[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Gravity: Fast placement for 3-D VLSI

Published: 01 July 2003 Publication History

Abstract

Three dimensional integration is an increasingly feasible method of implementing complex circuitry. For large circuits, which most benefit from 3-D designs, efficient placement algorithms with low time complexity are required.We present an iterative 3-D placement algorithm that places circuit elements in three dimensions in linear time. Using an order of magnitude less time, our proposed algorithm produces placements with better than 11% less wire lengths than partitioning placement using the best and fastest partitioner. Due to the algorithms iterative nature, wire-length results can be further improved by increasing the number of iterations.Further, we provide empirical evidence that large circuits benefit most from 3-D technology and that even a small number of layers can provide significant wire-length improvements.

References

[1]
Alexander, M. J., Cohoon, J. P., Colflesh, J. L., Karro, J., Peters, E. L., and Robins, G. 1996. Placement and routing for three-dimensional FPGAS. In Proceedings of the 4th Canadian Workshop on Field-Programmable Devices. 11--18.
[2]
Alpert, C. J. 1998. The ISPD98 circuit benchmark suite. In Proceedings of the International Symposium on Physical Design. 85--90.
[3]
Antreich, K. J., Johannes, F. M., and Kirsch, F. H. 1982. A new approach for solving the placement problem using force models. In 1982 IEEE International Symposium on Circuits and Systems. 481--486.
[4]
Brglez, F. 1993. ACM/SIGDA design automation benchmarks: Catalyst or anathema? IEEE Des. Test Comput. 10, 3 (Sept.), 87--91.
[5]
Chang, R.-I. and Hsiao, P.-Y. 1993. Force directed self-organizing map and its application to VLSI cell placement. In 1993 IEEE International Conference on Neural Networks. 103--109.
[6]
Chiricescu, S. M. S. A. and Vai, M. M. 1998. A three-dimensional FPGA with an integrated memory for in-application reconfiguration data. In 1998 IEEE International Symposium on Circuits and Systems. Vol. 2. 232--235.
[7]
Depreitere, J., Neefs, H., Van Marck, H., Van Campenhout, J., Baets, R., Dhoedt, B., Thienpont, H., and Veretennicoff, I. 1994. An optoelectronic 3-D field programmable gate array. In Field-programmable logic: architectures, synthesis, and applications : 4th International Workshop on Field-Programmable Logic and Applications. Lecture notes in computer science, vol. 849. 352--360.
[8]
Eisenmann, H. and Johannes, F. M. 1998. Generic global placement and floorplanning. In Proceedings of the 35th ACM/IEEE Design Automation Conference. 269--274.
[9]
Garey, M. R. and Johnson, D. S. 1979. Computers and Intractability. W. H. Freeman and Company, New York.
[10]
Goto, S. 1981. An efficient algorithm for the two-dimensional placement problem in electrical circuit layout. IEEE Trans. Circuits Syst. CAS-28, 1 (Jan.), 12--18.
[11]
Hanan, M. 1966. On Steiner's problem with rectilinear distance. SIAM J. Appl. Mathem. 14, 2 (Mar.), 255--265.
[12]
Karypis, G., Aggarwal, R., Kumar, V., and Shekhar, S. 1997. Multilevel hypergraph partitioning: Application in VLSI domain. In Proceedings of the 34th ACM/IEEE Design Automation Conference. 526--529.
[13]
Kleinhans, J. M., Sigl, G., Johannes, F. M., and Antreich, K. J. 1991. GORDIAN: VLSI placement by quadratic programming and slicing optimization. IEEE Trans. Computer-Aided Des. 10, 3 (Mar.), 356--365.
[14]
Koford, J. S. 1998. Method and system for improving a placement of cells using energetic placement units alternating contraction and expansion operations. United States Patent 5754444.
[15]
Leeser, M., Meleis, W. M., Vai, M. M., Chiricescu, S., Xu, W., and Zavracky, P. M. 1998. Rothko: A three-dimensional FPGA. IEEE Designs and Test of Computers 15, 1 (Jan.), 16--23.
[16]
Leighton, F. T. and Rosenberg, A. L. 1986. Three-dimensional circuit layouts. SIAM J. Comput. 15, 3 (Aug.), 793--813.
[17]
Obenaus, S. T. and Szymanski, T. H. 1999. Placement benchmarks for 3-D VLSI. In VLSI: Systems on a Chip, L. M. Silveira, S. Devadas, and R. Reis, Eds. Kluwer Academic Publishing, 447--455.
[18]
Obenaus, S. T. H. 2000. Fast placement algorithms for grids in two and three dimensions. Ph.D. thesis, McGill University.
[19]
Ohmura, M. 1998. An initial placement algorithm for 3-D VLSI. In 1998 IEEE International Symposium on Circuits and Systems. Vol. 6. 195--198.
[20]
Parakh, P. N., Brown, R. B., and Sakallah, K. A. 1998. Congestion driven quadratic placement. In Proceedings of the 35th ACM/IEEE Design Automation Conference. 275--278.
[21]
Reber, M. and Tielert, R. 1986. Benefits of vertically stacked integrated circuits for sequential logic. In 1996 IEEE International Symposium on Circuits and Systems. 121--124.
[22]
Shahookar, K. and Mazumder, P. 1991. VLSI cell placement techniques. ACM Comput. Surveys 23, 2 (June), 143--220.
[23]
Tanprasert, T. 2000. Analytical 3-D placement that reserves routing space. In 2000 IEEE International Symposium on Circuits and Systems. Vol. 3. 69--72.
[24]
Tia, T.-S. and Liu, C. 1993. A new performance driven macro-cell placement algorithm. In European Design Automation Conference. 66--71.
[25]
Tong, C. C. and Wu, C. 1995. Routing in a three-dimensional chip. IEEE Trans. Comput. 44, 1 (Jan.), 106--117.
[26]
Tsay, R.-S. and Kuh, E. 1991. A unified approach to partitioning and placement. IEEE Trans. Circuits Syst. 38, 5 (May), 521--533.
[27]
Tsay, R.-S., Kuh, E. S., and Hsu, C.-P. 1988. PROUD: A fast sea-of-gates placement algorithm. In Proceedings of the 25th ACM/IEEE Design Automation Conference. 318--323.
[28]
Ueda, K., Kitazawa, H., and Harada, I. 1985. CHAMP: Chip floor plan for hierachical VLSI layout design. IEEE Trans. Computer-Aided Design CAD-4, 1 (Jan.), 12--22.
[29]
Vygen, J. 1997. Algorithms for large-scale flat placement. In Proceedings of the 34th ACM/IEEE Design Automation Conference. 746--751.
[30]
Wipfler, G. J., Wiesel, M., and Mlynski, D. A. 1982. A combined force and cut algorithm for hierachical VLSI layout. In Proceedings of the 19th ACM/IEEE Design Automation Conference. 671--677.

Cited By

View all
  • (2016)On the Three-Dimensional Channel RoutingIEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences10.1587/transfun.E99.A.1813E99.A:10(1813-1821)Online publication date: 2016
  • (2015)Three-Dimensional Integration: A More Than Moore TechnologyThree-Dimensional Design Methodologies for Tree-based FPGA Architecture10.1007/978-3-319-19174-4_2(13-41)Online publication date: 26-Jun-2015
  • (2010)Wirelength-driven force-directed 3D FPGA placementProceedings of the 20th symposium on Great lakes symposium on VLSI10.1145/1785481.1785582(435-440)Online publication date: 16-May-2010
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Design Automation of Electronic Systems
ACM Transactions on Design Automation of Electronic Systems  Volume 8, Issue 3
July 2003
127 pages
ISSN:1084-4309
EISSN:1557-7309
DOI:10.1145/785411
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Journal Family

Publication History

Published: 01 July 2003
Published in TODAES Volume 8, Issue 3

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. 3-D VLSI
  2. 3-D integrated circuits
  3. Placement

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)2
  • Downloads (Last 6 weeks)0
Reflects downloads up to 02 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2016)On the Three-Dimensional Channel RoutingIEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences10.1587/transfun.E99.A.1813E99.A:10(1813-1821)Online publication date: 2016
  • (2015)Three-Dimensional Integration: A More Than Moore TechnologyThree-Dimensional Design Methodologies for Tree-based FPGA Architecture10.1007/978-3-319-19174-4_2(13-41)Online publication date: 26-Jun-2015
  • (2010)Wirelength-driven force-directed 3D FPGA placementProceedings of the 20th symposium on Great lakes symposium on VLSI10.1145/1785481.1785582(435-440)Online publication date: 16-May-2010
  • (2010)Physical Design Issues in 3-D Integrated TechnologiesVLSI-SoC: Design Methodologies for SoC and SiP10.1007/978-3-642-12267-5_1(1-21)Online publication date: 2010
  • (2009)Interconnect-Based Design Methodologies for Three-Dimensional Integrated CircuitsProceedings of the IEEE10.1109/JPROC.2008.200747397:1(123-140)Online publication date: Jan-2009
  • (2007)Placement of defect-tolerant digital microfluidic biochips using the T-tree formulationACM Journal on Emerging Technologies in Computing Systems10.1145/1295231.12952343:3(13-es)Online publication date: 1-Nov-2007
  • (2007)CASCADE: A Standard Supercell Design Methodology With Congestion-Driven Placement for Three-Dimensional Interconnect-Heavy Very Large-Scale Integrated CircuitsIEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems10.1109/TCAD.2006.88826626:7(1270-1282)Online publication date: Jul-2007
  • (2007)Unified Quadratic Programming Approach For 3-D Mixed Mode Placement2007 IEEE International Symposium on Circuits and Systems10.1109/ISCAS.2007.378300(3411-3414)Online publication date: May-2007
  • (2007)On the Complexity of Three-Dimensional Channel Routing (Extended Abstract)2007 IEEE International Symposium on Circuits and Systems10.1109/ISCAS.2007.378297(3399-3402)Online publication date: May-2007
  • (2007)Efficient Thermal Via Planning for Placement of 3D Integrated Circuits2007 IEEE International Symposium on Circuits and Systems10.1109/ISCAS.2007.378242(145-148)Online publication date: May-2007
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media