPP项目的风险预测,取得了较好的效果,为PPP融资风险预测提供了一种新方法。

关键词: BP神经网络, PPP项目, 风险预测, 螺旋进化, 萤火虫算法

Abstract: Public-private partnership(PPP) projects can improve infrastructure,ensure people's livelihood,and promote the economic development,but there may be a huge loss of capitals and a serious waste of resources among the parties involved because of the characteristics of difficulty in withdrawing funds,long construction cycle and large numbers of participants.Thus,it is important to predict the risks of PPP projects scientifically and accurately.A risk prediction model based on spirally evolution glowworm swarm optimization(SEGSO) and back propagation neural network(BPNN) is proposed in this paper,which is applied for risk prediction in PPP infrastructure projects.Firstly,several strategies such as good point set,communication behavior,elite group and spiral evolution are introduced into the basic GSO,and SEGSO is proposed.Secondly,SEGSO is used to capture better initial weights and thresholds of BPNN to build a SEGSO-BPNN prediction model.Finally,the SEGSO algorithm searching performance is verified on five test functions,and the significance and validity of SEGSO-BPNN model are verified on seven UCI standard datasets.The model is applied to the risk prediction of Chinese PPP projects,and it gains good results,which provides a novel technique for PPP financing risk prediction.

Key words: Back propagation neural network, Glowworm swarm optimization, PPP project, Risk prediction, Spirally evolution

中图分类号: 

  • TP399
[1] AHMADABADI A A,HERAVI G.Risk assessment framework of PPP-megaprojects focusing on risk interaction and project success[J].Transportation Research Part A:Policy and Practice,2019,124:169-188.
[2] GRUNER J,DEWEESE R S,EVANS B,et al.Qualitative Re-search in Phoenix,AZ,Exploring Support for Public-Private Partnerships to Expand the Reach of the Fresh Fruit and Vegetable Program[J].Journal of the Academy of Nutrition and Dietetics,2020,120(11):1834-1846.
[3] SHRESTHA A,CHAN T K,AIBINU A A,et al.Efficient risk transfer in PPP wastewater treatment projects[J].Utilities Policy,2017,48:132-140.
[4] WEN L C,LIU H F,PENG Y.Research of the problems offinancial risk supervision about public-private partnerships[J].Journal of Central University of Finance & Economics,2015,35(12):3-8.
[5] XU Y L,YEUNG J F Y,CHAN A P C,et al.Developing a risk assessment model for PPP projects in China-A fuzzy synthetic evaluation approach[J].Automation in Construction,2010,19(7):929-943.
[6] FLETA-ASÍN J,MUÑOZ F.How does risk transference to private partner impact on public-private partnerships' success? Empirical evidence from developing economies[J/OL].Socio-Economic Planning Sciences,2020,72.https://doi.org/10.1016/j.seps.2020.100869.
[7] CHOU J S,CHENG M Y,WU Y W,et al.Improving classification accuracy of project dispute resolution using hybrid artificial intelligence and support vector machine models[J].Expert Systems with Applications,2013,40(6):2263-2274.
[8] JIN X H,ZHANG G M.Modelling optimal risk allocation in PPP projects using artificial neural networks[J].International Journal of Project Management,2011,29(5):591-603.
[9] ZHONG J Q,LIU L Y,SUN Q,et al.Prediction of Photovoltaic Power Generation Based on General Regression and Back Propagation Neural Network[J].Energy Procedia,2018,152:1224-1229.
[10] CAO Y,WANG C,WANG X,et al.Urban road short-term traffic flow prediction based on spatio-temporal node selection and deep learning[J].Journal of Computer Applications,2020,40(5):1488-1493.
[11] ELSORAGABY S,YAHYA A,MAHADIM R,et al.Applying multi-objective genetic algorithm(MOGA) to optimize the energy inputs and greenhouse gas emissions(GHG) in wetland rice production[J].Energy Reports,2020,6:2988-2998.
[12] HILALI-JAGHDAM I,ISHAK A B,ABDEL-KHALEK S,et al.Quantum and classical genetic algorithms for multilevel segmentation of medical images:A comparative study[J].Computer Communications,2020,162:83-93.
[13] ZHANG M,PENG Y,YANG M,et al.A discrete PSO-basedstatic load balancing algorithm for distributed simulations in a cloud environment[J].Future Generation Computer Systems,2021,115:497-516.
[14] BARÓ G B,MARTÍNEZ-TRINIDAD J F,ROSAS R M V,et al.A PSO-based algorithm for mining association rules using a guided exploration strategy[J].Pattern Recognition Letters,2020,138:8-15.
[15] MARINAKI M,MARINAKIS Y.A glowworm swarm optimiza-tion algorithm for the vehicle routing problem with stochastic demands[J].Expert Systems with Applications,2016,46:145-163.
[16] KRISHNANAND K N,GHOSE D.Glowworm swarm based optimization algorithm for multimodal functions with collective robotics applications[J].Multiagent and Grid System,2006,2(3):209-222.
[17] REN L F,LIU T,ZHAO Q J,et al.Method for measurement uncertainty evaluation of cylindricity error based on good point set[C]//Procedia CIRP.2018:373-378.
[18] YAN H W,CAO Y L,YANG J X.Statistical tolerance analysis based on good point set and homogeneous transform matrix[C]//Procedia CIRP.2016:178-183.
[19] ZHU X H,NI Z W,NI L P,et al.Improved discrete artificial fish swarm algorithm combined with margin distance minimization for ensemble pruning[J].Computers & Industrial Engineering,2019,128:32-46.
[20] ZHU X H,NI Z W,CHENG M Y.Selective ensemble based on extreme learning machine and improved discrete artificial fish swarm algorithm for haze forecast[J].Applied Intelligence,2018,48(7):1757-1775.
[21] JIANG R Y,YANG M,WANG S Y,et al.An improved whale optimization algorithm with armed force program and strategic adjustment[J].Applied Mathematical Modelling,2020,81:603-623.
[22] CAO Y,LI Y Q,ZHANG G,et al.An efficient terminal voltage control for PEMFC based on an improved version of whale optimization algorithm[J].Energy Reports,2020,6:530-542.
[23] DING S F,AN Y X,ZHANG X K,et al.Wavelet twin support vector machines based on glowworm swarm optimization[J].Neurocomputing,2017,225:157-163.
[24] YU S H,YANG S L,SU S B.An improved glowworm swarm optimization algorithm with changing step[J].Journal of Chinese Computer Systems,2014,35(6):1396-1400.
[25] LI H,GUO X,LI W.PID controller parameter optimizationbased on improved glowworm swarm optimization[J].Compu-ter Applications and Software,2017,34(7):227-230.
[26] LUO Y,LIN B,WEN C B,et al.Conducting a correlation model between TCM constitution and physical examination index based on BPNN algorithm[J].Digital Chinese Medicine,2018,1(1):84-89.
[27] GHOSE D K,SAMANTARAY S.Modelling sediment concentration using back propagation neural network and regression coupled with genetic algorithm[J].Procedia Computer Science,2018,125:85-92.
[28] WANG G G,GUO L H,DUAN H.Target threat assessmentusing glowworm swarm optimization and BP neural network[J].Journal of Jilin University(Engineering and Technology Edition),2013,43(4):1064-1069.
[29] LI J M,NI Z W,ZHU X H,et al.Drought prediction model based on GPSGSO-BPNN parallel ensemble learning algorithm[J].Systems Engineering-Theory & Practice,2018,38(5):1343-1353.
[30] BOURICHA H,BENLASHRAM A,HSAIRI L,et al.Intention Mining Data preprocessing based on Multi-Agents System[J].Procedia Computer Science,2020,176:888-897.
[31] CAO S E,YANG Z M.Prediction of Wireless Network Traffic Based on Clustering Analysis and Optimized Support Vector Machine[J].Computer Science,2020,47(8):319-322.
[32] CHENG F,FU G L,ZHANG X Y,et al.Multi-objective evolutionary algorithm for optimizing the partial area under the ROC curve[J].Knowledge-Based Systems,2019,170:61-69.
[1] 徐佳楠, 张天瑞, 赵伟博, 贾泽轩.
面向供应链风险评估的改进BP小波神经网络研究
Study on Improved BP Wavelet Neural Network for Supply Chain Risk Assessment
计算机科学, 2022, 49(6A): 654-660. https://doi.org/10.11896/jsjkx.210800049
[2] 刘宝宝, 杨菁菁, 陶露, 王贺应.
基于DE-LSTM模型的教育统计数据预测研究
Study on Prediction of Educational Statistical Data Based on DE-LSTM Model
计算机科学, 2022, 49(6A): 261-266. https://doi.org/10.11896/jsjkx.220300120
[3] 夏静, 马中, 戴新发, 胡哲琨.
基于BP神经网络的智能云效能模型
Efficiency Model of Intelligent Cloud Based on BP Neural Network
计算机科学, 2022, 49(2): 353-367. https://doi.org/10.11896/jsjkx.201100140
[4] 程铁军, 王曼.
基于变权组合的突发事件网络舆情趋势预测
Network Public Opinion Trend Prediction of Emergencies Based on Variable Weight Combination
计算机科学, 2021, 48(6A): 190-195. https://doi.org/10.11896/jsjkx.200600094
[5] 郭福民, 张华, 胡瑢华, 宋岩.
一种基于表面肌电信号的腕部肌力估计方法研究
Study on Method for Estimating Wrist Muscle Force Based on Surface EMG Signals
计算机科学, 2021, 48(6A): 317-320. https://doi.org/10.11896/jsjkx.200600021
[6] 宁婷, 苗德壮, 董启文, 陆雪松.
逾期风险预测的宽度和深度学习
Wide and Deep Learning for Default Risk Prediction
计算机科学, 2021, 48(5): 197-201. https://doi.org/10.11896/jsjkx.200900043
[7] 石琳姗, 马创, 杨云, 靳敏.
基于SSC-BP神经网络的异常检测算法
Anomaly Detection Algorithm Based on SSC-BP Neural Network
计算机科学, 2021, 48(12): 357-363. https://doi.org/10.11896/jsjkx.201000086
[8] 焦东来, 王浩翔, 吕海洋, 徐轲.
基于手机传感器轨迹的路面地物检测方法
Road Surface Object Detection from Mobile Phone Based Sensor Trajectories
计算机科学, 2021, 48(11A): 283-289. https://doi.org/10.11896/jsjkx.210200145
[9] 周俊, 尹悦, 夏斌.
基于LSTM神经网络的声发射信号识别研究
Acoustic Emission Signal Recognition Based on Long Short Time Memory Neural Network
计算机科学, 2021, 48(11A): 319-326. https://doi.org/10.11896/jsjkx.210700034
[10] 宋岩, 胡瑢华, 郭福民, 袁新亮, 熊睿洋.
基于sEMG的改进SVM+BP肌力预测分层算法
Improved SVM+BP Algorithm for Muscle Force Prediction Based on sEMG
计算机科学, 2020, 47(6A): 75-78. https://doi.org/10.11896/JsJkx.190900143
[11] 诸珺文.
基于改进BP神经网络的SQL注入识别
SQL InJection Recognition Based on Improved BP Neural Network
计算机科学, 2020, 47(6A): 352-359. https://doi.org/10.11896/JsJkx.191200054
[12] 周立鹏, 孟利民, 周磊, 蒋维, 董建平.
基于BP神经网络的摔倒检测算法
Fall Detection Algorithm Based on BP Neural Network
计算机科学, 2020, 47(6A): 242-246. https://doi.org/10.11896/JsJkx.191000077
[13] 陈燕文,李坤,韩焱,王燕平.
基于MFCC和常数Q变换的乐器音符识别
Musical Note Recognition of Musical Instruments Based on MFCC and Constant Q Transform
计算机科学, 2020, 47(3): 149-155. https://doi.org/10.11896/jsjkx.190100224
[14] 刘晓彤,王伟,李泽禹,沈思婉,姜小明.
基于改进BP神经网络的尿液中红白细胞识别算法
Recognition Algorithm of Red and White Cells in Urine Based on Improved BP Neural Network
计算机科学, 2020, 47(2): 102-105. https://doi.org/10.11896/jsjkx.191100195
[15] 马创, 周代棋, 张业.
基于改进鲸鱼算法的BP神经网络水资源需求预测方法
BP Neural Network Water Resource Demand Prediction Method Based on Improved Whale Algorithm
计算机科学, 2020, 47(11A): 486-490. https://doi.org/10.11896/jsjkx.191200047
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!