ResNet18 Performance: Impact of Network Depth and Image Resolution on Image Classification
Abstract
1 Introduction
2 Methodology
2.1 Datasets
Dataset name | Sample size | Image Type |
BloodMNIST | 17,092 (8 classes) | color |
BreastMNIST | 780 (Binary-Class) | gray |
DermaMNIST | 10,015 (7 classes) | color |
PneumoniaMNIST | 5,856 (Binary-Class) | gray |
RetinaMNIST | 1,600 (5 classes) | color |
OrganAMNIST | 58,850 (11 classes) | gray |
OrganCMNIST | 23,660 (11 classes) | gray |
OrganSMNIST | 25,221 (11 classes) | gray |
2.2 Feature Map Size
Resolution | Block1 | Block2 | Block3 | Block4 |
28x28 | 7x7 | 4x4 | 2x2 | 1x1 |
64x64 | 16x16 | 8x8 | 4x4 | 2x2 |
128x128 | 32x32 | 16x16 | 8x8 | 4x4 |
224x224 | 56x56 | 28x28 | 14x14 | 7x7 |
Layer | Description |
conv1 | Convolutional layer with kernel size 3x3, padding of 1 |
bn1 | Batch normalization layer |
conv2 | Convolutional layer with kernel size 3x3, padding of 1 |
bn2 | Batch normalization layer |
relu | Rectified Linear Unit (ReLU) activation function |
identity_downsample | Optional downsampling function |
2.3 Experiment Settings and Design
3 Results
3.1 Varying Depth with Standard Image Resolution
Dataset name | Best Depth | Significance |
OrganAMNIST | Block3 | p < 0.05 * |
3.2 Varying Image Resolution with Standard Depth
Dataset name | Resolution | Significance |
PneumoniaMNIST | 64x64 128x128 | p < 0.01 ** p < 0.05 * |
OrganAMNIST | 64x64 | p < 0.05 * |
OrganSMNIST | 64x64 128x128 | p < 0.001 *** p < 0.001 *** |
3.3 Varying Both Image Resolution and Depth
Dataset | Resolusion | Block | FMSize | Significance |
BloodMNIST | 224x224 | 3 | 14x14 | NS |
BreastMNIST | 64x64 | 3 | 4x4 | NS |
DermaMNIST | 28x28 | 1 | 7x7 | NS |
DermaMNIST | 64x64 | 2 | 8x8 | p < 0.05 * |
DermaMNIST | 128x128 | 3 | 8x8 | NS |
DermaMNIST | 224x224 | 3 | 14x14 | NS |
OrganAMNIST | 64x64 | 3 | 4x4 | NS |
OrganAMNIST | 64x64 | 4 | 2x2 | p < 0.05 * |
OrganAMNIST | 128x128 | 4 | 4x4 | NS |
OrganAMNIST | 224x224 | 3 | 14x14 | p < 0.05 * |
OrganCMNIST | 64x64 | 3 | 4x4 | NS |
OrganCMNIST | 128x128 | 3 | 8x8 | NS |
OrganCMNIST | 128x128 | 4 | 4x4 | NS |
OrganSMNIST | 64x64 | 3 | 4x4 | p < 0.05 * |
OrganSMNIST | 64x64 | 4 | 2x2 | p < 0.001 *** |
OrganSMNIST | 128x128 | 4 | 4x4 | p < 0.001*** |
PneumoniaMNIST | 28x28 | 1 | 7x7 | NS |
PneumoniaMNIST | 28x28 | 2 | 4x4 | NS |
PneumoniaMNIST | 28x28 | 3 | 2x2 | NS |
PneumoniaMNIST | 28x28 | 4 | 1x1 | NS |
PneumoniaMNIST | 64x64 | 2 | 8x8 | p < 0.01 ** |
PneumoniaMNIST | 64x64 | 3 | 4x4 | p < 0.01 ** |
PneumoniaMNIST | 64x64 | 4 | 2x2 | p < 0.01 ** |
PneumoniaMNIST | 128x128 | 2 | 16x16 | p < 0.05 * |
PneumoniaMNIST | 128x128 | 3 | 8x8 | p < 0.01 ** |
PneumoniaMNIST | 128x128 | 4 | 4x4 | p < 0.05 * |
PneumoniaMNIST | 224x224 | 2 | 28x28 | NS |
PneumoniaMNIST | 224x224 | 3 | 14x14 | NS |
RetinaMNIST | 128x128 | 1 | 32x32 | NS |
RetinaMNIST | 224x224 | 3 | 14x14 | NS |
Dataset - Resolution | Block1 | Block2 | Block3 | Block4 |
BloodMNIST - 28x28 | 0.914 | 0.914 | 0.915 | 0.913 |
BloodMNIST - 64x64 | 0.960 | 0.968 | 0.967 | 0.961 |
BloodMNIST - 128x128 | 0.961 | 0.975 | 0.978 | 0.973 |
BloodMNIST - 224x224 | 0.976 | 0.970 | 0.982 | 0.979 |
BreastMNIST - 28x28 | 0.830 | 0.847 | 0.848 | 0.826 |
BreastMNIST - 64x64 | 0.814 | 0.824 | 0.855 | 0.851 |
BreastMNIST - 128x128 | 0.795 | 0.809 | 0.836 | 0.849 |
BreastMNIST - 224x224 | 0.799 | 0.818 | 0.787 | 0.853 |
DermaMNIST - 28x28 | 0.751 | 0.731 | 0.732 | 0.738 |
DermaMNIST - 64x64 | 0.743 | 0.760 | 0.735 | 0.736 |
DermaMNIST - 128x128 | 0.732 | 0.747 | 0.757 | 0.727 |
DermaMNIST - 224x224 | 0.725 | 0.734 | 0.753 | 0.748 |
OrganAMNIST - 28x28 | 0.977 | 0.990 | 0.992 | 0.872 |
OrganAMNIST - 64x64 | 0.978 | 0.992 | 0.995 | 0.996 |
OrganAMNIST - 128x128 | 0.961 | 0.987 | 0.994 | 0.995 |
OrganAMNIST - 224x224 | 0.981 | 0.976 | 0.996 | 0.994 |
OrganCMNIST - 28x28 | 0.939 | 0.954 | 0.957 | 0.957 |
OrganCMNIST - 64x64 | 0.935 | 0.962 | 0.972 | 0.967 |
OrganCMNIST - 128x128 | 0.902 | 0.951 | 0.972 | 0.974 |
OrganCMNIST - 224x224 | 0.881 | 0.931 | 0.963 | 0.970 |
OrganSMNIST - 28x28 | 0.842 | 0.878 | 0.892 | 0.892 |
OrganSMNIST - 64x64 | 0.838 | 0.888 | 0.910 | 0.916 |
OrganSMNIST - 128x128 | 0.815 | 0.863 | 0.898 | 0.914 |
OrganSMNIST - 224x224 | 0.789 | 0.842 | 0.881 | 0.901 |
PneumoniaMNIST - 28x28 | 0.959 | 0.960 | 0.960 | 0.958 |
PneumoniaMNIST - 64x64 | 0.952 | 0.966 | 0.965 | 0.965 |
PneumoniaMNIST - 128x128 | 0.955 | 0.966 | 0.965 | 0.965 |
PneumoniaMNIST - 224x224 | 0.936 | 0.960 | 0.962 | 0.956 |
RetinaMNIST - 28x28 | 0.515 | 0.502 | 0.477 | 0.484 |
RetinaMNIST - 64x64 | 0.516 | 0.519 | 0.494 | 0.487 |
RetinaMNIST - 128x128 | 0.527 | 0.518 | 0.504 | 0.501 |
RetinaMNIST - 224x224 | 0.521 | 0.520 | 0.525 | 0.522 |
4 Conclusion and Discussion
Acknowledgments
Footnotes
References
Index Terms
- ResNet18 Performance: Impact of Network Depth and Image Resolution on Image Classification
Recommendations
Attention-aware perceptual enhancement nets for low-resolution image classification
AbstractClassifying low-resolution (LR) images is notoriously challenging because of their noisy representation and limited information. Existing approaches mainly solve this challenge by training carefully designed architectures on LR ...
Blurred Image Recognition: A Joint Motion Deblurring and Classification Loss-Aware Approach
Artificial Neural Networks and Machine Learning – ICANN 2021AbstractImage motion blur can severely affect the performance of the image recognition model. Traditional methods to tackle this problem usually involve image motion deblurring to improve the image quality before its recognition. However, traditional ...
Deep learning for multisensor image resolution enhancement
GeoAI '17: Proceedings of the 1st Workshop on Artificial Intelligence and Deep Learning for Geographic Knowledge DiscoveryWe describe a deep learning convolutional neural network (CNN) for enhancing low resolution multispectral satellite imagery without the use of a panchromatic image. For training, low resolution images are used as input and corresponding high resolution ...
Comments
Please enable JavaScript to view thecomments powered by Disqus.Information & Contributors
Information
Published In

Publisher
Association for Computing Machinery
New York, NY, United States
Publication History
Check for updates
Author Tags
Qualifiers
- Research-article
Conference
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 97Total Downloads
- Downloads (Last 12 months)97
- Downloads (Last 6 weeks)97
Other Metrics
Citations
View Options
Login options
Check if you have access through your login credentials or your institution to get full access on this article.
Sign in