[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article
Free access

Computable Error Bounds for Aggregated Markov Chains

Published: 01 April 1983 Publication History
First page of PDF

References

[1]
CLINE, A.K., MOLER, C.B., STEWART, G.W., AND WILKINSON, J.H.An esttmate for the ~ondiuon number. SlAM J. Numer. Anal. 16 (1979), 368-375.
[2]
COURTOIS, P.J. Error analysis in nearly-completely decomposable stochastic systems. Econ. 43 (1975), 691-709.
[3]
COURTOIS, P J Decomposability: Queueing and Computer System Applications. Academic Press, New York, 1977.
[4]
DuFF I. ANO STEWART, G.W, Eos.Sparse Matrix Proc. 1978. SIAM, Phdadelptua, Pa. 1979.
[5]
JENNINOS, A. AND STEWART, W.J. Simultaneous iteration for parual elgensolution of real matrices. ~ Inst. Math. Appl. 15 (1975), 351-362.
[6]
O'LEARY, D.P., STEWART, G W., VAINDERGRAFT, J.S. Estimating the largest eigenvalue of a posluve definite matrix. Math. Comput. 33 (1979), 1289-1292.
[7]
SIMON, H.A, AND ANDo, A. Aggregation of variables in dynamic systems. Econ. 29 ( 1961), I 11-138.
[8]
STEWART, G.W. Error and perturbation bounds for subspaces associated wxth certain eigenvalue problems. SlAM Rev. 15 (1973), 727-764.
[9]
STEWART, G.W.Introduction to Matrix Computaoons. Academic Press, New York, 1974.
[10]
STEWART~ G.W. Stmultaneous iteratton for computing mvanant subspaces of non-Hermitian matrices. Numer. Math. 25 (1976), 123-136.
[11]
STEW~aZT, G.W. HQR3 and EXCHNG: Fortran subroutines for calculating and ordering the eigenvalues of a real upper Hessenberg matrix. ACM Trans. Math. Soflw. 2, 3 (Sept. 1976), 275-280.
[12]
STEWART, G.W.On the Jmphcit deflation of nearly singular systems of linear eq'aatioas, SlAM j. Scmnt Stat Comput 2 (1981), 136-140
[13]
VANTILBORGH, H Exact aggregation in exponential queueing networks. J. ACM. 25, 4 (Oct. 1978), 620-629.
[14]
VARGA, R S Matrix Iteranve Analys~s Pterttlce-Hall, Englewood Cliffs, lq.L, 1962.
[15]
ZARLING, R Numerical solution of nearly decomposable queueing networks. Ph.D. Dissertation, Umv of North Carohna, 1976. Available from Un,versay Microfilms, Ann Arbor, Mlch.

Cited By

View all
  • (2024)Efficient Algorithm for Proportional Lumpability and Its Application to Selfish Mining in Public BlockchainsAlgorithms10.3390/a1704015917:4(159)Online publication date: 15-Apr-2024
  • (2017)Asymptotic Expansions for Stationary Distributions of Perturbed Semi-Markov ProcessesEngineering Mathematics II10.1007/978-3-319-42105-6_10(151-222)Online publication date: 11-Feb-2017
  • (2016)Geometric bounds on iterative approximations for nearly completely decomposable Markov chainsJournal of Applied Probability10.2307/321453827:03(521-529)Online publication date: 14-Jul-2016
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of the ACM
Journal of the ACM  Volume 30, Issue 2
April 1983
157 pages
ISSN:0004-5411
EISSN:1557-735X
DOI:10.1145/322374
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 April 1983
Published in JACM Volume 30, Issue 2

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)57
  • Downloads (Last 6 weeks)4
Reflects downloads up to 12 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Efficient Algorithm for Proportional Lumpability and Its Application to Selfish Mining in Public BlockchainsAlgorithms10.3390/a1704015917:4(159)Online publication date: 15-Apr-2024
  • (2017)Asymptotic Expansions for Stationary Distributions of Perturbed Semi-Markov ProcessesEngineering Mathematics II10.1007/978-3-319-42105-6_10(151-222)Online publication date: 11-Feb-2017
  • (2016)Geometric bounds on iterative approximations for nearly completely decomposable Markov chainsJournal of Applied Probability10.2307/321453827:03(521-529)Online publication date: 14-Jul-2016
  • (2016)Near Complete Decomposability: Bounding the Error by a Stochastic Comparison MethodAdvances in Applied Probability10.2307/142808729:03(830-855)Online publication date: 1-Jul-2016
  • (2016)Geometric bounds on iterative approximations for nearly completely decomposable Markov chainsJournal of Applied Probability10.1017/S002190020003908527:03(521-529)Online publication date: 14-Jul-2016
  • (2014)Lumping and reversed processes in cooperating automataAnnals of Operations Research10.1007/s10479-014-1694-3239:2(695-722)Online publication date: 22-Aug-2014
  • (2012)Lumping and reversed processes in cooperating automataProceedings of the 19th international conference on Analytical and Stochastic Modeling Techniques and Applications10.1007/978-3-642-30782-9_15(212-226)Online publication date: 4-Jun-2012
  • (2010)Transient SolutionConstructive Computation in Stochastic Models with Applications10.1007/978-3-642-11492-2_8(389-431)Online publication date: 2010
  • (2000)Numerical Methods for Computing Stationary Distributions of Finite Irreducible Markov ChainsComputational Probability10.1007/978-1-4757-4828-4_4(81-111)Online publication date: 2000
  • (1998)Invited Analytic comparison results for communication networksComputer Communications10.1016/S0140-3664(98)00218-721:17(1495-1508)Online publication date: 1-Nov-1998
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media