[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time

Published: 01 May 2004 Publication History

Abstract

We introduce the smoothed analysis of algorithms, which continuously interpolates between the worst-case and average-case analyses of algorithms. In smoothed analysis, we measure the maximum over inputs of the expected performance of an algorithm under small random perturbations of that input. We measure this performance in terms of both the input size and the magnitude of the perturbations. We show that the simplex algorithm has smoothed complexity polynomial in the input size and the standard deviation of Gaussian perturbations.

References

[1]
Abramowitz, M., and Stegun, I. A., Eds. 1970. Handbook of Mathematical Functions, 9 ed. Applied Mathematics Series, vol. 55. National Bureau of Standards.
[2]
Adler, I. 1983. The expected number of pivots needed to solve parametric linear programs and the efficiency of the self-dual simplex method. Tech. Rep., University of California at Berkeley. May.
[3]
Adler, I., Karp, R. M., and Shamir, R. 1987. A simplex variant solving an m x d linear program in O(min(m2,d2)) expected number of pivot steps. J. Complex. 3, 372--387.
[4]
Adler, I., and Megiddo, N. 1985. A simplex algorithm whose average number of steps is bounded between two quadratic functions of the smaller dimension. J. ACM 32, 4 (Oct.), 871--895.
[5]
Amenta, N., and Ziegler, G. 1999. Deformed products and maximal shadows of polytopes. In Advances in Discrete and Computational Geometry, B. Chazelle, J. Goodman, and R. Pollack, Eds. Number 223 in Contemporary Mathematics. American Mathematics Society, 57--90.
[6]
Avis, D., and Chvátal, V. 1978. Notes on Bland's pivoting rule. In Polyhedral Combinatorics. Math. Programming Study, vol. 8. 24--34.
[7]
Blaschke, W. 1935. Integralgeometrie 2: Zu ergebnissen von M. W. Crofton. Bull. Math. Soc. Roumaine Sci. 37, 3--11.
[8]
Blum, A., and Spencer, J. 1995. Coloring random and semi-random k-colorable graphs. J. Algorithms 19, 2, 204--234.
[9]
Borgwardt, K. H. 1977. Untersuchungen zur asymptotik der mittleren schrittzahl von simplexverfahren in der linearen optimierung. Ph.D. dissertation, Universitat Kaiserslautern.
[10]
Borgwardt, K. H. 1980. The Simplex Method: a probabilistic analysis. Number 1 in Algorithms and Combinatorics. Springer-Verlag, New York.
[11]
Chan, T. F., and Hansen, P. C. 1992. Some applications of the rank revealing QR factorization. SIAM J. Sci. Stat. Comput. 13, 3 (May), 727--741.
[12]
Dantzig, G. B. 1951. Maximization of linear function of variables subject to linear inequalities. In Activity Analysis of Production and Allocation, T. C. Koopmans, Ed. 339--347.
[13]
Edelman, A. 1992. Eigenvalue roulette and random test matrices. In Linear Algebra for Large Scale and Real-Time Applications, M. S. Moonen, G. H. Golub, and B. L. R. D. Moor, Eds. NATO ASI Series. 365--368.
[14]
Efron, B. 1965. The convex hull of a random set of points. Biometrika 52, 3/4, 331--343.
[15]
Feige, U., and Kilian, J. 1998. Heuristics for finding large independent sets, with applications to coloring semi-random graphs. In 39th Annual Symposium on Foundations of Computer Science: Proceedings (Palo Alto, Calif. Nov. 8--11). IEEE Computer Society Press, Los Alamitos, Calif.
[16]
Feige, U., and Krauthgamer, R. 1998. Improved performance guarantees for bandwidth minimization heuristics. http://www.cs.berkeley.edu/∼robi/papers/FK-BandwidthHenristics-manuscript98.ps.gz.
[17]
Feller, W. 1968. An Introduction to Probability Theory and Its Applications. Vol. 1. Wiley, New York.
[18]
Feller, W. 1971. An Introduction to Probability Theory and Its Applications. Vol. 2. Wiley, New York.
[19]
Goldfarb, D. 1983. Worst case complexity of the shadow vertex simplex algorithm. Tech. Rep. Columbia Univ., New York.
[20]
Goldfarb, D., and Sit, W. T. 1979. Worst case behaviour of the steepest edge simplex method. Disc. Appl. Math 1, 277--285.
[21]
Haimovich, M. 1983. The simplex algorithm is very good!: On the expected number of pivot steps and related properties of random linear programs. Tech. Rep. Columbia Univ., New York.
[22]
Jeroslow, R. G. 1973. The simplex algorithm with the pivot rule of maximizing improvement criterion. Disc. Math. 4, 367--377.
[23]
Kalai, G. 1992. A subexponential randomized simplex algorithm. In Proceedings of the 24th Annual ACM Symposium on Theory of Computing (Victoria, B.C., Canada). ACM, New York, 475--482.
[24]
Kalai, G., and Kleitman, D. J. 1992. A quasi-polynomial bound for the diameter of graphs of polyhedra. Bull. Amer. Math. Soc. 26, 315--316.
[25]
Karmarkar, N. 1984. A new polynomial time algorithm for linear programming. Combinatorica 4, 373--395.
[26]
Khachiyan, L. G. 1979. A polynomial algorithm in linear programming. Doklady Akademia Nauk SSSR, 1093--1096.
[27]
Klee, V., and Minty, G. J. 1972. How good is the simplex algorithm? In Inequalities---III, Shisha, O., Ed. Academic Press, Orlando, Fla., 159--175.
[28]
Matoušek, J., Sharir, M., and Welzl, E. 1996. A subexponential bound for linear programming. Algorithmica 16, 4/5 (Oct./Nov.), 498--516.
[29]
Megiddo, N. 1986. Improved asymptotic analysis of the average number of steps performed by the self-dual simplex algorithm. Math. Prog. 35, 2, 140--172.
[30]
Miles, R. E. 1971. Isotropic random simplices. Adv. Appl. Prob. 3, 353--382.
[31]
Murty, K. G. 1980. Computational complexity of parametric linear programming. Math. Prog. 19, 213--219.
[32]
Renegar, J. 1994. Some perturbation theory for linear programming. Math. Prog. Ser. A. 65, 1, 73--91.
[33]
Renegar, J. 1995a. Incorporating condition measures into the complexity theory of linear programming. SIAM J. Optim. 5, 3, 506--524.
[34]
Renegar, J. 1995b. Linear programming, complexity theory and elementary functional analysis. Math. Prog. Ser. A. 70, 3, 279--351.
[35]
Renyi, A., and Sulanke, R. 1963. Uber die convexe hulle von is zufallig gewahlten punkten, I. Z. Whar. 2, 75--84.
[36]
Renyi, A., and Sulanke, R. 1964. Uber die convexe hulle von is zufallig gewahlten punkten, II. Z. Whar. 3, 138--148.
[37]
Santalo, L. A. 1976. Integral Geometry and Geometric Probability. Encyclopedia of Mathematics and its Applications. Addison-Wesley, Reading, Mass.
[38]
Santha, M., and Vazirani, U. 1986. Generating quasi-random sequences from semi-random sources. J. Comput. System Sciences 33, 75--87.
[39]
Smale, S. 1982. The problem of the average speed of the simplex method. In Proceedings of the 11th International Symposium on Mathematical Programming. 530--539.
[40]
Smale, S. 1983. On the average number of steps in the simplex method of linear programming. Math. Prog. 27, 241--262.
[41]
Todd, M. 1986. Polynomial expected behavior of a pivoting algorithm for linear complementarity and linear programming problems. Math. Prog. 35, 173--192.
[42]
Todd, M. J. 1991. Probabilistic models for linear programming. Math. Oper. Res. 16, 4, 671--693.
[43]
Todd, M. J., Tunçel, L., and Ye, Y. 2001. Characterizations, bounds, and probabilistic analysis of two complexity measures for linear programming problems. Math. Program., Ser. A 90, 59--69.
[44]
Turner, J. S. 1986. On the probable performance of a heuristic for bandwidth minimization. SIAM J. Comput. 15, 2, 561--580.
[45]
Vavasis, S. A., and Ye, Y. 1996. A primal-dual interior-point method whose running time depends only on the constraint matrix. Math. Program. 74, 79--120.

Cited By

View all
  • (2025)Do financial development and institutional quality impede or stimulate the shadow economy? A comparative analysis of developed and developing countriesHumanities and Social Sciences Communications10.1057/s41599-024-04347-w12:1Online publication date: 4-Jan-2025
  • (2025)Smoothed analysis of the k-swap neighborhood for makespan schedulingOperations Research Letters10.1016/j.orl.2025.10724459(107244)Online publication date: Mar-2025
  • (2024)Robust Object Detection Under Smooth Perturbations in Precision AgricultureAgriEngineering10.3390/agriengineering60402616:4(4570-4584)Online publication date: 29-Nov-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of the ACM
Journal of the ACM  Volume 51, Issue 3
May 2004
153 pages
ISSN:0004-5411
EISSN:1557-735X
DOI:10.1145/990308
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 May 2004
Published in JACM Volume 51, Issue 3

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Simplex method
  2. complexity
  3. perturbation
  4. smoothed analysis

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)188
  • Downloads (Last 6 weeks)20
Reflects downloads up to 15 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2025)Do financial development and institutional quality impede or stimulate the shadow economy? A comparative analysis of developed and developing countriesHumanities and Social Sciences Communications10.1057/s41599-024-04347-w12:1Online publication date: 4-Jan-2025
  • (2025)Smoothed analysis of the k-swap neighborhood for makespan schedulingOperations Research Letters10.1016/j.orl.2025.10724459(107244)Online publication date: Mar-2025
  • (2024)Robust Object Detection Under Smooth Perturbations in Precision AgricultureAgriEngineering10.3390/agriengineering60402616:4(4570-4584)Online publication date: 29-Nov-2024
  • (2024)Time-optimal multi-qubit gates: Complexity, efficient heuristic and gate-time boundsQuantum10.22331/q-2024-03-13-12798(1279)Online publication date: 13-Mar-2024
  • (2024)A novel skip orthogonal list for dynamic optimal transport problemProceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence and Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence and Fourteenth Symposium on Educational Advances in Artificial Intelligence10.1609/aaai.v38i18.30073(20838-20846)Online publication date: 20-Feb-2024
  • (2024)Fast Quantum Subroutines for the Simplex MethodOperations Research10.1287/opre.2022.234172:2(763-780)Online publication date: 1-Mar-2024
  • (2024)Speeding up random walk mixing by starting from a uniform vertexElectronic Journal of Probability10.1214/24-EJP109129:noneOnline publication date: 1-Jan-2024
  • (2024)Optimization of Network Pavement Life-Cycle Cost: A Piecewise Linearized ApproachTransportation Research Record: Journal of the Transportation Research Board10.1177/036119812412423702678:11(779-790)Online publication date: 16-May-2024
  • (2024)A Smoothed FPTAS for Equilibria in Congestion GamesProceedings of the 25th ACM Conference on Economics and Computation10.1145/3670865.3673615(401-413)Online publication date: 8-Jul-2024
  • (2024)Smoothed Analysis of Information Spreading in Dynamic NetworksJournal of the ACM10.1145/366183171:3(1-24)Online publication date: 11-Jun-2024
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media