[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3458817.3476171acmconferencesArticle/Chapter ViewAbstractPublication PagesscConference Proceedingsconference-collections
research-article

A next-generation discontinuous galerkin fluid dynamics solver with application to high-resolution lung airflow simulations

Published: 13 November 2021 Publication History

Abstract

We present a novel, highly scalable and optimized solver for turbulent flows based on high-order discontinuous Galerkin discretizations of the incompressible Navier-Stokes equations aimed to minimize time-to-solution. The solver uses explicit-implicit time integration with variable step size. The central algorithmic component is the matrix-free evaluation of discretized finite element operators. The node-level performance is optimized by sum-factorization kernels for tensor-product elements with unique algorithmic choices that reduce the number of arithmetic operations, improve cache usage, and vectorize the arithmetic work across elements and faces. These ingredients are integrated into a framework scalable to the massive parallelism of supercomputers by the use of optimal-complexity linear solvers, such as mixed-precision, hybrid geometric-polynomial-algebraic multigrid solvers for the pressure Poisson problem. The application problem under consideration are fluid dynamical simulations of the human respiratory system under mechanical ventilation conditions, using unstructured/structured adaptively refined meshes for geometrically complex domains typical of biomedical engineering.

Supplementary Material

MP4 File (A Next-Gen Discontinuous Galerkin Fluid Dynamics Solver w_ Application to High-Resolution Lung Airflow Simulations.mp4)
Presentation video

References

[1]
A. Abdelfattah, V. Barra, N. Beams, J. Brown, J.-S. Camier, V. Dobrev, Y. Dudouit, L. Ghaffari, T. Kolev, D. Medina, T. Rathnayake, J. L. Thompson, and S. Tomov. 2020. libCEED user manual.
[2]
M. Adams, M. Brezina, J. Hu, and R. Tuminaro. 2003. Parallel multigrid smoothing: polynomial versus Gauss-Seidel. J. Comput. Phys. 188 (2003), 593--610.
[3]
D. Arndt, W. Bangerth, B. Blais, T. C. Clevenger, M. Fehling, A. V. Grayver, T. Heister, L. Heltai, M. Kronbichler, M. Maier, P. Munch, J.-P. Pelteret, R. Rastak, I. Tomas, B. Turcksin010920, Z. Wang, and D. Wells. 2020. The deal.II library, version 9.2. J. Numer. Math. 28, 3 (2020), 131--146.
[4]
D. Arndt, W. Bangerth, B. Blais, M. Fehling, R. Gassmöller, T. Heister, L. Heltai, U. Köcher, M. Kronbichler, M. Maier, P. Munch, J.-P. Pelteret, S. Proell, K. Simon, B. Turcksin, D. Wells, and J. Zhang. 2021. The deal.II library, version 9.3. J. Numer. Math. 29, 3 (2021).
[5]
D. Arndt, W. Bangerth, D. Davydov, T. Heister, L. Heltai, M. Kronbichler, M. Maier, J.-P. Pelteret, B. Turcksin, and D. Wells. 2021. The deal.II finite element library: design, features, and insights. Comput. Math. Appl. 81 (2021), 407--422.
[6]
D. Arndt, N. Fehn, G. Kanschat, K. Kormann, M. Kronbichler, P. Munch, W. A. Wall, and J. Witte. 2020. ExaDG - high-order discontinuous Galerkin for the exascale. In Software for Exascale Computing - SPPEXA 2016--2019 (Lecture Notes in Computational Science and Engineering 136), H.-J. Bungartz, S. Reiz, B. Uekermann, P. Neumann, and W. E. Nagel (Eds.). Springer International Publishing, Cham, 189--224.
[7]
W. Bangerth, C. Burstedde, T. Heister, and M. Kronbichler. 2011. Algorithms and data structures for massively parallel generic finite element codes. ACM Trans. Math. Softw. 38, 2 (2011), 14:1--28.
[8]
J. Bates. 2009. Lung Mechanics: An Inverse Modeling Approach. Cambridge University Press, Cambridge, UK New York.
[9]
R. Becker and M. Braack. 2000. Multigrid techniques for finite elements on locally refined meshes. Numer. Lin. Algebr. Appl. 7, 6 (2000), 363--379. ⟨363::aid-nla202⟩3.0.co;2-v
[10]
R. G. Brower, M. A. Matthay, A. Morris, D. Schoenfeld, B. T. Thompson, A. Wheeler, H. P. Wiedemann, A. C. Arroliga, C. J. Fisher, J. J. Komara, et al. 2000. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. New Engl. J. Med. 342, 18 (2000), 1301--1308.
[11]
J. Brown. 2010. Efficient nonlinear solvers for nodal high-order finite elements in 3D. J. Sci. Comput. 45, 1--3 (2010), 48--63.
[12]
C. Burstedde, L. C. Wilcox, and O. Ghattas. 2011. p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees. SIAM J. Sci. Comput. 33, 3 (2011), 1103--1133.
[13]
J. Choi, G. Xia, M. H. Tawhai, E. A. Hoffman, and C.-L. Lin. 2010. Numerical study of high-frequency oscillatory air flow and convective mixing in a CT-based human airway model. Ann. Biomed. Eng. 38, 12 (2010), 3550--3571.
[14]
T. C. Clevenger, T. Heister, G. Kanschat, and M. Kronbichler. 2021. A flexible, parallel, adaptive geometric multigrid method for FEM. ACM Trans. Math. Softw. 47, 1 (2021), 7:1--27.
[15]
J. W. De Backer, W. G. Vos, S. C. Vinchurkar, R. Claes, A. Drollmann, D. Wulfrank, P. M. Parizel, P. Germonpré, and W. De Backer. 2010. Validation of computational fluid dynamics in CT-based airway models with SPECT/CT. Radiology 257, 3 (2010), 854--862.
[16]
M. O. Deville, P. F. Fischer, and E. H. Mund. 2002. High-order methods for incompressible fluid flow. Vol. 9. Cambridge University Press.
[17]
A. Esteban, A. Anzueto, F. Frutos, I. Alía, L. Brochard, T. E. Stewart, S. Benito, S. K. Epstein, C. Apezteguía, P. Nightingale, et al. 2002. Characteristics and outcomes in adult patients receiving mechanical ventilation: a 28-day international study. JAMA 287, 3 (2002), 345--355.
[18]
R. D. Falgout, J. E. Jones, and U. M. Yang. [n.d.]. The design and implementation of hypre, a library of parallel high performance preconditioners. In Lecture Notes in Computational Science and Engineering. Springer-Verlag, 267--294.
[19]
N. Fehn, J. Heinz, W. A. Wall, and M. Kronbichler. 2021. High-order arbitrary Lagrangian-Eulerian discontinuous Galerkin methods for the incompressible Navier-Stokes equations. J. Comput. Phys. 430 (2021), 110040.
[20]
N. Fehn, M. Kronbichler, C. Lehrenfeld, G. Lube, and P. W. Schroeder. 2019. High-order DG solvers for under-resolved turbulent incompressible flows: A comparison of L2 and H(div) methods. Int. J. Numer. Meth. Fluids 91, 11 (2019), 533--556.
[21]
N. Fehn, M. Kronbichler, P. Munch, and M. Bergbauer. 2021. ExaDG: High-Order Discontinuous Galerkin for the Exa-Scale. Code available on https://github.com/exadg/exadg.
[22]
N. Fehn, P. Munch, W. A. Wall, and M. Kronbichler. 2020. Hybrid multigrid methods for high-order discontinuous Galerkin discretizations. J. Comput. Phys. 415 (2020), 109538.
[23]
N. Fehn, W. A. Wall, and M. Kronbichler. 2017. On the stability of projection methods for the incompressible Navier-Stokes equations based on high-order discontinuous Galerkin discretizations. J. Comput. Phys. 351 (2017), 392--421.
[24]
N. Fehn, W. A. Wall, and M. Kronbichler. 2018. Efficiency of high-performance discontinuous Galerkin spectral element methods for under-resolved turbulent incompressible flows. Int. J. Numer. Meth. Fluids 88, 1 (2018), 32--54.
[25]
N. Fehn, W. A. Wall, and M. Kronbichler. 2018. Robust and efficient discontinuous Galerkin methods for under-resolved turbulent incompressible flows. J. Comput. Phys. 372 (2018), 667--693.
[26]
T. Ferkol and D. Schraufnagel. 2014. The global burden of respiratory disease. Ann. Amer. Thorac. Soc. 11, 3 (2014), 404--406.
[27]
P. Fischer, M. Min, T. Rathnayake, S. Dutta, T. Kolev, V. Dobrev, J.-S. Camier, M. Kronbichler, T. Warburton, K. Świrydowicz, and J. Brown. 2020. Scalability of high-performance PDE solvers. Int. J. High Perf. Comput. Appl. 34, 5 (2020), 562--586.
[28]
P. F. Fischer, S. Kerkemeier, et al. 2020. Nek5000 Web page. https://nek5000.mcs.anl.gov.
[29]
T. Gemci, V. Ponyavin, Y. Chen, H. Chen, and R. Collins. 2008. Computational model of airflow in upper 17 generations of human respiratory tract. J. Biomech. 41, 9 (2008), 2047--2054.
[30]
W. J. Gordon and L. C. Thiel. 1982. Transfinite mappings and their application to grid generation. Appl. Math. Comput. 10 (1982), 171--233.
[31]
J. Guttmann, L. Eberhard, B. Fabry, W. Bertschmann, and G. Wolff. 1993. Continuous calculation of intratracheal pressure in tracheally intubated patients. Anesthesiology 79, 3 (1993), 503--513.
[32]
L. Heltai, W. Bangerth, M. Kronbichler, and A. Mola. 2021. Propagating geometry information to finite element computations. ACM Trans. Math. Softw. 47, 3 (2021), in press.
[33]
J. Hoberock. 2019. Working Draft, C ++ Extensions for Parallelism Version 2. Technical Report.
[34]
K. Horsfield and G. Cumming. 1968. Morphology of the bronchial tree in man. Journal of Applied Physiology 24, 3 (1968), 373--383.
[35]
S. Kabilan, C.-L. Lin, and E. A. Hoffman. 2007. Characteristics of airflow in a CT-based ovine lung: a numerical study. J. Appl. Physiol. 102, 4 (2007), 1469--1482.
[36]
G. E. Karniadakis, M. Israeli, and S. A. Orszag. 1991. High-order splitting methods for the incompressible Navier-Stokes equations. J. Comput. Phys. 97, 2 (1991), 414--443.
[37]
C. Kato, Y. Yamade, K. Nagano, K. Kumahata, K. Minami, and T. Nishikawa. 2020. Toward realization of numerical towing-tank tests by wall-resolved large eddy simulation based on 32 billion grid finite-element computation. In 2020 SC20: International Conference for High Performance Computing, Networking, Storage and Analysis (SC). IEEE Computer Society, 23--35.
[38]
D. Kempf, R. Heß, S. Müthing, and P. Bastian. 2021. Automatic code generation for high-performance discontinuous Galerkin methods on modern architectures. ACM Trans. Math. Softw. 47, 1 (2021), 6/1--31.
[39]
T. Kolev et al. 2020. Support CEED-enabled ECP applications in their preparation for Aurora/Frontier. Technical Report ECP Milestone CEED-MS35. US Department of Energy.
[40]
T. Kolev et al. 2021. High-order algorithmic developments and optimizations for large-scale GPU-accelerated simulations. Technical Report ECP Milestone CEED-MS36. US Department of Energy.
[41]
B. Krank, N. Fehn, W. A. Wall, and M. Kronbichler. 2017. A high-order semi-explicit discontinuous Galerkin solver for 3D incompressible flow with application to DNS and LES of turbulent channel flow. J. Comput. Phys. 348 (2017), 634--659.
[42]
M. Kronbichler and K. Kormann. 2012. A generic interface for parallel cell-based finite element operator application. Comput. Fluids 63 (2012), 135--147.
[43]
M. Kronbichler and K. Kormann. 2019. Fast matrix-free evaluation of discontinuous Galerkin finite element operators. ACM Trans. Math. Softw. 45, 3 (2019), 29:1--40.
[44]
M. Kronbichler and K. Ljungkvist. 2019. Multigrid for matrix-free high-order finite element computations on graphics processors. ACM Trans. Parallel Comput. 6, 1 (2019), 2:1--32.
[45]
M. Kronbichler and W. A. Wall. 2018. A performance comparison of continuous and discontinuous Galerkin methods with fast multigrid solvers. SIAM J. Sci. Comput. 40, 5 (2018), A3423--A3448.
[46]
K. Ljungkvist. 2017. Matrix-free Finite-element Computations on Graphics Processors with Adaptively Refined Unstructured Meshes. In Proceedings of the 25th High Performance Computing Symposium (Virginia Beach, Virginia) (HPC '17). Society for Computer Simulation International, San Diego, CA, USA, Article 1, 12 pages. http://dl.acm.org/citation.cfm?id=3108096.3108097
[47]
R. Löhner. 2019. Towards overcoming the LES crisis. Int. J. Comput. Fluid Dyn. 33, 3 (2019), 87--97.
[48]
M. G. Ménache, W. Hofmann, B. Ashgarian, and F. J. Miller. 2008. Airway geometry models of children's lungs for use in dosimetry modeling. Inhalation toxicology 20, 2 (2008), 101--126.
[49]
T. Möller and B. Trumbore. 1997. Fast, minimum storage ray-triangle intersection. Journal of Graphics Tools 2, 1 (1997), 21--28. arXiv:https://doi.org/10.1080/10867651.1997.10487468
[50]
D. Moxey, R. Amici, and M. Kirby. 2020. Efficient matrix-free high-order finite element evaluation for simplicial elements. SIAM J. Sci. Comput. 42, 3 (2020), C97--C123.
[51]
N. Offermans, O. Marin, M. Schanen, J. Gong, P. Fischer, P. Schlatter, A. Obabko, A. Peplinski, M. Hutchinson, and E. Merzari. 2016. On the strong scaling of the spectral element solver Nek5000 on petascale systems. In Proceedings of the Exascale Applications and Software Conference 2016 (Stockholm, Sweden) (EASC '16). ACM, New York, NY, USA, Article 5, 10 pages.
[52]
S. A. Orszag. 1980. Spectral methods for problems in complex geometries. J. Comput. Phys. 37 (1980), 70--92.
[53]
H.-C. Pape, A. Kurtz, and S. Silbernagl. 2018. Physiologie. Georg Thieme Verlag, Stuttgart New York.
[54]
S. Qi, B. Zhang, Y. Teng, J. Li, Y. Yue, Y. Kang, and W. Qian. 2017. Transient dynamics simulation of airflow in a CT-scanned human airway tree: more or fewer terminal bronchi? Comput. Math. Method Med. 2017 (2017).
[55]
C. J. Roth, K. M. Förster, A. Hilgendorff, B. Ertl-Wagner, W. A. Wall, and A. W. Flemmer. 2018. Gas exchange mechanisms in preterm infants on HFOV-a computational approach. Scientific reports 8, 1 (2018), 1--8.
[56]
H. Sundar, G. Biros, C. Burstedde, J. Rudi, O. Ghattas, and G. Stadler. 2012. Parallel geometric-algebraic multigrid on unstructured forests of octrees. In SC'12: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis. IEEE, 1--11.
[57]
M. Tawhai, A. J. Pullan, and P. Hunter. 2000. Generation of an anatomically based three-dimensional model of the conducting airways. Annals of biomedical engineering 28 (08 2000), 793--802.
[58]
J. Treibig, G. Hager, and G. Wellein. 2010. LIKWID: A lightweight performance-oriented tool suite for x86 multicore environments. In Proceedings of PSTI2010, the First International Workshop on Parallel Software Tools and Tool Infrastructures. San Diego CA. https://github.com/RRZE-HPC/likwid.
[59]
D. K. Walters, G. W. Burgreen, D. M. Lavallee, D. S. Thompson, and R. L. Hester. 2011. Efficient, physiologically realistic lung airflow simulations. IEEE T. Biomed. Eng. 58, 10 (2011), 3016--3019.
[60]
E. R. Weibel, A. F. Cournand, and D. W. Richards. 1963. Morphometry of the human lung. Vol. 1. Springer.
[61]
J. B. West and A. M. Luks. 2016. West's Respiratory Physiology: The Essentials. Wolters Kluwer, Philadelphia.
[62]
S. Williams, A. Waterman, and D. Patterson. 2009. Roofline: An insightful visual performance model for multicore architectures. Commun. ACM 52, 4 (2009), 65--76.

Cited By

View all
  • (2024)A highly efficient computational approach for fast scan-resolved simulations of metal additive manufacturing processes on the scale of real partsAdditive Manufacturing10.1016/j.addma.2023.10392179(103921)Online publication date: Jan-2024
  • (2023)Efficient Distributed Matrix-free Multigrid Methods on Locally Refined Meshes for FEM ComputationsACM Transactions on Parallel Computing10.1145/358031410:1(1-38)Online publication date: 29-Mar-2023
  • (2023)Porting a Computational Fluid Dynamics Code with AMR to Large-scale GPU Platforms2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)10.1109/IPDPS54959.2023.00066(602-612)Online publication date: May-2023
  • Show More Cited By

Index Terms

  1. A next-generation discontinuous galerkin fluid dynamics solver with application to high-resolution lung airflow simulations

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image ACM Conferences
        SC '21: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis
        November 2021
        1493 pages
        ISBN:9781450384421
        DOI:10.1145/3458817
        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Sponsors

        In-Cooperation

        • IEEE CS

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        Published: 13 November 2021

        Permissions

        Request permissions for this article.

        Check for updates

        Badges

        Author Tags

        1. high-order discontinuous galerkin
        2. matrix-free algorithms
        3. multi-grid
        4. time-to-solution

        Qualifiers

        • Research-article

        Funding Sources

        • Gauss Centre for Supercomputing e.V.
        • Deutsche Forschungsgemeinschaft
        • Bayerische Kompetenznetzwerk für Technisch-Wissenschaftliches Hoch- und Höchstleistungsrechnen (KONWIHR)

        Conference

        SC '21
        Sponsor:

        Acceptance Rates

        Overall Acceptance Rate 1,516 of 6,373 submissions, 24%

        Upcoming Conference

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)66
        • Downloads (Last 6 weeks)10
        Reflects downloads up to 11 Dec 2024

        Other Metrics

        Citations

        Cited By

        View all
        • (2024)A highly efficient computational approach for fast scan-resolved simulations of metal additive manufacturing processes on the scale of real partsAdditive Manufacturing10.1016/j.addma.2023.10392179(103921)Online publication date: Jan-2024
        • (2023)Efficient Distributed Matrix-free Multigrid Methods on Locally Refined Meshes for FEM ComputationsACM Transactions on Parallel Computing10.1145/358031410:1(1-38)Online publication date: 29-Mar-2023
        • (2023)Porting a Computational Fluid Dynamics Code with AMR to Large-scale GPU Platforms2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)10.1109/IPDPS54959.2023.00066(602-612)Online publication date: May-2023
        • (2022)The deal.II library, Version 9.4Journal of Numerical Mathematics10.1515/jnma-2022-005430:3(231-246)Online publication date: 17-Jul-2022
        • (2022)Performance Optimization and Analysis of the Unstructured Discontinuous Galerkin Solver on Multi-Core and Many-Core Architectures2022 IEEE 24th Int Conf on High Performance Computing & Communications; 8th Int Conf on Data Science & Systems; 20th Int Conf on Smart City; 8th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys)10.1109/HPCC-DSS-SmartCity-DependSys57074.2022.00158(993-999)Online publication date: Dec-2022
        • (2022)Efficient Application of Hanging-Node Constraints for Matrix-Free High-Order FEM Computations on CPU and GPUHigh Performance Computing10.1007/978-3-031-07312-0_7(133-152)Online publication date: 29-May-2022

        View Options

        Login options

        View options

        PDF

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media