计算机科学 ›› 2022, Vol. 49 ›› Issue (6A): 667-674.doi: 10.11896/jsjkx.210800088
朱旭辉, 沈国娇, 夏平凡, 倪志伟
ZHU Xu-hui, SHEN Guo-jiao, XIA Ping-fan, NI Zhi-wei
摘要: 政府和社会资本合作(PPP) 项目能够完善基础设施建设、保障民生与促进经济发展,但也存在资金退出困难、建设周期长、参与主体多等缺陷,项目运营失败将直接损害各方投资者的收益,造成社会资源的浪费,故亟需对PPP融资风险进行科学、准确地预测。文中提出一种基于螺旋进化萤火虫算法(SEGSO) 和BP神经网络(BPNN) 的预测模型,并将其应用于PPP融资模式风险预测。首先采用佳点集理论进行种群初始化,引入交互机制、精英种群策略以及螺旋进化方式,提出螺旋进化萤火虫算法。然后运用SEGSO算法进行参数寻优,搜索BPNN的最优参数组合,构建基于SEGSO和BPNN的预测模型SEGSO-BPNN。最后在5个测试函数上验证了SEGSO算法的性能优势,在7个UCI标准数据集上的实验结果表明了所提模型的显著性和有效性。将所提模型应用于中国PPP项目的风险预测,取得了较好的效果,为PPP融资风险预测提供了一种新方法。
中图分类号:
[1] AHMADABADI A A,HERAVI G.Risk assessment framework of PPP-megaprojects focusing on risk interaction and project success[J].Transportation Research Part A:Policy and Practice,2019,124:169-188. [2] GRUNER J,DEWEESE R S,EVANS B,et al.Qualitative Re-search in Phoenix,AZ,Exploring Support for Public-Private Partnerships to Expand the Reach of the Fresh Fruit and Vegetable Program[J].Journal of the Academy of Nutrition and Dietetics,2020,120(11):1834-1846. [3] SHRESTHA A,CHAN T K,AIBINU A A,et al.Efficient risk transfer in PPP wastewater treatment projects[J].Utilities Policy,2017,48:132-140. [4] WEN L C,LIU H F,PENG Y.Research of the problems offinancial risk supervision about public-private partnerships[J].Journal of Central University of Finance & Economics,2015,35(12):3-8. [5] XU Y L,YEUNG J F Y,CHAN A P C,et al.Developing a risk assessment model for PPP projects in China-A fuzzy synthetic evaluation approach[J].Automation in Construction,2010,19(7):929-943. [6] FLETA-ASÍN J,MUÑOZ F.How does risk transference to private partner impact on public-private partnerships' success? Empirical evidence from developing economies[J/OL].Socio-Economic Planning Sciences,2020,72.https://doi.org/10.1016/j.seps.2020.100869. [7] CHOU J S,CHENG M Y,WU Y W,et al.Improving classification accuracy of project dispute resolution using hybrid artificial intelligence and support vector machine models[J].Expert Systems with Applications,2013,40(6):2263-2274. [8] JIN X H,ZHANG G M.Modelling optimal risk allocation in PPP projects using artificial neural networks[J].International Journal of Project Management,2011,29(5):591-603. [9] ZHONG J Q,LIU L Y,SUN Q,et al.Prediction of Photovoltaic Power Generation Based on General Regression and Back Propagation Neural Network[J].Energy Procedia,2018,152:1224-1229. [10] CAO Y,WANG C,WANG X,et al.Urban road short-term traffic flow prediction based on spatio-temporal node selection and deep learning[J].Journal of Computer Applications,2020,40(5):1488-1493. [11] ELSORAGABY S,YAHYA A,MAHADIM R,et al.Applying multi-objective genetic algorithm(MOGA) to optimize the energy inputs and greenhouse gas emissions(GHG) in wetland rice production[J].Energy Reports,2020,6:2988-2998. [12] HILALI-JAGHDAM I,ISHAK A B,ABDEL-KHALEK S,et al.Quantum and classical genetic algorithms for multilevel segmentation of medical images:A comparative study[J].Computer Communications,2020,162:83-93. [13] ZHANG M,PENG Y,YANG M,et al.A discrete PSO-basedstatic load balancing algorithm for distributed simulations in a cloud environment[J].Future Generation Computer Systems,2021,115:497-516. [14] BARÓ G B,MARTÍNEZ-TRINIDAD J F,ROSAS R M V,et al.A PSO-based algorithm for mining association rules using a guided exploration strategy[J].Pattern Recognition Letters,2020,138:8-15. [15] MARINAKI M,MARINAKIS Y.A glowworm swarm optimiza-tion algorithm for the vehicle routing problem with stochastic demands[J].Expert Systems with Applications,2016,46:145-163. [16] KRISHNANAND K N,GHOSE D.Glowworm swarm based optimization algorithm for multimodal functions with collective robotics applications[J].Multiagent and Grid System,2006,2(3):209-222. [17] REN L F,LIU T,ZHAO Q J,et al.Method for measurement uncertainty evaluation of cylindricity error based on good point set[C]//Procedia CIRP.2018:373-378. [18] YAN H W,CAO Y L,YANG J X.Statistical tolerance analysis based on good point set and homogeneous transform matrix[C]//Procedia CIRP.2016:178-183. [19] ZHU X H,NI Z W,NI L P,et al.Improved discrete artificial fish swarm algorithm combined with margin distance minimization for ensemble pruning[J].Computers & Industrial Engineering,2019,128:32-46. [20] ZHU X H,NI Z W,CHENG M Y.Selective ensemble based on extreme learning machine and improved discrete artificial fish swarm algorithm for haze forecast[J].Applied Intelligence,2018,48(7):1757-1775. [21] JIANG R Y,YANG M,WANG S Y,et al.An improved whale optimization algorithm with armed force program and strategic adjustment[J].Applied Mathematical Modelling,2020,81:603-623. [22] CAO Y,LI Y Q,ZHANG G,et al.An efficient terminal voltage control for PEMFC based on an improved version of whale optimization algorithm[J].Energy Reports,2020,6:530-542. [23] DING S F,AN Y X,ZHANG X K,et al.Wavelet twin support vector machines based on glowworm swarm optimization[J].Neurocomputing,2017,225:157-163. [24] YU S H,YANG S L,SU S B.An improved glowworm swarm optimization algorithm with changing step[J].Journal of Chinese Computer Systems,2014,35(6):1396-1400. [25] LI H,GUO X,LI W.PID controller parameter optimizationbased on improved glowworm swarm optimization[J].Compu-ter Applications and Software,2017,34(7):227-230. [26] LUO Y,LIN B,WEN C B,et al.Conducting a correlation model between TCM constitution and physical examination index based on BPNN algorithm[J].Digital Chinese Medicine,2018,1(1):84-89. [27] GHOSE D K,SAMANTARAY S.Modelling sediment concentration using back propagation neural network and regression coupled with genetic algorithm[J].Procedia Computer Science,2018,125:85-92. [28] WANG G G,GUO L H,DUAN H.Target threat assessmentusing glowworm swarm optimization and BP neural network[J].Journal of Jilin University(Engineering and Technology Edition),2013,43(4):1064-1069. [29] LI J M,NI Z W,ZHU X H,et al.Drought prediction model based on GPSGSO-BPNN parallel ensemble learning algorithm[J].Systems Engineering-Theory & Practice,2018,38(5):1343-1353. [30] BOURICHA H,BENLASHRAM A,HSAIRI L,et al.Intention Mining Data preprocessing based on Multi-Agents System[J].Procedia Computer Science,2020,176:888-897. [31] CAO S E,YANG Z M.Prediction of Wireless Network Traffic Based on Clustering Analysis and Optimized Support Vector Machine[J].Computer Science,2020,47(8):319-322. [32] CHENG F,FU G L,ZHANG X Y,et al.Multi-objective evolutionary algorithm for optimizing the partial area under the ROC curve[J].Knowledge-Based Systems,2019,170:61-69. |
[1] | 徐佳楠, 张天瑞, 赵伟博, 贾泽轩. 面向供应链风险评估的改进BP小波神经网络研究 Study on Improved BP Wavelet Neural Network for Supply Chain Risk Assessment 计算机科学, 2022, 49(6A): 654-660. https://doi.org/10.11896/jsjkx.210800049 |
[2] | 刘宝宝, 杨菁菁, 陶露, 王贺应. 基于DE-LSTM模型的教育统计数据预测研究 Study on Prediction of Educational Statistical Data Based on DE-LSTM Model 计算机科学, 2022, 49(6A): 261-266. https://doi.org/10.11896/jsjkx.220300120 |
[3] | 夏静, 马中, 戴新发, 胡哲琨. 基于BP神经网络的智能云效能模型 Efficiency Model of Intelligent Cloud Based on BP Neural Network 计算机科学, 2022, 49(2): 353-367. https://doi.org/10.11896/jsjkx.201100140 |
[4] | 程铁军, 王曼. 基于变权组合的突发事件网络舆情趋势预测 Network Public Opinion Trend Prediction of Emergencies Based on Variable Weight Combination 计算机科学, 2021, 48(6A): 190-195. https://doi.org/10.11896/jsjkx.200600094 |
[5] | 郭福民, 张华, 胡瑢华, 宋岩. 一种基于表面肌电信号的腕部肌力估计方法研究 Study on Method for Estimating Wrist Muscle Force Based on Surface EMG Signals 计算机科学, 2021, 48(6A): 317-320. https://doi.org/10.11896/jsjkx.200600021 |
[6] | 宁婷, 苗德壮, 董启文, 陆雪松. 逾期风险预测的宽度和深度学习 Wide and Deep Learning for Default Risk Prediction 计算机科学, 2021, 48(5): 197-201. https://doi.org/10.11896/jsjkx.200900043 |
[7] | 石琳姗, 马创, 杨云, 靳敏. 基于SSC-BP神经网络的异常检测算法 Anomaly Detection Algorithm Based on SSC-BP Neural Network 计算机科学, 2021, 48(12): 357-363. https://doi.org/10.11896/jsjkx.201000086 |
[8] | 焦东来, 王浩翔, 吕海洋, 徐轲. 基于手机传感器轨迹的路面地物检测方法 Road Surface Object Detection from Mobile Phone Based Sensor Trajectories 计算机科学, 2021, 48(11A): 283-289. https://doi.org/10.11896/jsjkx.210200145 |
[9] | 周俊, 尹悦, 夏斌. 基于LSTM神经网络的声发射信号识别研究 Acoustic Emission Signal Recognition Based on Long Short Time Memory Neural Network 计算机科学, 2021, 48(11A): 319-326. https://doi.org/10.11896/jsjkx.210700034 |
[10] | 宋岩, 胡瑢华, 郭福民, 袁新亮, 熊睿洋. 基于sEMG的改进SVM+BP肌力预测分层算法 Improved SVM+BP Algorithm for Muscle Force Prediction Based on sEMG 计算机科学, 2020, 47(6A): 75-78. https://doi.org/10.11896/JsJkx.190900143 |
[11] | 诸珺文. 基于改进BP神经网络的SQL注入识别 SQL InJection Recognition Based on Improved BP Neural Network 计算机科学, 2020, 47(6A): 352-359. https://doi.org/10.11896/JsJkx.191200054 |
[12] | 周立鹏, 孟利民, 周磊, 蒋维, 董建平. 基于BP神经网络的摔倒检测算法 Fall Detection Algorithm Based on BP Neural Network 计算机科学, 2020, 47(6A): 242-246. https://doi.org/10.11896/JsJkx.191000077 |
[13] | 陈燕文,李坤,韩焱,王燕平. 基于MFCC和常数Q变换的乐器音符识别 Musical Note Recognition of Musical Instruments Based on MFCC and Constant Q Transform 计算机科学, 2020, 47(3): 149-155. https://doi.org/10.11896/jsjkx.190100224 |
[14] | 刘晓彤,王伟,李泽禹,沈思婉,姜小明. 基于改进BP神经网络的尿液中红白细胞识别算法 Recognition Algorithm of Red and White Cells in Urine Based on Improved BP Neural Network 计算机科学, 2020, 47(2): 102-105. https://doi.org/10.11896/jsjkx.191100195 |
[15] | 马创, 周代棋, 张业. 基于改进鲸鱼算法的BP神经网络水资源需求预测方法 BP Neural Network Water Resource Demand Prediction Method Based on Improved Whale Algorithm 计算机科学, 2020, 47(11A): 486-490. https://doi.org/10.11896/jsjkx.191200047 |
|