Jackson, A.C. and Vinegar, A., A technique for measuring frequency response of pressure, volume, and flow transducers. J Appl Physiol, 1979. 47: p. 462–467.
Duvivier, C., et al., Static and dynamic performances of variable reluctance and piezoresistive pressure transducers for forced oscillation measurements. Eur Respir J, 1991. 1: p. 146–150.
Pedley, T. and Drazen, J., Aerodynamic theory. In Handbook of Physiology. Section 3: The Respiratory System. Macklem, P. and Mead, J., Editors. 1986, Bethesda, MD: American Physiological Society, p. 41–54.
Bates, J.H.T., et al., Correcting for the Bernoulli effect in lateral pressure measurements. Pediatr Pulmonol, 1992. 12: p. 251–256.
Bates, J.H. and Lauzon, A.M., A nonstatistical approach to estimating confidence intervals about model parameters: application to respiratory mechanics. IEEE Trans Biomed Eng, 1992. 39(1): p. 94–100.
Navalesi, P., et al., Influence of site of tracheal pressure measurement on in situ estimation of endotracheal tube resistance. J Appl Physiol, 1994. 77: p. 2899–2906.
Baydur, A., et al., A simple method for assessing the validity of the esophageal balloon technique. Am Rev Respir Dis, 1982. 126: p. 788–791.
Dechman, G., Sato, J., and Bates, J.H.T., Factors affecting the accuracy of esophageal balloon measurement of pleural pressure in dogs. J Appl Physiol, 1992. 72: p. 383–388.
Peslin, R., et al., Validity of the esophageal balloon technique at high frequencies. J Appl Physiol, 1993. 74: p. 1039–1044.
Panizza, J.A., Comparison of balloon and transducer catheters for estimating lung elasticity. J Appl Physiol, 1992. 72: p. 231–235.
Wang, C.G., et al., Methacholine-induced airway reactivity of inbred rats. J Appl Physiol, 1986. 61(6): p. 2180–2185.
Fredberg, J.J., et al., Alveolar pressure nonhomogeneity during small-amplitude high-frequency oscillation. J Appl Physiol, 1984. 57(3): p. 788–800.
Bates, J.H., Baconnier, P., and Milic-Emili, J., A theoretical analysis of interrupter technique for measuring respiratory mechanics. J Appl Physiol, 1988. 64(5): p. 2204–2214.
Ludwig, M.S., et al., Partitioning of pulmonary resistance during constriction in the dog: effects of volume history. J Appl Physiol, 1987. 62(2): p. 807–815.
Ludwig, M.S., Romero, P.V., and Bates, J.H., A comparison of the dose-response behavior of canine airways and parenchyma. J Appl Physiol, 1989. 67(3): p. 1220–1225.
Tomioka, S., Bates, J.H., and Irvin, C.G., Airway and tissue mechanics in a murine model of asthma: alveolar capsule vs. forced oscillations. J Appl Physiol, 2002. 93(1): p. 263–270.
Bates, J.H., et al., Measurement of alveolar pressure in closed-chest dogs during flow interruption. J Appl Physiol, 1989. 67(1): p. 488–492.
Renzi, P.E., Giurdanella, C.A., and Jackson, A.C., Improved frequency response of pneumotachometers by digital compensation. J Appl Physiol, 1990. 68: p. 382–386.
Farre, R., et al., Analysis of the dynamic characteristics of pressure transducers for studying respiratory mechanics at high frequencies. Med & Biol Eng & Comput, 1989. 27: p. 531–536.
Schuessler, T.F., Maksym, G.N., and Bates, J.H.T., Estimating tracheal flow in small animals. Proceedings of the 15th Annual International Meeting of the IEEE Engineering in Medicine and Biology Society, San Diego, October 28–31, 1993: p. 560–561.
Schibler, A., et al., Measurement of lung volume and ventilation distribution with an ultrasonic flow meter in healthy infants. Eur Respir J, 2002. 20(4): p. 912–918.
Clary, A.L. and Fouke, J.M., Fast-responding automated airway temperature probe. Med & Biol Eng & Comput, 1991. 29: p. 501–504.
Cohen, K.P., et al., Comparison of impedance and inductance ventilation sensors on adults during breathing, motion, and simulated airway obstruction. IEEE Trans Biomed Eng, 1997. 44: p. 555–566.
Aliverti, A., et al., Compartmental analysis of breathing in the supine and prone positions by optoelectronic plethysmography. Ann Biomed Eng, 2001. 29: p. 60–70.
Bates, J.H.T., Measurement techniques in respiratory mechanics. In Physiologic Basis of Respiratory Disease. Hamid, Q., Shannon, J., and Martin, J., Editors. 2005, Hamilton, Canada: BC Decker, p. 623–637.
Lundblad, L.K., et al., Airway hyperresponsiveness in allergically inflamed mice: the role of airway closure. Am J Respir Crit Care Med, 2007. 175(8): p. 768–774.
Gold, W., Pulmonary function testing. In Textbook of Respiratory Medicine. Murray, J. and Nadel, J., Editors. 2000, Philadelphia, PA: Saunders, p. 793–799.
Shore, S., Milic-Emili, J., and Martin, J.G., Reassessment of body plethysmographic technique for the measurement of thoracic gas volume in asthmatics. Am Rev Respir Dis, 1982. 126(3): p. 515–520.
Dechman, G.S., et al., The effect of changing end-expiratory pressure on respiratory system mechanics in open- and closed-chest anesthetized, paralyzed patients. Anesth Analg, 1995. 81(2): p. 279–286.
Marini, J.J., Auto-positive end-expiratory pressure and flow limitation in adult respiratory distress syndrome–intrinsically different? Crit Care Med, 2002. 30(9): p. 2140–2141.
Neergaard, K. and Wirz, K., Die Messung der Stromungswiderstande in den Atemwegen des Menschen, insbesondere bei Asthma und Emphysem. Ztschr f Klin Med, 1927. 105: p. 51–82.
Mols, G., et al., Volume-dependent compliance in ARDS: proposal of a new diagnostic concept. Intensive Care Med, 1999. 25(10): p. 1084–1091.
Mead, J. and Whittenberger, J.L., Evaluation of airway interruption technique as a method for measuring pulmonary airflow resistance. J Appl Physiol, 1954. 6(7): p. 408–416.
Frank, N.R., Mead, J., and Whittenberger, J.L., Comparative sensitivity of four methods for measuring changes in respiratory flow resistance in man. J Appl Physiol, 1971. 31(6): p. 934–938.
Lauzon, A.M. and Bates, J.H., Estimation of time-varying respiratory mechanical parameters by recursive least squares. J Appl Physiol, 1991. 71(3): p. 1159–1165.
Lee, R.C.K., Optimal Estimation, Identification and Control. 1964, Cambridge, MA: MIT Press.
Hantos, Z., et al., Parameter estimation of transpulmonary mechanics by a nonlinear inertive model. J Appl Physiol, 1982. 52(4): p. 955–963.
Bijaoui, E.L., et al., Mechanical properties of the lung and upper airways in patients with sleep-disordered breathing. Am J Respir Crit Care Med, 2002. 165(8): p. 1055–1061.
West, J., Respiratory Physiology. The Essentials. 6th edition. 1999, Philadelphia, PA: Lippincott Williams & Wilkins.
Leff, A. and Schumacker, P., Respiratory Physiology. Basics and Applications. 1993, Philadelphia, PA: Saunders.
Pedley, T.J., Schroter, R.C., and Sudlow, M.F., The prediction of pressure drop and variation of resistance within the human bronchial airways. Respir Physiol, 1970. 9(3): p. 387–405.
Kabilan, S., Lin, C.L., and Hoffman, E.A., Characteristics of airflow in a CT-based ovine lung: a numerical study. J Appl Physiol, 2007. 102(4): p. 1469–1482.
Weibel, E., Morphometry of the Human Lung. 1963, Berlin: Springer.
Horsfield, K., Kemp, W., and Phillips, S., An asymmetrical model of the airways of the dog lung. J Appl Physiol, 1982. 52(1): p. 21–26.
Fredberg, J. and Hoenig, A., Mechanical response of the lung at high frequencies. J Biomech Eng, 1978. 100: p. 57–66.
Lutchen, K.R., Greenstein, J.L., and Suki, B., How inhomogeneities and airway walls affect frequency dependence and separation of airway and tissue properties. J Appl Physiol, 1996. 80(5): p. 1696–1707.
Thorpe, C.W. and Bates, J.H., Effect of stochastic heterogeneity on lung impedance during acute bronchoconstriction: a model analysis. J Appl Physiol, 1997. 82(5): p. 1616–1625.
Gillis, H.L. and Lutchen, K.R., How heterogeneous bronchoconstriction affects ventilation distribution in human lungs: a morphometric model. Ann Biomed Eng, 1999. 27(1): p. 14–22.
Gomes, R.F. and Bates, J.H., Geometric determinants of airway resistance in two isomorphic rodent species. Respir Physiol Neurobiol, 2002. 130(3): p. 317–325.
Kaczka, D.W., et al., Airway and lung tissue mechanics in asthma. Effects of albuterol. Am J Respir Crit Care Med, 1999. 159(1): p. 169–178.
Ebihara, T., et al., Changes in extracellular matrix and tissue viscoelasticity in bleomycin-induced lung fibrosis. Temporal aspects. Am J Respir Crit Care Med, 2000. 162(4 Pt 1): p. 1569–1576.
Bates, J.H., Cojocaru, A., and Lundblad, L.K., Bronchodilatory effect of deep inspiration on the dynamics of bronchoconstriction in mice. J Appl Physiol, 2007. 103(5): p. 1696–1705.
Lauzon, A.M. and Bates, J.H., Kinetics of respiratory system elastance after airway challenge in dogs. J Appl Physiol, 2000. 89(5): p. 2023–2029.
Bates, J.H., et al., Temporal dynamics of pulmonary response to intravenous histamine in dogs: effects of dose and lung volume. J Appl Physiol, 1994. 76(2): p. 616–626.
Mitzner, W., et al., Effect of bronchial smooth muscle contraction on lung compliance. J Appl Physiol, 1992. 72(1): p. 158–167.
Bates, J.H., Donoso, F.A., and Peslin, R., Airway and tissue impedances of canine lungs after step volume changes. J Appl Physiol, 1993. 75(4): p. 1460–1466.
Kelly, S.M., Bates, J.H., and Michel, R.P., Altered mechanical properties of lung parenchyma in postobstructive pulmonary vasculopathy. J Appl Physiol, 1994. 77(6): p. 2543–2551.
Verbeken, E.K., et al., Structure and function in fibrosing alveolitis. J Appl Physiol, 1994. 76(2): p. 731–742.
Takubo, Y., et al., Alpha1-antitrypsin determines the pattern of emphysema and function in tobacco smoke-exposed mice: parallels with human disease. Am J Respir Crit Care Med, 2002. 166(12 Pt 1): p. 1596–1603.
Verbeken, E.K., et al., Tissue and airway impedance of excised normal, senile, and emphysematous lungs. J Appl Physiol, 1992. 72(6): p. 2343–2353.
Hubmayr, R.D., Perspective on lung injury and recruitment: a skeptical look at the opening and collapse story. Am J Respir Crit Care Med, 2002. 165(12): p. 1647–1653.
Halpern, D. and Grotberg, J.B., Surfactant effects on fluid-elastic instabilities of liquid-lined flexible tubes: a model of airway closure. J Biomech Eng, 1993. 115(3): p. 271–277.
Allen, G.B., et al., Pulmonary impedance and alveolar instability during injurious ventilation in rats. J Appl Physiol, 2005. 99(2): p. 723–730.
Crotti, S., et al., Recruitment and derecruitment during acute respiratory failure. An experimental study. Am J Respir Cell Mol Biol, 2001. 164: p. 131–140.
Gattinoni, L., et al., Effects of positive end-expiratory pressure on regional distribution of tidal volume and recruitment in adult respiratory distress syndrome. Am J Respir Crit Care Med, 1995. 151(6): p. 1807–1814.
King, G.G., et al., Differences in airway closure between normal and asthmatic subjects measured with single-photon emission computed tomography and technegas. Am J Respir Crit Care Med, 1998. 158(6): p. 1900–1906.
Christie, R.V., The elastic properties of the emphysematous lung and their clinical significance. J Clin Invest, 1934. 13(2): p. 295–321.
Bachofen, H., Hildebrandt, J., and Bachofen, M., Pressure-volume curves of air- and liquid-filled excised lungs-surface tension in situ. J Appl Physiol, 1970. 29(4): p. 422–431.
Prange, H.D., Laplace's law and the alveolus: a misconception of anatomy and a misapplication of physics. Adv Physiol Educ, 2003. 27(1–4): p. 34–40.
Allen, G., et al., Transient mechanical benefits of a deep inflation in the injured mouse lung. J Appl Physiol, 2002. 93(5): p. 1709–1715.
Lauzon, A.M., Dechman, G., and Bates, J.H., Time course of respiratory mechanics during histamine challenge in the dog. J Appl Physiol, 1992. 73(6): p. 2643–2647.
Ingram, R.H. and Pedley, T.J., Pressure-flow relationships in the lungs. In Handbook of Physiology. Section 3: The Respiratory System. Macklem, P. and Mead, J., Editors. 1986, Bethesda, MD: American Physiological Society, p. 277–293.
Lutchen, K.R., et al., Airway inhomogeneities contribute to apparent lung tissue mechanics during constriction. J Appl Physiol, 1996. 80(5): p. 1841–1849.
Mishima, M., Balassy, Z., and Bates, J.H., Acute pulmonary response to intravenous histamine using forced oscillations through alveolar capsules in dogs. J Appl Physiol, 1994. 77(5): p. 2140–2148.
Ding, D.J., Martin, J.G., and Macklem, P.T., Effects of lung volume on maximal methacholine-induced bronchoconstriction in normal humans. J Appl Physiol, 1987. 62(3): p. 1324–1330.
An, S.S., et al., Airway smooth muscle dynamics: a common pathway of airway obstruction in asthma. Eur Respir J, 2007. 29(5): p. 834–860.
Brusasco, V. and Pellegrino, R., Complexity of factors modulating airway narrowing in vivo: relevance to assessment of airway hyperresponsiveness. J Appl Physiol, 2003. 95(3): p. 1305–1313.
McParland, B.E., Macklem, P.T., and Pare, P.D., Airway wall remodeling: friend or foe? J Appl Physiol, 2003. 95(1): p. 426–434.
Bates, J.H. and Lauzon, A.M., Parenchymal tethering, airway wall stiffness, and the dynamics of bronchoconstriction. J Appl Physiol, 2007. 102(5): p. 1912–1920.
Moreno, R.H., Hogg, J.C., and Pare, P.D., Mechanics of airway narrowing. Am Rev Respir Dis, 1986. 133(6): p. 1171–1180.
Yager, D., et al., Amplification of airway constriction due to liquid filling of airway interstices. J Appl Physiol, 1989. 66(6): p. 2873–2884.
Wiggs, B.R., et al., A model of airway narrowing in asthma and in chronic obstructive pulmonary disease. Am Rev Respir Dis, 1992. 145(6): p. 1251–1258.
Bates, J.H., et al., The synergistic interactions of allergic lung inflammation and intratracheal cationic protein. Am J Respir Crit Care Med, 2008. 177(3): p. 261–268.
Brown, K., et al., Evaluation of the flow-volume loop as an intra-operative monitor of respiratory mechanics in infants. Pediatr Pulmonol, 1989. 6(1): p. 8–13.
Wagers, S., et al., Nonlinearity of respiratory mechanics during bronchoconstriction in mice with airway inflammation. J Appl Physiol, 2002. 92(5): p. 1802–1807.
Bersten, A.D., Measurement of overinflation by multiple linear regression analysis in patients with acute lung injury. Eur Respir J, 1998. 12: p. 526–532.
Salazar, E. and Knowles, J.H., An analysis of pressure-volume characteristics of the lungs. J Appl Physiol, 1964. 19: p. 97–104.
Eidelman, D.H., Ghezzo, H., and Bates, J.H., Exponential fitting of pressure-volume curves: confidence limits and sensitivity to noise. J Appl Physiol, 1990. 69(4): p. 1538–1541.
Venegas, J.G., Harris, R.S, and Simon, B.A., A comprehensive equation for the pulmonary pressure-volume curve. J Appl Physiol, 1998. 84(1): p. 389–395.
Goerke, J. and Clements, J.A., Alveolar surface tension and lung surfactant. In Handbook of Physiology. Section 3: The Respiratory System. Macklem, P. and Mead, J., Editors. 1986, Bethesda, MD: American Physiological Society, p. 247–261.
Otis, D.R., et al., Role of pulmonary surfactant in airway closure: a computational study. J Appl Physiol, 1993. 75(3): p. 1323–1333.
Allen, G. and Bates, J.H., Dynamic mechanical consequences of deep inflation in mice depend on type and degree of lung injury. J Appl Physiol, 2004. 96(1): p. 293–300.
Mead, J., Mechanical properties of lungs. Physiol Rev, 1961. 41: p. 281–330.
Fung, Y.C., Microrheology and constitutive equation of soft tissue. Biorheology, 1988. 25(1–2): p. 261–270.
Haut, R.C. and Little, R.W., A constitutive equation for collagen fibers. J Biomech, 1972. 5(5): p. 423–430.
Fung, Y., Biomechanics. Mechanical Properties of Living Tissues. 1981, New York, NY: Springer-Verlag, p. 41–53.
Sobin, S.S., Fung, Y.C., and Tremer, H.M., Collagen and elastin fibers in human pulmonary alveolar walls. J Appl Physiol, 1988. 64(4): p. 1659–1675.
Maksym, G.N. and Bates, J.H., A distributed nonlinear model of lung tissue elasticity. J Appl Physiol, 1997. 82(1): p. 32–41.
Suki, B. and Bates, J.H., Extracellular matrix mechanics in lung parenchymal diseases. Respir Physiol Neurobiol, 2008. 163(1–3): p. 33–43.
Maksym, G.N., Fredberg, J.J., and Bates, J.H., Force heterogeneity in a two-dimensional network model of lung tissue elasticity. J Appl Physiol, 1998. 85(4): p. 1223–1229.
Bates, J.H., et al., Linking parenchymal disease progression to changes in lung mechanical function by percolation. Am J Respir Crit Care Med, 2007. 176(6): p. 617–623.
Collard, H.R., et al., Acute exacerbations of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med, 2007. 176(7): p. 636–643.
Pagano, M. and Gauvreau, K., Analysis of variance. In Principles of Biostatistics. 2000, Pacific Grove, CA: Duxbury, p. 288–290.
Akaike, H., A new look at the statistical model identification. IEEE Trans Automatic Control, 1974. 16(6): p. 716–723.
Hurvich, C.M. and Tsai, C.-L., Regression and time series model selection in small samples. Biometrika, 1989. 76: p. 297–307.
Kaczka, D.W., Massa, C.B., and Simon, B.A., Reliability of estimating stochastic lung tissue heterogeneity from pulmonary impedance spectra: a forward-inverse modeling study. Ann Biomed Eng, 2007. 35(10): p. 1722–1738.
Hyatt, R., Forced expiration. In Handbook of Physiology. Section 3: The Respiratory System. Macklem, P. and Mead, J., Editors. 1986, Bethesda, MD: American Physiological Society, p. 295–314.
Fish, J., Bronchial challenge testing. In Allergy: Principles and Practice. 4th edition. Middleton, E., Editor. 1993, St. Louis, MO: Mosby-Year Book.
Wilson, T., Rodarte, J., and Butler, J., Wave-speed and viscous flow limitation. In Handbook of Physiology. Section 3: The Respiratory System. Macklem, P. and Mead, J., Editors. 1986, Bethesda, MD: American Physiological Society, p. 295–314.
Bates, J.H.T., Physics of expiratory flow limitation. In Physiologic Basis of Respiratory Disease. Hamid, Q., Shannon, J., and Martin, J., Editors. 2005, Hamilton, Canada: BC Decker, p. 55–60.
Du Toit, J.I., et al., Characteristics of bronchial hyperresponsiveness in smokers with chronic air-flow limitation. Am Rev Respir Dis, 1986. 134(3): p. 498–501.
Cherniak, R., Pulmonary Function Testing. 1977, Phildelphia, PA: WB Saunders.
Polak, A.G. and Lutchen, K.R., Computational model for forced expiration from asymmetric normal lungs. Ann Biomed Eng, 2003. 31(8): p. 891–907.
Lambert, R.K., Simulation of the effects of mechanical nonhomogeneities on expiratory flow from human lungs. J Appl Physiol, 1990. 68(6): p. 2550–2563.
Macklem, P.T. and Mead, J., Factors determining maximum expiratory flow in dogs. J Appl Physiol, 1968. 25(2): p. 159–169.
Dawson, S.V. and Elliott, E.A., Wave-speed limitation on expiratory flow – a unifying concept. J Appl Physiol, 1977. 43(3): p. 498–515.
Mink, S., Ziesmann, M., and Wood, L.D., Mechanisms of increased maximum expiratory flow during HeO2 breathing in dogs. J Appl Physiol, 1979. 47(3): p. 490–502.
Weinberger, H., A First Course in Partial Differential Equations. 1965, New York, NY: Wiley.
Pride, N.B., et al., Determinants of maximal expiratory flow from the lungs. J Appl Physiol, 1967. 23(5): p. 646–662.
Zamir, M., Pulsatile flow in an elastic tube. In The Physics of Pulsatile Flow. 2000, New York, NY: Springer-Verlag, p. 113–146.
Foss, S.D., A method of exponential curve fitting by numerical integration. Biometrics, 1970. 26: p. 815–821.
Bates, J.H., et al., Respiratory resistance with histamine challenge by single-breath and forced oscillation methods. J Appl Physiol, 1986. 61(3): p. 873–880.
Bates, J.H., et al., Volume-time profile during relaxed expiration in the normal dog. J Appl Physiol, 1985. 59(3): p. 732–737.
Otis, A.B., et al., Mechanical factors in distribution of pulmonary ventilation. J Appl Physiol, 1956. 8(4): p. 427–443.
Mead, J., Contribution of compliance of airways to frequency-dependent behavior of lungs. J Appl Physiol, 1969. 26(5): p. 670–673.
Macklem, P.T., Airway obstruction and collateral ventilation. Physiol Rev, 1971. 51(2): p. 368–436.
Mount, L.E., The ventilation flow-resistance and compliance of rat lungs. J Physiol, 1955. 127(1): p. 157–167.
Bates, J.H., Rossi, A., and Milic-Emili, J., Analysis of the behavior of the respiratory system with constant inspiratory flow. J Appl Physiol, 1985. 58(6): p. 1840–1848.
Similowski, T. and Bates, J.H., Two-compartment modelling of respiratory system mechanics at low frequencies: gas redistribution or tissue rheology? Eur Respir J, 1991. 4(3): p. 353–358.
D'Angelo, E., et al., Respiratory mechanics in anesthetized paralyzed humans: effects of flow, volume, and time. J Appl Physiol, 1989. 67(6): p. 2556–2564.
Bates, J.H., et al., Interrupter resistance elucidated by alveolar pressure measurement in open-chest normal dogs. J Appl Physiol, 1988. 65(1): p. 408–414.
Romero, P.V., et al., High-frequency characteristics of respiratory mechanics determined by flow interruption. J Appl Physiol, 1990. 69(5): p. 1682–1688.
Fredberg, J.J., et al., Nonhomogeneity of lung response to inhaled histamine assessed with alveolar capsules. J Appl Physiol, 1985. 58(6): p. 1914–1922.
Ludwig, M.S., et al., Interpretation of interrupter resistance after histamine-induced constriction in the dog. J Appl Physiol, 1990. 68(4): p. 1651–1656.
Sato, J., et al., Low-frequency respiratory system resistance in the normal dog during mechanical ventilation. J Appl Physiol, 1991. 70(4): p. 1536–1543.
D'Angelo, E., Tavola, M., and Milic-Emili, J., Volume and time dependence of respiratory system mechanics in normal anaesthetized paralysed humans. Eur Respir J, 2000. 16(4): p. 665–672.
Cooley, J.W. and Tukey, J.W., An algorithm for the machine calculation of complex Fourier series. Math Comput, 1965. 19: p. 297–301.
Dubois, A.B., et al., Oscillation mechanics of lungs and chest in man. J Appl Physiol, 1956. 8(6): p. 587–594.
Peslin, R. and Fredberg, J., Oscillation mechanics of the respiratory system. In Handbook of Physiology. Section 3: The Respiratory System. Macklem, P. and Mead, J., Editors. 1986, Bethesda, MD: American Physiological Society, p. 145–178.
Zwart, A. and Woestijne, K.P. Vaqn, Mechanical respiratory impedance by forced oscillation. European Respiratory Review, 1994. 4: p. 114–237.
Ferris, B.G., Mead, J., and Opie, L.H., Partitioning of respiratory flow resistance in man. J Appl Physiol, 1964. 19: p. 653–658.
Franken, H., et al., Forced oscillation technique: comparison of two devices. J Appl Physiol, 1985. 59(5): p. 1654–1659.
Peslin, R., et al., Respiratory impedance measured with head generator to minimize upper airway shunt. J Appl Physiol, 1985. 59(6): p. 1790–1795.
Lutchen, K.R., et al., Use of transfer impedance measurements for clinical assessment of lung mechanics. Am J Respir Crit Care Med, 1998. 157(2): p. 435–446.
Kaminsky, D.A., et al., Oscillation mechanics of the human lung periphery in asthma. J Appl Physiol, 2004. 97(5): p. 1849–1858.
Davey, B.L. and Bates, J.H., Regional lung impedance from forced oscillations through alveolar capsules. Respir Physiol, 1993. 91(2–3): p. 165–182.
Bijaoui, E., Baconnier, P.F., and Bates, J.H., Mechanical output impedance of the lung determined from cardiogenic oscillations. J Appl Physiol, 2001. 91(2): p. 859–865.
Schuessler, T.F. and Bates, J.H., A computer-controlled research ventilator for small animals: design and evaluation. IEEE Trans Biomed Eng, 1995. 42(9): p. 860–866.
Lutchen, K.R., et al., Airway constriction pattern is a central component of asthma severity: the role of deep inspirations. Am J Respir Crit Care Med, 2001. 164(2): p. 207–215.
Lutchen, K.R., et al., Optimal ventilation waveforms for estimating low-frequency respiratory impedance. J Appl Physiol, 1993. 75(1): p. 478–488.
Johnson, A.T., Lin, C.S., and Hochheimer, J.N., Airflow perturbation device for measuring airways resistance of humans and animals. IEEE Trans Biomed Eng, 1984. 31(9): p. 622–626.
Bates, J.H., Daroczy, B., and Hantos, Z., A comparison of interrupter and forced oscillation measurements of respiratory resistance in the dog. J Appl Physiol, 1992. 72(1): p. 46–52.
Michaelson, E.D., Grassman, E.D., and Peters, W.R., Pulmonary mechanics by spectral analysis of forced random noise. J Clin Invest, 1975. 56(5): p. 1210–1230.
Goldman, M.D., et al., Within- and between-day variability of respiratory impedance, using impulse oscillometry in adolescent asthmatics. Pediatr Pulmonol, 2002. 34(4): p. 312–319.
Daroczy, B. and Hantos, Z., Generation of optimum pseudorandom signals for respiratory impedance measurements. Int J Biomed Comput, 1990. 25: p. 21–31.
Nagels, J., et al., Mechanical properties of lungs and chest wall during spontaneous breathing. J Appl Physiol, 1980. 49(3): p. 408–416.
Hantos, Z., et al., Input impedance and peripheral inhomogeneity of dog lungs. J Appl Physiol, 1992. 72(1): p. 168–178.
Landser, F.J., Clement, J., and Woestijne, K.P., Normal values of total respiratory resistance and reactance determined by forced oscillations: influence of smoking. Chest, 1982. 81(5): p. 586–591.
Peslin, R., Duvivier, C., and Gallina, C., Total respiratory input and transfer impedances in humans. J Appl Physiol, 1985. 59(2): p. 492–501.
Bates, J.H., Mishima, M., and Balassy, Z., Measuring the mechanical properties of the lung in vivo with spatial resolution at the acinar level. Physiol Meas, 1995. 16(3): p. 151–159.
Mishima, M., Balassy, Z., and Bates, J.H., Assessment of local lung impedance by the alveolar capsule oscillator in dogs: a model analysis. J Appl Physiol, 1996. 80(4): p. 1165–1172.
Balassy, Z., Mishima, M., and Bates, J.H., Changes in regional lung impedance after intravenous histamine bolus in dogs: effects of lung volume. J Appl Physiol, 1995. 78(3): p. 875–880.
Lutchen, K.R., Giurdanella, C.A., and Jackson, A.C., Inability to separate airway from tissue properties by use of human respiratory input impedance. J Appl Physiol, 1990. 68(6): p. 2403–2412.
Finucane, K.E., et al., Resistance of intrathoracic airways of healthy subjects during periodic flow. J Appl Physiol, 1975. 38(3): p. 517–530.
Petak, F., et al., Partitioning of pulmonary impedance: modeling vs. alveolar capsule approach. J Appl Physiol, 1993. 75(2): p. 513–521.
Hantos, Z., et al., Mechanical impedance of the lung periphery. J Appl Physiol, 1997. 83(5): p. 1595–1601.
Bates, J.H. and Lutchen, K.R., The interface between measurement and modeling of peripheral lung mechanics. Respir Physiol Neurobiol, 2005. 148(1–2): p. 153–164.
Bates, J.H., et al., Temporal dynamics of acute isovolume bronchoconstriction in the rat. J Appl Physiol, 1997. 82(1): p. 55–62.
Lutchen, K.R. and Jackson, A.C., Reliability of parameter estimates from models applied to respiratory impedance data. J Appl Physiol, 1987. 62(2): p. 403–413.
Wagers, S., et al., The allergic mouse model of asthma: normal smooth muscle in an abnormal lung? J Appl Physiol, 2004. 96(6): p. 2019–2027.
Peslin, R., et al., Frequency response of the chest: modeling and parameter estimation. J Appl Physiol, 1975. 39(4): p. 523–534.
Sobh, J.F., et al., Respiratory transfer impedance between 8 and 384 Hz in guinea pigs before and after bronchial challenge. J Appl Physiol, 1997. 82(1): p. 172–181.
Aliverti, A., Dellaca, R.L., and Pedotti, A., Transfer impedance of the respiratory system by forced oscillation technique and optoelectronic plethysmography. Ann Biomed Eng, 2001. 29(1): p. 71–82.
Dellaca, R.L., et al., Spatial distribution of human respiratory system transfer impedance. Ann Biomed Eng, 2003. 31(2): p. 121–131.
Mishima, M., et al., Frequency characteristics of airway and tissue impedances in respiratory diseases. J Appl Physiol, 1991. 71(1): p. 259–270.
Tomalak, W., et al., Optimal frequency range to analyze respiratory transfer impedance with six-element model. J Appl Physiol, 1993. 75(6): p. 2656–2664.
Lutchen, K.R., Sensitivity analysis of respiratory parameter uncertainties: impact of criterion function form and constraints. J Appl Physiol, 1990. 69(2): p. 766–775.
Jackson, A.C., Giurdanella, C.A., and Dorkin, H.L., Density dependence of respiratory system impedances between 5 and 320 Hz in humans. J Appl Physiol, 1989. 67(6): p. 2323–2330.
Franken, H., et al., Oscillating flow of a viscous compressible fluid through a rigid tube: a theoretical model. IEEE Trans Biomed Eng, 1981. 28(5): p. 416–420.
Benade, A.H., On the propagation of sound waves in a cylindrical conduit. J Acoust Soc Am, 1950. 22: p. 563–564.
Bates, J.H., et al., Lung tissue rheology and 1/f noise. Ann Biomed Eng, 1994. 22(6): p. 674–681.
Hildebrandt, J., Dynamic properties of air-filled excised cat lung determined by liquid plethysmograph. J Appl Physiol, 1969. 27(2): p. 246–250.
Fredberg, J.J. and Stamenovic, D., On the imperfect elasticity of lung tissue. J Appl Physiol, 1989. 67(6): p. 2408–2419.
Gomes, R.F., et al., Comparative respiratory system mechanics in rodents. J Appl Physiol, 2000. 89(3): p. 908–916.
Suki, B., et al., Partitioning of airway and lung tissue properties: comparison of in situ and open-chest conditions. J Appl Physiol, 1995. 79(3): p. 861–869.
Fredberg, J.J., et al., Tissue resistance and the contractile state of lung parenchyma. J Appl Physiol, 1993. 74(3): p. 1387–1397.
Fust, A., Bates, J.H., and Ludwig, M.S., Mechanical properties of mouse distal lung: in vivo versus in vitro comparison. Respir Physiol Neurobiol, 2004. 143(1): p. 77–86.
Sakai, H., et al., Hysteresivity of the lung and tissue strip in the normal rat: effects of heterogeneities. J Appl Physiol, 2001. 91(2): p. 737–747.
Hantos, Z., et al., Constant-phase modelling of pulmonary tissue impedance. Bull Eur Physiopathol Respir, 1987. 12: p. 326s.
Suki, B., Barabasi, A.L., and Lutchen, K.R., Lung tissue viscoelasticity: a mathematical framework and its molecular basis. J Appl Physiol, 1994. 76(6): p. 2749–2759.
Petak, F., et al., Methacholine-induced bronchoconstriction in rats: effects of intravenous vs. aerosol delivery. J Appl Physiol, 1997. 82(5): p. 1479–1487.
Bates, J.H., A recruitment model of quasi-linear power-law stress adaptation in lung tissue. Ann Biomed Eng, 2007. 35(7): p. 1165–1174.
Bates, J.H., A micromechanical model of lung tissue rheology. Ann Biomed Eng, 1998. 26(4): p. 679–687.
Mijailovich, S.M., Stamenovic, D., and Fredberg, J.J., Toward a kinetic theory of connective tissue micromechanics. J Appl Physiol, 1993. 74(2): p. 665–681.
Ito, S., et al., Tissue heterogeneity in the mouse lung: effects of elastase treatment. J Appl Physiol, 2004. 97(1): p. 204–212.
Suki, B., et al., Partitioning of lung tissue response and inhomogeneous airway constriction at the airway opening. J Appl Physiol, 1997. 82(4): p. 1349–1359.
Bellardine Black, C.L., et al., Impact of positive end-expiratory pressure during heterogeneous lung injury: insights from computed tomographic image functional modeling. Ann Biomed Eng, 2008. 36(6): p. 980–991.
Kaczka, D.W., et al., Partitioning airway and lung tissue resistances in humans: effects of bronchoconstriction. J Appl Physiol, 1997. 82(5): p. 1531–1541.
Hirai, T. and Bates, J.H., Effects of deep inspiration on bronchoconstriction in the rat. Respir Physiol, 2001. 127(2–3): p. 201–215.
Bates, J.H. and Allen, G.B., The estimation of lung mechanics parameters in the presence of pathology: a theoretical analysis. Ann Biomed Eng, 2006. 34(3): p. 384–392.
Magin, R.L., Fractional calculus in bioengineering, part 3. Crit Rev Biomed Eng, 2004. 32(3–4): p. 195–377.
Magin, R.L., Fractional calculus in bioengineering, part 2. Crit Rev Biomed Eng, 2004. 32(2): p. 105–193.
Magin, R.L., Fractional calculus in bioengineering. Crit Rev Biomed Eng, 2004. 32(1): p. 1–104.
Schetzen, M., The Volterra and Wiener Theories of Nonlinear Systems. 1980, New York: Wiley.
Suki, B. and Bates, J.H., A nonlinear viscoelastic model of lung tissue mechanics. J Appl Physiol, 1991. 71(3): p. 826–833.
Maksym, G.N. and Bates, J.H., Nonparametric block-structured modeling of rat lung mechanics. Ann Biomed Eng, 1997. 25(6): p. 1000–1008.
Maksym, G.N., Kearney, R.E., and Bates, J.H., Nonparametric block-structured modeling of lung tissue strip mechanics. Ann Biomed Eng, 1998. 26(2): p. 242–252.
Suki, B., Nonlinear phenomena in respiratory mechanical measurements. J Appl Physiol, 1993. 74(5): p. 2574–2584.
Suki, B., Zhang, Q., and Lutchen, K.R., Relationship between frequency and amplitude dependence in the lung: a nonlinear block-structured modeling approach. J Appl Physiol, 1995. 79(2): p. 660–671.
Zhang, Q., Suki, B., and Lutchen, K.R., Harmonic distortion from nonlinear systems with broadband inputs: applications to lung mechanics. Ann Biomed Eng, 1995. 23(5): p. 672–681.
Suki, B., et al., Nonlinearity and harmonic distortion of dog lungs measured by low-frequency forced oscillations. J Appl Physiol, 1991. 71(1): p. 69–75.
Suki, B. and Lutchen, K.R., Pseudorandom signals to estimate apparent transfer and coherence functions of nonlinear systems: applications to respiratory mechanics. IEEE Trans Biomed Eng, 1992. 39(11): p. 1142–1151.
Hunter, I.W. and Korenberg, M.J., The identification of nonlinear biological systems: Wiener and Hammerstein cascade models. Biol Cybern, 1986. 55(2–3): p. 135–144.
Funk, J.R., et al., Linear and quasi-linear viscoelastic characterization of ankle ligaments. J Biomech Eng, 2000. 122(1): p. 15–22.
Doehring, T.C., et al., Fractional order viscoelasticity of the aortic valve cusp: an alternative to quasilinear viscoelasticity. J Biomech Eng, 2005. 127(4): p. 700–708.
Barabasi, A.L., Linked. The New Science of Networks. 2002, Cambridge, MA: Perseus, p. 77.
Bak, P., How Nature Works. The Science of Self-organized Criticality. 1996, New York, NY: Springer-Verlag, p. 31–37.
West, B.J. and Schlesinger, M., On the ubiquity of 1/f noise. Int J Modern Phys, 1989. 3: p. 795–819.
Bak, P., Tang, C., and Wiesenfeld, K., Self-organized criticality: an explanation of the 1/f noise. Phys Rev Lett, 1987. 59(4): p. 381–384.
Barabasi, A.L. and Albert, R., Emergence of scaling in random networks. Science, 1999. 286(5439): p. 509–512.
Kullmann, L. and Kertesz, J., Preferential growth: exact solution of the time-dependent distributions. Phys Rev E Stat Nonlin Soft Matter Phys, 2001. 63(5 Pt 1): p. 051112.