Abstract
New algorithms for computing asymptotic expansions for stationary distributions of nonlinearly perturbed semi-Markov processes are presented. The algorithms are based on special techniques of sequential phase space reduction, which can be applied to processes with asymptotically coupled and uncoupled finite phase spaces.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abadov, Z.A.: Asymptotical expansions with explicit estimation of constants for exponential moments of sums of random variables defined on a markov chain and their applications to limit theorems for first hitting times. Candidate of Science dissertation, Kiev State University (1984)
Abbad, M., Filar, J.A.: Algorithms for singularly perturbed Markov control problems: a survey. In: Leondes, C.T. (ed.) Techniques in Discrete-Time Stochastic Control Systems. Control and Dynamic Systems, vol. 73, pp. 257–289. Academic Press, New York (1995)
Albeverio, S., Koroliuk, V.S., Samoilenko, I.V.: Asymptotic expansion of semi-Markov random evolutions. Stochastics 81(5), 477–502 (2009)
Albrecht, A.R., Howlett, P.G., Pearce, C.E.M.: Necessary and sufficient conditions for the inversion of linearly-perturbed bounded linear operators on Banach space using Laurent series. J. Math. Anal. Appl. 383(1), 95–110 (2011)
Albrecht, A.R., Howlett, P.G., Pearce, C.E.M.: The fundamental equations for inversion of operator pencils on Banach space. J. Math. Anal. Appl. 413(1), 411–421 (2014)
Alimov, D., Shurenkov, V.M.: Markov renewal theorems in triangular array model. Ukr. Mat. Zh. 42, 1443–1448 (1990) (English translation in Ukr. Math. J. 42, 1283–1288)
Alimov, D., Shurenkov, V.M.: Asymptotic behavior of terminating Markov processes that are close to ergodic. Ukr. Mat. Zh. 42, 1701–1703 (1990) (English translation in Ukr. Math. J. 42 1535–1538)
Allen, B., Anderssen, R.S., Seneta, E.: Computation of stationary measures for infinite Markov chains. In: Neuts, M.F. (ed.) Algorithmic Methods in Probability. Studies in the Management Sciences, vol. 7, pp. 13–23. North-Holland, Amsterdam (1977)
Altman, E., Avrachenkov, K.E., Núñez-Queija, R.: Perturbation analysis for denumerable Markov chains with application to queueing models. Adv. Appl. Probab. 36(3), 839–853 (2004)
Andersson, F., Silvestrov, S.: The mathematics of Internet search engines. Acta Appl. Math. 104, 211–242 (2008)
Anisimov, V.V. Limit theorems for semi-Markov processes. I, II. Teor. Veroyatn. Mat. Stat. 2, I: 3–12; II: 13–21 (1970)
Anisimov, V.V.: Limit theorems for sums of random variables on a Markov chain, connected with the exit from a set that forms a single class in the limit. Teor. Veroyatn. Mat. Stat. 4, 3–17 (1971) (English translation in Theory Probab. Math. Statist. 4, 1–13)
Anisimov, V.V.: Limit theorems for sums of random variables that are given on a subset of states of a Markov chain up to the moment of exit, in a series scheme. Teor. Veroyatn. Mat. Stat. 4, 18–26 (1971) (English translation in Theory Probab. Math. Statist. 4, 15–22)
Anisimov, V.V.: Limit theorems for sums of random variables that are given on a countable subset of the states of a Markov chain up to the first exit time. Teor. Veroyatn. Mat. Stat. 8, 3–13 (1973)
Anisimov, V.V.: Asymptotical consolidation of states for random processes. Kibernetika (3), 109–117 (1973)
Anisimov, V.V.: Limit theorems for processes admitting the asymptotical consolidation of states. Theor. Veroyatn. Mat. Stat. 22, 3–15 (1980) (English translation in Theory Probab. Math. Statist. 22, 1–13)
Anisimov, V.V.: Approximation of Markov processes that can be asymptotically lumped. Teor. Veroyatn. Mat. Stat. 34, 1–12 (1986) (English translation in Theory Probab. Math. Statist. 34, 1–11)
Anisimov, V.V.: Random Processes with Discrete Components, 183 pp. Vysshaya Shkola and Izdatel’stvo Kievskogo Universiteta, Kiev (1988)
Anisimov, V.V.: Switching Processes in Queueing Models. Applied Stochastic Methods. ISTE, London and Wiley, Hoboken, NJ (2008). 345 pp
Anisimov, V.V., Chernyak, A.V.: Limit theorems for certain rare functionals on Markov chains and semi-Markov processes. Teor. Veroyatn. Mat. Stat. 26, 3–8 (1982) (English translation in Theory Probab. Math. Statist. 26, 1–6)
Anisimov, V.V., Voĭna, A.A., Lebedev, E.A.: Asymptotic estimation of integral functionals and consolidation of stochastic systems. Vestnik Kiev. Univ. Model. Optim. Slozhn. Sist. (2), 41–50 (1983)
Anisimov, V.V., Zakusilo, O.K., Donchenko, V.S.: Elements of Queueing and Asymptotical Analysis of Systems, 248 pp. Lybid’, Kiev (1987)
Asmussen, S.: Busy period analysis, rare events and transient behavior in fluid flow models. J. Appl. Math. Stoch. Anal. 7(3), 269–299 (1994)
Asmussen, S.: Applied Probability and Queues. Second edition, Applications of Mathematics, Stochastic Modelling and Applied Probability, vol. 51, xii+438 pp. Springer, New York (2003)
Asmussen, S., Albrecher, H.: Ruin Probabilities. Second edition, Advanced Series on Statistical Science & Applied Probability, vol. 14, xviii+602 pp. World Scientific, Hackensack, NJ (2010)
Avrachenkov, K.E.: Analytic perturbation theory and its applications. Ph.D. thesis, University of South Australia (1999)
Avrachenkov, K.E.: Singularly perturbed finite Markov chains with general ergodic structure. In: Boel, R., Stremersch, G. (eds.) Discrete Event Systems. Analysis and Control. Kluwer International Series in Engineering and Computer Science, vol. 569, pp. 429–432. Kluwer, Boston (2000)
Avrachenkov, K., Borkar, V., Nemirovsky, D.: Quasi-stationary distributions as centrality measures for the giant strongly connected component of a reducible graph. J. Comput. Appl. Math. 234(11), 3075–3090 (2010)
Avrachenkov, K.E., Filar, J., Haviv, M.: Singular perturbations of Markov chains and decision processes. In: Feinberg, E.A., Shwartz, A. (eds.) Handbook of Markov Decision Processes. Methods and Applications. International Series in Operations Research & Management Science, vol. 40, pp. 113–150. Kluwer, Boston (2002)
Avrachenkov, K.E., Filar, J.A., Howlett, P.G.: Analytic Perturbation Theory and Its Applications, xii+372 pp. SIAM, Philadelphia, PA (2013)
Avrachenkov, K.E., Haviv, M.: Perturbation of null spaces with application to the eigenvalue problem and generalized inverses. Linear Algebr. Appl. 369, 1–25 (2003)
Avrachenkov, K.E., Haviv, M.: The first Laurent series coefficients for singularly perturbed stochastic matrices. Linear Algebr. Appl. 386, 243–259 (2004)
Avrachenkov, K.E., Haviv, M., Howlett, P.G.: Inversion of analytic matrix functions that are singular at the origin. SIAM J. Matrix Anal. Appl. 22(4), 1175–1189 (2001)
Avrachenkov, K.E., Lasserre, J.B.: The fundamental matrix of singularly perturbed Markov chains. Adv. Appl. Probab. 31(3), 679–697 (1999)
Avrachenkov, K.E., Lasserre, J.B.: Analytic perturbation of generalized inverses. Linear Algebr. Appl. 438(4), 1793–1813 (2013)
Avrachenkov, K., Litvak, N., Son Pham, K.: Distribution of PageRank mass among principle components of the web. In: Chung, F.R.K., Bonato, A. (eds.) Algorithms and Models for the Web-Graph. Lecture Notes in Computer Science, vol. 4863, pp. 16–28. Springer, Berlin (2007)
Avrachenkov, K., Litvak, N., Son Pham, K.: A singular perturbation approach for choosing the PageRank damping factor. Internet Math. 5(1–2), 47–69 (2008)
Barbour, A.D., Pollett, P.K.: Total variation approximation for quasi-stationary distributions. J. Appl. Probab. 47(4), 934–946 (2010)
Barbour, A.D., Pollett, P.K.: Total variation approximation for quasi-equilibrium distributions II. Stoch. Process. Appl. 122(11), 3740–3756 (2012)
Barlow, J.: Perturbation results for nearly uncoupled Markov chains with applications to iterative methods. Numer. Math. 65(1), 51–62 (1993)
Baumgärtel, H.: Analytic Perturbation Theory for Matrices and Operators. Operator Theory: Advances and Applications, vol. 15, 427 pp. Birkhäuser, Basel (1985)
Benois, O., Landim, C., Mourragui, M.: Hitting times of rare events in Markov chains. J. Stat. Phys. 153(6), 967–990 (2013)
Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences.Classics in Applied Mathematics, vol. 9, xx+340 pp. SIAM, Philadelphia (1994). (A revised reprint ofNonnegative Matrices in the Mathematical Sciences. Computer Science and Applied Mathematics, xviii+316 pp. Academic Press, New York, 1979)
Bielecki, T., Stettner, Ł.: On ergodic control problems for singularly perturbed Markov processes. Appl. Math. Optim. 20(2), 131–161 (1989)
Blanchet, J., Zwart, B.: Asymptotic expansions of defective renewal equations with applications to perturbed risk models and processor sharing queues. Math. Methods Oper. Res. 72, 311–326 (2010)
Bini, D.A., Latouche, G., Meini, B.: Numerical Methods for Structured Markov Chains. Numerical Mathematics and Scientific Computation, p. xii+327. Oxford Science Publications, Oxford University Press, New York (2005)
Bobrova, A.F.: Estimates of accuracy of an asymptotic consolidation of countable Markov chains. Stability Problems for Stochastic Models, pp. 16–24. Trudy Seminara, VNIISI, Moscow (1983)
Borovkov, A.A.: Ergodicity and Stability of Stochastic Processes. Wiley Series in Probability and Statistics, vol. 314, p. xxiv+585. Wiley, Chichester (1998) (Translation from the 1994 Russian original)
Burnley, C.: Perturbation of Markov chains. Math. Mag. 60(1), 21–30 (1987)
Cao, X.R.: The Maclaurin series for performance functions of Markov chains. Adv. Appl. Probab. 30, 676–692 (1998)
Cao, W.L., Stewart, W.J.: Iterative aggregation/disaggregation techniques for nearly uncoupled Markov chains. J. Assoc. Comput. Mach. 32, 702–719 (1985)
Chatelin, F., Miranker, W.L.: Aggregation/disaggregation for eigenvalue problems. SIAM J. Numer. Anal. 21(3), 567–582 (1984)
Coderch, M., Willsky, A.S., Sastry, S.S., Castañon, D.A.: Hierarchical aggregation of singularly perturbed finite state Markov processes. Stochastics 8, 259–289 (1983)
Cole, J.D.: Perturbation Methods in Applied Mathematics, p. vi+260. Blaisdell, Waltham, Mass (1968)
Collet, P., Martínez, S., San Martín, J.: Quasi-Stationary Distributions. Markov Chains, Diffusions and Dynamical Systems. Probability and its Applications, p. xvi+280. Springer, Heidelberg (2013)
Courtois, P.J.: Error analysis in nearly-completely decomposable stochastic systems. Econometrica 43(4), 691–709 (1975)
Courtois, P.J.: Decomposability: Queueing and Computer System Applications. ACM Monograph Series, p. xiii+201. Academic Press, New York (1977)
Courtois, P.J.: Error minimization in decomposable stochastic models. In: Ralph, L.D., Teunis, J.O. (eds.) Applied Probability - Computer Science: the Interface. Progress in Computer Science, 2, vol. I, pp. 189–210. Birkhäuser, Boston (1982)
Courtois, P.J., Louchard, G.: Approximation of eigen characteristics in nearly-completely decomposable stochastic systems. Stoch. Process. Appl. 4, 283–296 (1976)
Courtois, P.J., Semal, P.: Error bounds for the analysis by decomposition of non-negative matrices. In: Iazeolla, G., Courtois, P.J., Hordijk, A. (eds.) Mathematical Computer Performance and Reliability, pp. 209–224. North-Holland, Amsterdam (1984)
Courtois, P.J., Semal, P.: Block decomposition and iteration in stochastic matrices. Philips J. Res. 39(4–5), 178–194 (1984)
Courtois, P.J., Semal, P.: Bounds for the positive eigenvectors of nonnegative matrices and for their approximations by decomposition. J. Assoc. Comput. Mach. 31(4), 804–825 (1984)
Courtois, P.J., Semal, P. Bounds for transient characteristics of large or infinite Markov chains. In: Stewart, W.J. (ed.) Numerical Solution of Markov Chains. Probability: Pure and Applied, vol. 8, pp. 413–434. Marcel Dekker, New York (1991)
Craven, B.D.: Perturbed Markov processes. Stoch. Models 19(2), 269–285 (2003)
Darroch, J., Seneta, E.: On quasi-stationary distributions in absorbing discrete-time finite Markov chains. J. Appl. Probab. 2, 88–100 (1965)
Darroch, J., Seneta, E.: On quasi-stationary distributions in absorbing continuous-time finite Markov chains. J. Appl. Probab. 4, 192–196 (1967)
Delebecque, F.: A reduction process for perturbed Markov chains. SIAM J. Appl. Math. 43, 325–350 (1983)
Delebecque, F.: On the resolvent approach to the spectral decomposition of a regular matrix pencil. Linear Algebr. Appl. 129, 63–75 (1990)
Delebecque, F., Quadrat, J.P.: Optimal control of Markov chains admitting strong and weak interactions. Automatica 17(2), 281–296 (1981)
Drozdenko, M.: Weak convergence of first-rare-event times for semi-Markov processes I. Theory Stoch. Process. 13(4), 29–63 (2007)
Drozdenko, M.: Weak convergence of first-rare-event times for semi-Markov processes, vol. 49. Doctoral dissertation, Mälardalen University, Västerås (2007)
Drozdenko, M.: Weak convergence of first-rare-event times for semi-Markov processes II. Theory Stoch. Process. 15(2), 99–118 (2009)
Englund, E.: Perturbed renewal equations with application to M/M queueing systems. 1. Teor. \(\check{\rm I}{\rm movirn}\). Mat. Stat. 60, 31–37 (1999) (Also in Theory Probab. Math. Stat. 60, 35–42)
Englund, E.: Perturbed renewal equations with application to M/M queueing systems. 2. Teor. \(\check{\rm I}{\rm movirn}\). Mat. Stat. 61, 21–32 (1999) (Also in Theory Probab. Math. Stat. 61, 21–32)
Englund, E.: Nonlinearly perturbed renewal equations with applications to a random walk. In: Silvestrov, D., Yadrenko, M., Olenko A., Zinchenko, N. (eds.) Proceedings of the Third International School on Applied Statistics, Financial and Actuarial Mathematics, Feodosiya (2000). (Theory Stoch. Process. 6(22)(3–4), 33–60)
Englund, E.: Nonlinearly perturbed renewal equations with applications. Doctoral dissertation, Umeå University (2001)
Englund, E., Silvestrov, D.S.: Mixed large deviation and ergodic theorems for regenerative processes with discrete time. In: Jagers, P., Kulldorff, G., Portenko, N., Silvestrov, D. (eds.) Proceedings of the Second Scandinavian–Ukrainian Conference in Mathematical Statistics, Vol. I, Umeå, 1997. (Theory Stoch. Process. 3(19)(1–2), 164–176)
Engström, C., Silvestrov, S.: Generalisation of the damping factor in PageRank for weighted networks. In: Silvestrov, D., Martin-Löf, A. (eds.) Modern Problems in Insurance Mathematics. Chap. 19. EAA series, pp. 313–334. Springer, Cham (2014)
Engström, C., Silvestrov, S.: PageRank, a look at small changes in a line of nodes and the complete graph. In: Silvestrov S., Rančić M. (eds.) Engineering Mathematics II. Algebraic, Stochastic and Analysis Structures for Networks, Data Classification and Optimization. Springer, Heidelberg (2016)
Engström, C., Silvestrov, S.: PageRank, connecting a line of nodes with a complete graph. In: Silvestrov S., Rančić M. (eds.) Engineering Mathematics II. Algebraic, Stochastic and Analysis Structures for Networks, Data Classification and Optimization. Springer, Heidelberg (2016)
Erdélyi, A.: Asymptotic Expansions, vi+108 pp. Dover, New York (1956)
Feinberg, B.N., Chiu, S.S.: A method to calculate steady-state distributions of large Markov chains by aggregating states. Oper. Res. 35(2), 282–290 (1987)
Feller, W.: An Introduction to Probability Theory and Its Applications, vol. I, xviii+509 pp. Wiley, New York (1968). (3rd edition of An Introduction to Probability Theory and Its Applications, vol. I, xii+419 pp. Wiley, New York, 1950)
Fuh, C.D.: Uniform Markov renewal theory and ruin probabilities in Markov random walks. Ann. Appl. Probab. 14(3), 1202–1241 (2004)
Fuh, C.D.: Asymptotic expansions on moments of the first ladder height in Markov random walks with small drift. Adv. Appl. Probab. 39, 826–852 (2007)
Fuh, C.D., Lai, T.L.: Asymptotic expansions in multidimensional Markov renewal theory and first passage times for Markov random walks. Adv. Appl. Probab. 33, 652–673 (2001)
Funderlic, R.E., Meyer, C.D., Jr.: Sensitivity of the stationary distribution vector for an ergodic Markov chain. Linear Algebr. Appl. 76, 1–17 (1985)
Gaĭtsgori, V.G., Pervozvanskiĭ, A.A.: Aggregation of states in a Markov chain with weak interaction. Kibernetika (3), 91–98 (1975). (English translation in Cybernetics 11(3), 441–450)
Gaĭtsgori, V.G., Pervozvanskiy, A.A.: Decomposition and aggregation in problems with a small parameter. Izv. Akad. Nauk SSSR, Tekhn. Kibernet. (1), 33–46 (1983) (English translation in Eng. Cybern. 2(1), 26–38)
Gibson, D., Seneta, E.: Augmented truncations of infinite stochastic matrices. J. Appl. Probab. 24(3), 600–608 (1987)
Glynn, P.: On exponential limit laws for hitting times of rare sets for Harris chains and processes. In: Glynn, P., Mikosch, T., Rolski, T. (eds). New Frontiers in Applied Probability: a Festschrift for Søren Asmussen. vol. 48A, 319–326 (2011). (J. Appl. Probab. Spec.)
Golub, G.H., Seneta, E.: Computation of the stationary distribution of an infinite Markov matrix. Bull. Aust. Math. Soc. 8, 333–341 (1973)
Golub, G.H., Van Loan, C.F: Matrix Computations. Johns Hopkins Studies in the Mathematical Sciences, xiv+756 pp. Johns Hopkins University Press, Baltimore, MD (2013). (4th edition of Matrix Computations. Johns Hopkins Series in the Mathematical Sciences, vol. 3, xvi+476 pp. Johns Hopkins University Press, Baltimore, MD, 1983)
Grassman, W.K., Taksar, M.I., Heyman, D.P.: Regenerative analysis and steady state distributions for Markov chains. Oper. Res. 33, 1107–1116 (1985)
Guo, D.Z.: On the sensitivity of the solution of nearly uncoupled Markov chains. SIAM J. Matrix Anal. Appl. 14(4), 1112–1123 (2006)
Gusak, D.V., Korolyuk, V.S.. Asymptotic behaviour of semi-Markov processes with a decomposable set of states. Teor. Veroyatn. Mat. Stat. 5, 43–50 (1971) (English translation in Theory Probab. Math. Stat. 5, 43–51)
Gut, A., Holst, L.: On the waiting time in a generalized roulette game. Stat. Probab. Lett. 2(4), 229–239 (1984)
Gyllenberg, M., Silvestrov, D.S.: Quasi-stationary distributions of a stochastic metapopulation model. J. Math. Biol. 33, 35–70 (1994)
Gyllenberg, M., Silvestrov, D.S.: Quasi-stationary phenomena in semi-Markov models. In: Janssen, J., Limnios, N. (eds.) Proceedings of the Second International Symposium on Semi-Markov Models: Theory and Applications, Compiègne, pp. 87–93 (1998)
Gyllenberg, M., Silvestrov, D.S.: Quasi-stationary phenomena for semi-Markov processes. In: Janssen, J., Limnios, N. (eds.) Semi-Markov Models and Applications, pp. 33–60. Kluwer, Dordrecht (1999)
Gyllenberg, M., Silvestrov, D.S.: Cramér-Lundberg and diffusion approximations for nonlinearly perturbed risk processes including numerical computation of ruin probabilities. In: Silvestrov, D., Yadrenko, M., Borisenko, O., Zinchenko, N. (eds.) Proceedings of the Second International School on Actuarial and Financial Mathematics, Kiev (1999). (Theory Stoch. Process., 5(21)(1–2), 6–21)
Gyllenberg, M., Silvestrov, D.S.: Nonlinearly perturbed regenerative processes and pseudo-stationary phenomena for stochastic systems. Stoch. Process. Appl. 86, 1–27 (2000)
Gyllenberg, M., Silvestrov, D.S.: Cramér-Lundberg approximation for nonlinearly perturbed risk processes. Insur. Math. Econ. 26, 75–90 (2000)
Gyllenberg, M., Silvestrov, D.S.: Quasi-Stationary Phenomena in Nonlinearly Perturbed Stochastic Systems. De Gruyter Expositions in Mathematics, vol. 44, ix+579 pp. Walter de Gruyter, Berlin (2008)
Häggström, O.: Finite Markov Chains and Algorithmic Applications. London Mathematical Society Student Texts, vol. 52, 126 pp. Cambridge University Press, Cambridge (2002)
Hanen, A.: Probème central limite dans le cas Markovien fini. La matrice limite n’a qu’une seule classe ergodique et pas d’état transitoire. C. R. Acad. Sci. Paris 256, 68–70 (1963)
Hanen, A.: Problème central limite dans le cas Markovien fini. II. La matrice limite a plusieurs classes ergodiques et pas d’états transitoires. C. R. Acad. Sci. Paris 256, 362–364 (1963)
Hanen, A.: Problème central limite dans le cas Markovien fini. Cas général. C. R. Acad. Sci. Paris 256, 575–577 (1963)
Hanen, A.: Théorèmes limites pour une suite de chaînes de Markov. Ann. Inst. H. Poincaré 18, 197–301 (1963)
Harrod, W.J., Plemmons, R.J.: Comparison of some direct methods for computing stationary distributions of Markov chains. SIAM J. Sci. Stat. Comput. 5, 453–469 (1984)
Hassin, R., Haviv, M.: Mean passage times and nearly uncoupled Markov chains. SIAM J. Discret. Math. 5, 386–397 (1992)
Haviv, M.: An approximation to the stationary distribution of a nearly completely decomposable Markov chain and its error analysis. SIAM J. Algebr. Discret. Methods 7(4), 589–593 (1986)
Haviv, M.: Aggregation/disaggregation methods for computing the stationary distribution of a Markov chain. SIAM J. Numer. Anal. 24(4), 952–966 (1987)
Haviv, M.: Error bounds on an approximation to the dominant eigenvector of a nonnegative matrix. Linear Multilinear Algebr. 23(2), 159–163 (1988)
Haviv, M.: An aggregation/disaggregation algorithm for computing the stationary distribution of a large Markov chain. Commun. Stat. Stoch. Models 8(3), 565–575 (1992)
Haviv, M.: On censored Markov chains, best augmentations and aggregation/disaggregation procedures. Aggregation and disaggregation in operations research. Comput. Oper. Res. 26(10–11), 1125–1132 (1999)
Haviv, M.: More on Rayleigh-Ritz refinement technique for nearly uncoupled stochastic matrices. SIAM J. Matrix Anal. Appl. 10(3), 287–293 (2006)
Haviv, M., Ritov, Y.: An approximation to the stationary distribution of a nearly completely decomposable Markov chain and its error bound. SIAM J. Algebr. Discret. Methods 7(4), 583–588 (1986)
Haviv, M., Ritov, Y.: On series expansions and stochastic matrices. SIAM J. Matrix Anal. Appl. 14(3), 670–676 (1993)
Haviv, M., Ritov, Y.: Bounds on the error of an approximate invariant subspace for non-self-adjoint matrices. Numer. Math. 67(4), 491–500 (1994)
Haviv, M., Ritov, Y., Rothblum, U.G.: Iterative methods for approximating the subdominant modulus of an eigenvalue of a nonnegative matrix. Linear Algebr. Appl. 87, 61–75 (1987)
Haviv, M., Ritov, Y., Rothblum, U.G.: Taylor expansions of eigenvalues of perturbed matrices with applications to spectral radii of nonnegative matrices. Linear Algebr. Appl. 168, 159–188 (1992)
Haviv, M., Rothblum, U.G.: Bounds on distances between eigenvalues. Linear Algebr. Appl. 63, 101–118 (1984)
Haviv, M., Van der Heyden, L.: Perturbation bounds for the stationary probabilities of a finite Markov chain. Adv. Appl. Probab. 16, 804–818 (1984)
Hernández-Lerma, O. Lasserre, J.B.: Markov Chains and Invariant Probabilities. Progress in Mathematics, vol. 211, xvi+205 pp. Birkhäuser, Basel (2003)
Ho, Y.C., Cao, X.R.: Perturbation Analysis of Discrete Event Dynamic Systems. The Springer International Series in Engineering and Computer Science, 433 pp. Springer, New York (1991)
Hoppensteadt, F., Salehi, H., Skorokhod, A.: On the asymptotic behavior of Markov chains with small random perturbations of transition probabilities. In: Gupta, A.K. (ed.) Multidimensional Statistical Analysis and Theory of Random Matrices: Proceedings of the Sixth Eugene Lukacs Symposium. Bowling Green, OH, 1996, pp. 93–100. VSP, Utrecht (1996)
Hoppensteadt, F., Salehi, H., Skorokhod, A.: Markov chain with small random perturbations with applications to bacterial genetics. Random Oper. Stoch. Equ. 4(3), 205–227 (1996)
Hoppensteadt, F., Salehi, H., Skorokhod, A.: Discrete time semigroup transformations with random perturbations. J. Dyn. Differ. Equ. 9(3), 463–505 (1997)
Hössjer, O.: Coalescence theory for a general class of structured populations with fast migration. Adv. Appl. Probab. 43(4), 1027–1047 (2011)
Hössjer, O.: Spatial autocorrelation for subdivided populations with invariant migration schemes. Methodol. Comput. Appl. Probab. 16(4), 777–810 (2014)
Hössjer, O., Ryman, N.: Quasi equilibrium, variance effective size and fixation index for populations with substructure. J. Math. Biol. 69(5), 1057–1128 (2014)
Howlett, P., Albrecht, A., Pearce, C.: Laurent series for inversion of linearly perturbed bounded linear operators on Banach space. J. Math. Anal. Appl. 366(1), 112–123 (2010)
Howlett, P., Avrachenkov, K.: Laurent series for the inversion of perturbed linear operators on Hilbert space. In: Glover, B.M., Rubinov, A.M. (eds.) Optimization and Related Topics. Applied Optimisation, vol. 47, pp. 325–342. Kluwer, Dordrecht (2001)
Howlett, P., Avrachenkov, K., Pearce, C., Ejov, V.: Inversion of analytically perturbed linear operators that are singular at the origin. J. Math. Anal. Appl. 353(1), 68–84 (2009)
Howlett, P., Pearce, C., Torokhti, A.: On nonlinear operator approximation with preassigned accuracy. J. Comput. Anal. Appl. 5(3), 273–297 (2003)
Hunter, J.J.: Stationary distributions of perturbed Markov chains. Linear Algebr. Appl. 82, 201–214 (1986)
Hunter, J.J.: The computation of stationary distributions of Markov chains through perturbations. J. Appl. Math. Stoch. Anal. 4(1), 29–46 (1991)
Hunter, J.J.: A survey of generalized inverses and their use in applied probability. Math. Chron. 20, 13–26 (1991)
Hunter, J.J.: Stationary distributions and mean first passage times of perturbed Markov chains. Linear Algebr. Appl. 410, 217–243 (2005)
Hunter, J.J.: Generalized inverses of Markovian kernels in terms of properties of the Markov chain. Linear Algebr. Appl. 447, 38–55 (2014)
Kalashnikov, V.V.: Qualitative Analysis of the Behaviour of Complex Systems by the Method of Test Functions. Theory and Methods of Systems Analysis, 247 pp. Nauka, Moscow (1978)
Kalashnikov, V.V.: Solution of the problem of approximating a denumerable Markov chain. Eng. Cybern. (3), 92–95 (1997)
Kalashnikov, V.V.: Geometric Sums: Bounds for Rare Events with Applications. Mathematics and its Applications, vol. 413, ix+265 pp. Kluwer, Dordrecht (1997)
Kalashnikov, V.V., Anichkin, S.A.: Continuity of random sequences and approximation of Markov chains. Adv. Appl. Probab. 13(2), 402–414 (1981)
Kaplan, E.I.: Limit theorems for exit times of random sequences with mixing. Teor. Veroyatn. Mat. Stat. 21, 53–59 (1979). (English translation in Theory Probab. Math. Stat. 21, 59–65)
Kaplan, E.I.: Limit Theorems for Sum of Switching Random Variables with an Arbitrary Phase Space of Switching Component. Candidate of Science dissertation, Kiev State University (1980)
Kartashov, N.V.: Inequalities in stability and ergodicity theorems for Markov chains with a general phase space. I. Teor. Veroyatn. Primen. vol. 30, 230–240 (1985). (English translation in Theory Probab. Appl. 30, 247–259)
Kartashov, N.V.: Inequalities in stability and ergodicity theorems for Markov chains with a general phase space. II. Teor. Veroyatn. Primen. 30, 478–485 (1985). (English translation in Theory Probab. Appl. 30, 507–515)
Kartashov, N.V.: Asymptotic representations in an ergodic theorem for general Markov chains and their applications. Teor. Veroyatn. Mat. Stat. 32, 113–121 (1985). (English translation in Theory Probab. Math. Stat. 32, 131–139)
Kartashov, N.V.: Asymptotic expansions and inequalities in stability theorems for general Markov chains under relatively bounded perturbations. In: Stability Problems for Stochastic Models, Varna, 1985, pp. 75–85. VNIISI, Moscow (1985). (English translation in J. Soviet Math. 40(4), 509–518)
Kartashov, N.V.: Inequalities in theorems of consolidation of Markov chains. Theor. Veroyatn. Mat. Stat. 34, 62–73 (1986). (English translation in Theory Probab. Math. Stat. 34, 67–80)
Kartashov, N.V.: Estimates for the geometric asymptotics of Markov times on homogeneous chains. Teor. Veroyatn. Mat. Stat. 37, 66–77 (1987). (English translation in Theory Probab. Math. Stat. 37, 75–88)
Kartashov, M.V.: Computation and estimation of the exponential ergodicity exponent for general Markov processes and chains with recurrent kernels. Teor. \(\check{\rm I}{\rm movirn}\). Mat. Stat. 54, 47–57 (1996). (English translation in Theory Probab. Math. Stat. 54, 49–60)
Kartashov, M.V.: Strong Stable Markov Chains, 138 pp. VSP, Utrecht and TBiMC, Kiev (1996)
Kartashov, M.V.: Calculation of the spectral ergodicity exponent for the birth and death process. Ukr. Mat. Zh. 52, 889–897 (2000) (English translation in Ukr. Math. J. 52, 1018–1028)
Kartashov, M.V.: Ergodicity and stability of quasihomogeneous Markov semigroups of operators. Teor. \(\check{\rm I}{\rm movirn}\). Mat. Stat. 72, 54–62 (2005). (English translation in Theory Probab. Math. Stat. 72, 59–68)
Kartashov, M.V.: Quantitative and qualitative limits for exponential asymptotics of hitting times for birth-and-death chains in a scheme of series. Teor. Imovirn. Mat. Stat. 89, 40–50 (2013). (English translation in Theory Probab. Math. Stat. 89, 45–56 (2014))
Kato, T.: Perturbation Theory for Linear Operators. Classics of Mathematics, 623 pp. Springer, Berlin (2013). (2nd edition of Perturbation Theory for Linear Operators, xix+592 pp. Springer, New York)
Keilson, J.: A limit theorem for passage times in ergodic regenerative processes. Ann. Math. Stat. 37, 866–870 (1966)
Keilson, J.: Markov Chain Models – Rarity and Exponentiality. Applied Mathematical Sciences, vol. 28, xiii+184 pp. Springer, New York (1979)
Kemeny, J.G., Snell, J.L.: Finite Markov Chains. The University Series in Undergraduate Mathematics, viii+210 pp. D. Van Nostrand, Princeton, NJ (1960)
Kevorkian, J., Cole, J.D.: Perturbation Methods in Applied Mathematics. Applied Mathematical Sciences, vol. 34, x+558 pp. Springer, New York (1981)
Kevorkian, J., Cole, J.D.: Multiple Scale and Singular Perturbation Methods. Applied Mathematical Sciences, vol. 114, viii+632 pp. Springer, New York (1996)
Khasminskii, R.Z., Yin, G., Zhang, Q.: Singularly perturbed Markov chains: quasi-stationary distribution and asymptotic expansion. In: Proceedings of Dynamic Systems and Applications, vol. 2, pp. 301–308. Atlanta, GA, 1995. Dynamic, Atlanta, GA (1996)
Khasminskii, R.Z., Yin, G., Zhang, Q.: Asymptotic expansions of singularly perturbed systems involving rapidly fluctuating Markov chains. SIAM J. Appl. Math. 56(1), 277–293 (1996)
Kijima, M.: Markov Processes for Stochastic Modelling. Stochastic Modeling Series, x+341 pp. Chapman & Hall, London (1997)
Kim, D.S., Smith, R.L.: An exact aggregation/disaggregation algorithm for large scale Markov chains. Nav. Res. Logist. 42(7), 1115–1128 (1995)
Kingman, J.F.: The exponential decay of Markovian transition probabilities. Proc. Lond. Math. Soc. 13, 337–358 (1963)
Kokotović, P.V., Phillips, R.G., Javid, S.H.: Singular perturbation modeling of Markov processes. In: Bensoussan, A., Lions, J.L. (eds.) Analysis and optimization of systems: Proceedings of the Fourth International Conference on Analysis and Optimization. Lecture Notes in Control and Information Science, vol. 28, pp. 3–15. Springer, Berlin (1980)
Konstantinov, M. Gu, D.W., Mehrmann, V., Petkov, P.: Perturbation Theory for Matrix Equations. Studies in Computational Mathematics, vol. 9, xii+429 pp. North-Holland, Amsterdam (2003)
Konstantinov, M.M., Petkov, P.H.: Perturbation methods in linear algebra and control. Appl. Comput. Math. 7(2), 141–161 (2008)
Kontoyiannis, I., Meyn, S.P.: Spectral theory and limit theorems for geometrically ergodic Markov processes. Ann. Appl. Probab. 13(1), 304–362 (2003)
Korolyuk, D.V.: Limit theorems for hitting time type functionals defined on processes with semi-Markov switchings. Candidate of Science Dissertation, Kiev State University (1983)
Korolyuk, D.V., Silvestrov D.S.: Entry times into asymptotically receding domains for ergodic Markov chains. Teor. Veroyatn. Primen. 28, 410–420 (1983). (English translation in Theory Probab. Appl. 28, 432–442)
Korolyuk, D.V., Silvestrov D.S.: Entry times into asymptotically receding regions for processes with semi-Markov switchings. Teor. Veroyatn. Primen. 29, 539–544 (1984). (English translation in Theory Probab. Appl. 29, 558–563)
Korolyuk, V.S.: On asymptotical estimate for time of a semi-Markov process being in the set of states. Ukr. Mat. Zh. 21, 842–845 (1969). (English translation in Ukr. Math. J. 21, 705–710)
Korolyuk, V.S.: Stochastic Models of Systems, 208 pp. Naukova Dumka, Kiev (1989)
Korolyuk, V.S., Brodi, S.M., Turbin, A.F.: Semi-Markov processes and their application. Probability Theory. Mathematical Statistics. Theoretical Cybernetics, vol. 11, pp. 47–97. VINTI, Moscow (1974)
Korolyuk, V.S., Korolyuk, V.V.: Stochastic Models of Systems. Mathematics and its Applications, vol. 469, xii+185 pp. Kluwer, Dordrecht (1999)
Korolyuk, V.S., Limnios, N.: Diffusion approximation of integral functionals in merging and averaging scheme. Teor. \(\check{\rm I}{\rm movirn}\). Mat. Stat. 59, 99–105 (1998). (English translation in Theory Probab. Math. Stat. 59, 101–107)
Korolyuk, V.S., Limnios, N.: Diffusion approximation for integral functionals in the double merging and averaging scheme. Teor. \(\check{\rm I}{\rm movirn}\). Mat. Stat. 60, 77–84 (1999). (English translation in Theory Probab. Math. Stat. 60, 87–94)
Korolyuk, V.S., Limnios, N.: Evolutionary systems in an asymptotic split phase space. In: Limnios, N., Nikulin, M. (eds.) Recent Advances in Reliability Theory: Methodology, Practice and Inference, pp. 145–161. Birkhäuser, Boston (2000)
Korolyuk, V.S., Limnios, N.: Markov additive processes in a phase merging scheme. In: Korolyuk, V., Prokhorov, Yu., Khokhlov, V., Klesov, O. (eds.) Proceedings of the Conference Dedicated to the 90th Anniversary of Boris Vladimirovich Gnedenko, Kiev (2002). (Theory Stoch. Process., 8(3–4), 213–225)
Korolyuk, V.S., Limnios, N.: Average and diffusion approximation of stochastic evolutionary systems in an asymptotic split state space. Ann. Appl. Probab. 14, 489–516 (2004)
Korolyuk, V.S., Limnios, N.: Diffusion approximation of evolutionary systems with equilibrium in asymptotic split phase space. Teor. \(\check{\rm I}{\rm movirn}\). Mat. Stat. 70, 63–73 (2004). (English translation in Theory Probab. Math. Stat. 70, 71–82)
Koroliuk, V.S., Limnios, N.: Stochastic Systems in Merging Phase Space, xv+331 pp. World Scientific, Singapore (2005)
Koroliuk, V.S., Limnios, N.: Reliability of semi-Markov systems with asymptotic merging phase space. In: Rykov, V.V., Balakrishnan, N., Nikulin, M.S. (eds.) Mathematical and Statistical Models and Methods in Reliability, pp. 3–18. Birkhäuser, Boston (2010)
Korolyuk, V.S., Penev, I.P., Turbin, A.F.: The asymptotic behavior of the distribution of the absorption time of a Markov chain. Kibernetika (2), 20–22 (1972)
Korolyuk, V.S., Penev, I.P., Turbin, A.F.: Asymptotic expansion for the distribution of the absorption time of a weakly inhomogeneous Markov chain. In: Korolyuk, V.S. (ed.) Analytic Methods of Investigation in Probability Theory, pp. 97–105. Akad. Nauk Ukr. SSR, Inst. Mat., Kiev (1981)
Korolyuk, V., Swishchuk, A.: Semi-Markov Random Evolutions, 254 pp. Naukova Dumka, Kiev (1992). (English revised edition of Semi-Markov Random Evolutions. Mathematics and its Applications, vol. 308, x+310 pp. Kluwer, Dordrecht, 1995)
Korolyuk, V.V., Tadzhiev, A.: Asymptotic behavior of Markov evolutions prior to the time of absorption. Ukr. Mat. Zh. 38, 248–251 (1986). (English translation in Ukr. Math. J. 38, 219–222)
Korolyuk, V.S., Turbin, A.F.: On the asymptotic behaviour of the occupation time of a semi-Markov process in a reducible subset of states. Teor. Veroyatn. Mat. Stat. 2, 133–143 (1970). (English translation in Theory Probab. Math. Stat. 2, 133–143)
Korolyuk, V.S., Turbin, A.F.: A certain method of proving limit theorems for certain functionals of semi-Markov processes. Ukr. Mat. Zh. 24, 234–240 (1972)
Korolyuk, V.S., Turbin, A.F.: Semi-Markov Processes and its Applications, 184 pp. Naukova Dumka, Kiev (1976)
Korolyuk, V.S., Turbin, A.F.: Mathematical Foundations of the State Lumping of Large Systems, 218 pp.. Naukova Dumka, Kiev (1978). (English edition: Mathematical Foundations of the State Lumping of Large Systems. Mathematics and its Applications, vol. 264, x+278 pp. Kluwer, Dordrecht, 1993)
Korolyuk, V.S., Turbin, A.F., Tomusjak, A.A.: Sojourn time of a semi-Markov process in a decomposing set of states. Analytical Methods of Probability Theory, vol. 152, pp. 69–79. Naukova Dumka, Kiev (1979)
Koury, J.R., McAllister, D.F., Stewart, W.J.: Iterative methods for computing stationary distributions of nearly completely decomposable Markov chains. SIAM J. Algebr. Discret. Methods 5, 164–186 (1984)
Kovalenko, I.N.: An algorithm of asymptotic analysis of a sojourn time of Markov chain in a set of states. Dokl. Acad. Nauk Ukr. SSR, Ser. A 6, 422–426 (1973)
Kovalenko, I.N.: Studies in the Reliability Analysis of Complex Systems, 210 pp. Naukova Dumka, Kiev (1975)
Kovalenko, I.N.: Rare events in queuing theory - a survey. Queuing Syst. Theory Appl. 16(1–2), 1–49 (1994)
Kovalenko, I.N., Kuznetsov, M.Ju.: Renewal process and rare events limit theorems for essentially multidimensional queueing processes. Math. Oper. Stat. Ser. Stat. 12(2), 211–224 (1981)
Kovalenko, I.N., Kuznetsov, N.Y., Pegg, P.A.: Mathematical Theory of Reliability of Time Dependent Systems with Practical Applications. Wiley Series in Probability and Statistics, 316 pp. Wiley, New York (1997)
Kupsa, M., Lacroix, Y.: Asymptotics for hitting times. Ann. Probab. 33(2), 610–619 (2005)
Langville, A.N., Meyer, C.D.: Updating Markov chains with an eye on Google’s PageRank. SIAM J. Matrix Anal. Appl. 27(4), 968–987 (2006)
Lasserre, J.B.: A formula for singular perturbations of Markov chains. J. Appl. Probab. 31, 829–833 (1994)
Latouche, G.: Perturbation analysis of a phase-type queue with weakly correlated arrivals. Adv. Appl. Probab. 20, 896–912 (1988)
Latouche, G.: First passage times in nearly decomposable Markov chains. In: Stewart, W.J. (ed.) Numerical Solution of Markov Chains. Probability: Pure and Applied, vol. 8, pp. 401–411. Marcel Dekker, New York (1991)
Latouche, G., Louchard, G.: Return times in nearly decomposable stochastic processes. J. Appl. Probab. 15, 251–267 (1978)
Latouche, G., Ramaswami, V.: Introduction to Matrix Analytic Methods in Stochastic Modeling. ASA-SIAM Series on Statistics and Applied Probability, xiv+334 pp. SIAM, Philadelphia, PA and ASA, Alexandria, VA (1999)
Leadbetter, M.R.: On series expansion for the renewal moments. Biometrika 50(1–2), 75–80 (1963)
Li, R.C., Stewart, G.W.: A new relative perturbation theorem for singular subspaces. Linear Algebr. Appl. 313(1–3), 41–51 (2000)
Li, X., Yin, G., Yin, K., Zhang, Q.: A numerical study of singularly perturbed Markov chains: quasi-equilibrium distributions and scaled occupation measures. Dyn. Contin. Discret. Impuls. Syst. 5(1–4), 295–304 (1999)
Louchard, G., Latouche, G.: Random times in nearly-completely decomposable, transient Markov chains. Cahiers Centre Études Rech. Opér. 24(2–4), 321–352 (1982)
Louchard, G., Latouche, G.: Geometric bounds on iterative approximations for nearly completely decomposable Markov chains. J. Appl. Probab. 27(3), 521–529 (1990)
Marek, I., Mayer, P.: Convergence analysis of an iterative aggregation/disaggregation method for computing stationary probability vectors of stochastic matrices. Numer. Linear Algebr. Appl. 5(4), 253–274 (1998)
Marek, I., Mayer, P., Pultarová, I.: Convergence issues in the theory and practice of iterative aggregation/disaggregation methods. Electron. Trans. Numer. Anal. 35, 185–200 (2009)
Marek, I., Pultarová, I.: A note on local and global convergence analysis of iterative aggregation-disaggregation methods. Linear Algebr. Appl. 413(2–3), 327–341 (2006)
Mattingly, R.B., Meyer, C.D.: Computing the stationary distribution vector of an irreducible Markov chain on a shared-memory multiprocessor. In: Stewart, W.J. (ed.) Numerical Solution of Markov Chains. Probability: Pure and Applied, vol. 8, pp. 491–510. Marcel Dekker, New York (1991)
McAllister, D.F., Stewart, G.W., Stewart, W.J.: On a Rayleigh-Ritz refinement technique for nearly uncoupled stochastic matrices. Linear Algebr. Appl. 60, 1–25 (1984)
Meshalkin, L.D.: Limit theorems for Markov chains with a finite number of states. Teor. Veroyatn. Primen. 3, 361–385 (1958). (English translation in Theory Probab. Appl. 3, 335–357)
Masol, V.I., Silvestrov, D.S.: Record values of the occupation time of a semi-Markov process. Visnik Kiev. Univ. Ser. Mat. Meh. 14, 81–89 (1972)
Motsa, A.I., Silvestrov, D.S.: Asymptotics of extremal statistics and functionals of additive type for Markov chains. In: Klesov, O., Korolyuk, V., Kulldorff, G., Silvestrov, D. (eds.) Proceedings of the First Ukrainian–Scandinavian Conference on Stochastic Dynamical Systems, Uzhgorod, 1995 (1996). (Theory Stoch. Proces., 2(18)(1–2), 217–224)
Meyer, C.D.: Stochastic complementation, uncoupling Markov chains, and the theory of nearly reducible systems. SIAM Rev. 31(2), 240–272 (1989)
Meyer, C.D.: Sensitivity of the stationary distribution of a Markov chain. SIAM J. Matrix Anal. Appl. 15(3), 715–728 (1994)
Meyer, C.D. (2000). Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia, PA, xii+718 pp
Meyer, C.D.: Continuity of the Perron root. Linear Multilinear Algebr. 63(7), 1332–1336 (2015)
Meyer Jr., C.D.: The condition of a finite Markov chain and perturbation bounds for the limiting probabilities. SIAM J. Algebr. Discret. Methods 1(3), 273–283 (1980)
Meyer, C.D., Stewart, G.W.: Derivatives and perturbations of eigenvectors. SIAM J. Numer. Anal. 25(3), 679–691 (1988)
Meyn, S.P., Tweedie, R.L.: Markov Chains and Stochastic Stability, xxviii+594 pp. Cambridge University Press, Cambridge (2009). (2nd edition of Markov Chains and Stochastic Stability. Communications and Control Engineering Series, xvi+ 548 pp. Springer, London, 1993)
Mitrophanov, A.Y.: Stability and exponential convergence of continuous-time Markov chains. J. Appl. Probab. 40, 970–979 (2003)
Mitrophanov, A.Y.: Sensitivity and convergence of uniformly ergodic Markov chains. J. Appl. Probab. 42, 1003–1014 (2005)
Mitrophanov, A.Y.: Ergodicity coefficient and perturbation bounds for continuous-time Markov chains. Math. Inequal. Appl. 8(1), 159–168 (2005)
Mitrophanov, A.Y.: Stability estimates for finite homogeneous continuous-time Markov chains. Theory Probab. Appl. 50(2), 319–326 (2006)
Mitrophanov, A.Y., Lomsadze, A., Borodovsky, M.: Sensitivity of hidden Markov models. J. Appl. Probab. 42, 632–642 (2005)
Nagaev, S.V.: Some limit theorems for stationary Markov chains. Teor. Veroyatn. Primen. 2, 389–416 (1957). (English translation in Theory Probab. Appl. 2, 378–406)
Nagaev, S.V.: A refinement of limit theorems for homogeneous Markov chains. Teor. Veroyatn. Primen. 6, 67–86 (1961). (English translation in Theory Probab. Appl. 6, 62–81)
Ni, Y.: Perturbed renewal equations with multivariate nonpolynomial perturbations. In: Frenkel, I., Gertsbakh, I., Khvatskin, L., Laslo, Z., Lisnianski, A. (eds.) Proceedings of the International Symposium on Stochastic Models in Reliability Engineering, Life Science and Operations Management, pp. 754–763. Beer Sheva, Israel (2010)
Ni, Y.: Analytical and numerical studies of perturbed renewal equations with multivariate non-polynomial perturbations. J. Appl. Quant. Methods 5(3), 498–515 (2010)
Ni, Y.: Nonlinearly perturbed renewal equations: asymptotic results and applications. Doctoral Dissertation, 106, Mälardalen University, Västerås (2011)
Ni, Y.: Nonlinearly perturbed renewal equations: the non-polynomial case. Teor. \(\check{\rm I}{\rm movirn}\). Mat. Stat. 84, 111–122 (2012). (Also in Theory Probab. Math. Stat. 84, 117–129)
Ni, Y.: Exponential asymptotical expansions for ruin probability in a classical risk process with non-polynomial perturbations. In: Silvestrov, D., Martin-Löf, A. (eds.) Modern Problems in Insurance Mathematics. Chap. 6, EAA series, pp. 67–91. Springer, Cham (2014)
Ni, Y., Silvestrov, D., Malyarenko, A.: Exponential asymptotics for nonlinearly perturbed renewal equation with non-polynomial perturbations. J. Numer. Appl. Math. 1(96), 173–197 (2008)
Nåsell, I.: Extinction and Quasi-Stationarity in the Stochastic Logistic SIS Model. Lecture Notes in Mathematics, Mathematical Biosciences Subseries, vol. 2022, xii+199 pp. Springer, Heidelberg (2011)
Paige, C.C., Styan, G.P.H., Wachter, P.G.: Computation of the stationary distribution of a Markov chain. J. Stat. Comput. Simul. 4, 173–186 (1975)
Pervozvanskiĭ, A.A., Gaitsgori, V.G.: Theory of Suboptimal Decisions Decomposition and Aggregation. Mathematics and Its Applications (Soviet Series), vol. 12, xviii+384 pp. Kluwer, Dordrecht (1988)
Pervozvanskiĭ, A.A., Smirnov, I.N.: An estimate of the steady state of a complex system with slowly varying constraints. Kibernetika (4), 45–51 (1974). (English translation in Cybernetics 10(4), 603–611)
Petersson, M.: Quasi-stationary distributions for perturbed discrete time regenerative processes. Teor. \(\check{\rm I}{\rm movirn}\). Mat. Stat. 89, 140–155 (2013). (Also in Theor. Probab. Math. Stat. 89, 153–168)
Petersson, M.: Asymptotics of ruin probabilities for perturbed discrete time risk processes. In: Silvestrov, D., Martin-Löf, A. (eds.) Modern Problems in Insurance Mathematics. Chapter 7, EAA series, pp. 93–110. Springer, Cham (2014)
Petersson, M.: Asymptotic expansions for moment functionals of perturbed discrete time semi-Markov processes. In: Silvestrov, S., Rančić, M. (eds.) Engineering Mathematics II. Algebraic, Stochastic and Analysis Structures for Networks, Data Classification and Optimization. Springer, Heidelberg (2016)
Petersson, M.: Asymptotic for quasi-stationary distributions of perturbed discrete time semi-Markov processes. In: Silvestrov, S., Rančić, M. (eds.) Engineering Mathematics II. Algebraic, Stochastic and Analysis Structures for Networks, Data Classification and Optimization. Springer, Heidelberg (2016)
Petersson, M.: Perturbed discrete time stochastic models. Doctoral Dissertation, Stockholm University (2016)
Phillips, R.G., Kokotović, P.V.: A singular perturbation approach to modeling and control of Markov chains. IEEE Trans. Autom. Control 26, 1087–1094 (1981)
Plotkin, J.D., Turbin, A.F.: Inversion of linear operators that are perturbed on the spectrum. Ukr. Mat. Zh. 23, 168–176 (1971)
Plotkin, J.D., Turbin, A.F.: Inversion of normally solvable linear operators that are perturbed on the spectrum. Ukr. Mat. Zh. 27(4), 477–486 (1975)
Poliščuk, L.I., Turbin, A.F.: Asymptotic expansions for certain characteristics of semi-Markov processes. Teor. Veroyatn. Mat. Stat. 8, 122–127 (1973). (English translation in Theory Probab. Math. Stat. 8, 121–126)
Pollett, P.K., Stewart, D.E.: An efficient procedure for computing quasi-stationary distributions of Markov chains with sparse transition structure. Adv. Appl. Probab. 26, 68–79 (1994)
Quadrat, J.P.: Optimal control of perturbed Markov chains: the multitime scale case. In: Ardema, M.D. (ed.) Singular Perturbations in Systems and Control. CISM Courses and Lectures, vol. 280, pp. 215–239. Springer, Vienna (1983)
Rohlichek, J.R.: Aggregation and time scale analysis of perturbed markov systems. Ph.D. thesis, Massachusetts Inst. Tech., Cambridge, MA (1987)
Rohlicek, J.R., Willsky, A.S.: Multiple time scale decomposition of discrete time Markov chains. Syst. Control Lett. 11(4), 309–314 (1988)
Rohlicek, J.R., Willsky, A.S.: The reduction of perturbed Markov generators: an algorithm exposing the role of transient states. J. Assoc. Comput. Mach. 35(3), 675–696 (1988)
Romanovskiĭ, V.I.: Discrete Markov Chains, 436 pp. Gostehizdat, Moscow-Leningrad (1949)
Samoĭlenko, \(\bar{\rm I}\).V.: Asymptotic expansion of Markov random evolution. Ukr. Mat. Visn. 3(3), 394–407 (2006). (English translation in Ukr. Math. Bull. 3(3), 381–394)
Samoĭlenko, \(\bar{\rm I}\).V.: Asymptotic expansion of semi-Markov random evolution. Ukr. Mat. Zh. 58, 1234–1248 (2006). (English translation in Ukr. Math. J. 58, 1396–1414)
Schweitzer, P.J.: Perturbation theory and finite Markov chains. J. Appl. Probab. 5, 401–413 (1968)
Schweitzer, P.J.: Aggregation methods for large Markov chains. In: Iazeolla, G., Courtois, P.J., Hordijk, A. (eds.) Mathematical Computer Performance and Reliability, pp. 275–286. North-Holland, Amsterdam (1984)
Schweitzer, P.J.: Posterior bounds on the equilibrium distribution of a finite Markov chain. Commun. Stat. Stoch. Models 2(3), 323–338 (1986)
Schweitzer, P.J.: Dual bounds on the equilibrium distribution of a finite Markov chain. J. Math. Anal. Appl. 126(2), 478–482 (1987)
Schweitzer, P.J.: A survey of aggregation-disaggregation in large Markov chains. In: Stewart, W.J. (ed.) Numerical solution of Markov chains. Probability: Pure and Applied, vol. 8, pp. 63–88. Marcel Dekker, New York (1991)
Schweitzer, P.J., Kindle, K.W.: Iterative aggregation for solving undiscounted semi-Markovian reward processes. Commun. Stat. Stoch. Models 2(1), 1–41 (1986)
Schweitzer, P.J., Puterman, M.L., Kindle, K.W.: Iterative aggregation-disaggregation procedures for discounted semi-Markov reward processes. Oper. Res. 33(3), 589–605 (1985)
Schweitzer, P., Stewart, G.W.: The Laurent expansion of pencils that are singular at the origin. Linear Algebr. Appl. 183, 237–254 (1993)
Seneta, E.: Finite approximations to infinite non-negative matrices. Proc. Camb. Philos. Soc. 63, 983–992 (1967)
Seneta, E.: Finite approximations to infinite non-negative matrices. II. Refinements and applications. Proc. Camb. Philos. Soc. 64, 465–470 (1968)
Seneta, E.: The principle of truncations in applied probability. Comment. Math. Univ. Carolinae 9, 237–242 (1968)
Seneta, E.: Nonnegative Matrices. An Introduction to Theory and Applications, x+214 pp. Wiley, New York (1973)
Seneta, E.: Iterative aggregation: convergence rate. Econ. Lett. 14(4), 357–361 (1984)
Seneta, E.: Sensitivity to perturbation of the stationary distribution: some refinements. Linear Algebr. Appl. 108, 121–126 (1988)
Seneta, E.: Perturbation of the stationary distribution measured by ergodicity coefficients. Adv. Appl. Probab. 20, 228–230 (1988)
Seneta, E.: Sensitivity analysis, ergodicity coefficients, and rank-one updates for finite Markov chains. In: Stewart, W.J. (ed.) Numerical Solution of Markov Chains. Probability: Pure and Applied, vol. 8, pp. 121–129. Marcel Dekker, New York (1991)
Seneta, E.: Sensitivity of finite Markov chains under perturbation. Stat. Probab. Lett. 17(2), 163–168 (1993)
Seneta, E.: Nonnegative Matrices and Markov chains. Springer Series in Statistics, xvi+287 pp. Springer, New York (2006). (A revised reprint of 2nd edition of Nonnegative Matrices and Markov Chains. Springer Series in Statistics, xiii+279 pp. Springer, New York, 1981)
Serlet, L.: Hitting times for the perturbed reflecting random walk. Stoch. Process. Appl. 123(1), 110–130 (2013)
Sheskin, T.J.: A Markov chain partitioning algorithm for computing steady state probabilities. Oper. Res. 33, 228–235 (1985)
Shurenkov, V.M.: Transition phenomena of the renewal theory in asymptotical problems of theory of random processes 1. Mat. Sbornik, 112, 115–132 (1980). (English translation in Math. USSR: Sbornik, 40(1), 107–123)
Shurenkov, V.M.: Transition phenomena of the renewal theory in asymptotical problems of theory of random processes 2. Mat. Sbornik 112, 226–241 (1980). (English translation in Math. USSR: Sbornik, 40(2), 211–225)
Silvestrov, D.S.: Limit theorems for a non-recurrent walk connected with a Markov chain. Ukr. Mat. Zh. 21, 790–804 (1969). (English translation in Ukr. Math. J. 21, 657–669)
Silvestrov, D.S.: Limit theorems for semi-Markov processes and their applications. 1, 2. Teor. Veroyatn. Mat. Stat. 3, 155–172, 173–194 (1970). (English translation in Theory Probab. Math. Stat. 3, 159–176, 177–198)
Silvestrov, D.S.: Limit theorems for semi-Markov summation schemes. 1. Teor. Veroyatn. Mat. Stat. 4, 153–170 (1971). (English translation in Theory Probab. Math. Stat. 4, 141–157)
Silvestrov, D.S.: Uniform estimates of the rate of convergencxe for sums of random variables defined on a finite homogeneous Markov chain with absorption. Theor. Veroyatn. Mat. Stat. 5, 116–127 (1971). (English translation in Theory Probab. Math. Stat. 5, 123–135)
Silvestrov, D.S.: Limit distributions for sums of random variables that are defined on a countable Markov chain with absorption. Dokl. Acad. Nauk Ukr. SSR, Ser. A (4), 337–340 (1972)
Silvestrov, D.S.: Estimation of the rate of convergence for sums of random variables that are defined on a countable Markov chain with absorption. Dokl. Acad. Nauk Ukr. SSR, Ser. A 5, 436–438 (1972)
Silvestrov, D.S.: Limit Theorems for Composite Random Functions, 318 pp. Vysshaya Shkola and Izdatel’stvo Kievskogo Universiteta, Kiev (1974)
Silvestrov, D.S.: A generalization of the renewal theorem. Dokl. Akad. Nauk Ukr. SSR, Ser. A 11, 978–982 (1976)
Silvestrov, D.S.: The renewal theorem in a series scheme. 1. Teor. Veroyatn. Mat. Stat. 18, 144–161 (1978). (English translation in Theory Probab. Math. Stat. 18, 155–172)
Silvestrov, D.S.: The renewal theorem in a series scheme 2. Teor. Veroyatn. Mat. Stat. 20, 97–116 (1979). (English translation in Theory Probab. Math. Stat. 20, 113–130)
Silvestrov, D.S.: A remark on limit distributions for times of attainment for asymptotically recurrent Markov chains. Theory Stoch. Process. 7, 106–109 (1979)
Silvestrov, D.S.: Semi-Markov Processes with a Discrete State Space, 272 pp. Library for the Engineer in Reliability, Sovetskoe Radio, Moscow (1980)
Silvestrov, D.S.: Mean hitting times for semi-Markov processes, and queueing networks. Elektron. Infor. Kybern. 16, 399–415 (1980)
Silvestrov, D.S.: Theorems of large deviations type for entry times of a sequence with mixing. Teor. Veroyatn. Mat. Stat. 24, 129–135 (1981). (English translation in Theory Probab. Math. Stat. 24, 145–151)
Silvestrov, D.S.: Exponential asymptotic for perturbed renewal equations. Teor. Imovirn. Mat. Stat. 52, 143–153 (1995). (English translation in Theory Probab. Math. Stat. 52, 153–162)
Silvestrov, D.S.: Recurrence relations for generalised hitting times for semi-Markov processes. Ann. Appl. Probab. 6, 617–649 (1996)
Silvestrov, D.S.: Nonlinearly perturbed Markov chains and large deviations for lifetime functionals. In: Limnios, N., Nikulin, M. (eds.) Recent Advances in Reliability Theory: Methodology, Practice and Inference, pp. 135–144. Birkhäuser, Boston (2000)
Silvestrov, D.S.: Asymptotic expansions for quasi-stationary distributions of nonlinearly perturbed semi-Markov processes. Theory Stoch. Process. 13(1–2), 267–271 (2007)
Silvestrov D.S.: Nonlinearly perturbed stochastic processes and systems. In: Rykov, V., Balakrishnan, N., Nikulin, M. (eds.) Mathematical and Statistical Models and Methods in Reliability, Chapter 2, pp. 19–38. Birkhäuser (2010)
Silvestrov, D.S.: Improved asymptotics for ruin probabilities. In: Silvestrov, D., Martin-Löf, A. (eds.) Modern Problems in Insurance Mathematics, Chap. 5. EAA series, pp. 93–110. Springer, Cham (2014)
Silvestrov D.S.: American-Type Options. Stochastic Approximation Methods, Volume 1. De Gruyter Studies in Mathematics, vol. 56, x+509 pp. Walter de Gruyter, Berlin (2014)
Silvestrov D.S.: American-Type Options. Stochastic Approximation Methods, Volume 2. De Gruyter Studies in Mathematics, vol. 57, xi+558 pp. Walter de Gruyter, Berlin (2015)
Silvestrov D.: Necessary and sufficient conditions for convergence of first-rare-event times for perturbed semi-Markov processes. Research Report 2016:4, Department of Mathematics, Stockholm University, 39 pp. (2016). arXiv:1603.04344
Silvestrov, D.S., Abadov, Z.A.: Asymptotic behaviour for exponential moments of sums of random variables defined on exponentially ergodic Markov chains. Dokl. Acad. Nauk Ukr. SSR, Ser. A (4), 23–25 (1984)
Silvestrov, D.S., Abadov, Z.A.: Uniform asymptotic expansions for exponential moments of sums of random variables defined on a Markov chain and distributions of passage times. 1. Teor. Veroyatn. Mat. Stat. 45, 108–127 (1991). (English translation in Theory Probab. Math. Stat. 45, 105–120)
Silvestrov, D.S., Abadov, Z.A.: Uniform representations of exponential moments of sums of random variables defined on a Markov chain and of distributions of passage times. 2. Teor. Veroyatn. Mat. Stat. 48, 175–183 (1993). (English translation in Theory Probab. Math. Stat. 48, 125–130)
Silvestrov, D.S., Drozdenko, M.O.: Necessary and sufficient conditions for the weak convergence of the first-rare-event times for semi-Markov processes. Dopov. Nac. Akad. Nauk Ukr., Mat. Prirodozn. Tekh Nauki (11), 25–28 (2005)
Silvestrov, D.S., Drozdenko, M.O.: Necessary and sufficient conditions for weak convergence of first-rare-event times for semi-Markov processes. Theory Stoch. Process., 12(28), no. 3–4, Part I: 151–186. Part II, 187–202 (2006)
Silvestrov, D., Manca, R.: Reward algorithms for semi-Markov processes. Research Report 2015:16, Department of Mathematics, Stockholm University, 23 pp. (2015). arXiv:1603.05693
Silvestrov, D., Manca, R.: Reward algorithms for exponential moments of hitting times for semi-Markov processes. Research Report 2016:1, Department of Mathematics, Stockholm University, 23 pp. (2016)
Silvestrov, D., Manca, R., Silvestrova, E.: Computational algorithms for moments of accumulated Markov and semi-Markov rewards. Commun. Stat. Theory, Methods 43(7), 1453–1469 (2014)
Silvestrov, D.S., Petersson, M.: Exponential expansions for perturbed discrete time renewal equations. In: Karagrigoriou, A., Lisnianski, A., Kleyner, A., Frenkel, I. (eds.) Applied Reliability Engineering and Risk Analysis. Probabilistic Models and Statistical Inference. Chapter 23, pp. 349–362. Wiley, New York (2013)
Silvestrov, D.S., Petersson, M., Hössjer, O.: Nonlinearly perturbed birth-death-type models. Research Report 2016:6, Department of Mathematics, Stockholm University, 63 pp. (2016). arXiv:1604.02295
Silvestrov, D., Silvestrov, S.: Asymptotic expansions for stationary distributions of perturbed semi-Markov processes. Research Report 2015:9, Department of Mathematics, Stockholm University, 75 pp. (2015). arXiv:1603.03891
Silvestrov, D., Silvestrov, S.: Asymptotic expansions for stationary distributions of nonlinearly perturbed semi-Markov processes. I, II. (2016). Part I: arXiv:1603.04734, 30 pp., Part II: arXiv:1603.04743, 33 pp
Silvestrov, D.S., Velikii, Y.A.: Necessary and sufficient conditions for convergence of attainment times. In: Zolotarev, V.M., Kalashnikov, V.V. (eds.) Stability Problems for Stochastic Models. Trudy Seminara, VNIISI, Moscow, 129–137 (1988). (English translation in J. Soviet. Math. 57, 3317–3324)
Simon, H.A., Ando, A.: Aggregation of variables in dynamic systems. Econometrica 29, 111–138 (1961)
Sirl, D., Zhang, H., Pollett, P.: Computable bounds for the decay parameter of a birth-death process. J. Appl. Probab. 44(2), 476–491 (2007)
Stewart, G.W.: On the continuity of the generalized inverse. SIAM J. Appl. Math. 17, 33–45 (1969)
Stewart, G.W.: Error and perturbation bounds for subspaces associated with certain eigenvalue problems. SIAM Rev. 15, 727–764 (1973)
Stewart, G.W.: Perturbation bounds for the definite generalized eigenvalue problem. Linear Algebr. Appl. 23, 69–85 (1979)
Stewart, G.W.: Computable error bounds for aggregated Markov chains. J. Assoc. Comput. Mach. 30(2), 271–285 (1983)
Stewart, G.W.: On the structure of nearly uncoupled Markov chains. In: Iazeolla, G., Courtois, P.J., Hordijk, A. (eds.) Mathematical Computer Performance and Reliability, pp. 287–302. North-Holland, Amsterdam (1984)
Stewart, G.W.: A second order perturbation expansion for small singular values. Linear Algebr. Appl. 56, 231–235 (1984)
Stewart, G.W.: Stochastic perturbation theory. SIAM Rev. 32(4), 579–610 (1990)
Stewart, G.W.: On the sensitivity of nearly uncoupled Markov chains. In: Stewart, W.J. (ed.) Numerical Solution of Markov Chains. Probability: Pure and Applied, vol. 8, pp. 105–119. Marcel Dekker, New York (1991)
Stewart, G.W.: Gaussian elimination, perturbation theory, and Markov chains. In: Meyer, C.D., Plemmons, R.J. (eds). Linear Algebra, Markov Chains, and Queueing Models. IMA Volumes in Mathematics and its Applications, vol. 48, pp. 59–69. Springer, New York (1993)
Stewart, G.W.: On the perturbation of Markov chains with nearly transient states. Numer. Math. 65(1), 135–141 (1993)
Stewart, G.W.: Matrix Algorithms. Vol. I. Basic Decompositions, xx+458 pp. SIAM, Philadelphia, PA (1998)
Stewart, G.W.: Matrix Algorithms. Vol. II. Eigensystems, xx+469 pp. SIAM, Philadelphia, PA (2001)
Stewart, G.W.: On the powers of a matrix with perturbations. Numer. Math. 96(2), 363–376 (2003)
Stewart, G.W., Stewart, W.J., McAllister, D.F.: A two-stage iteration for solving nearly completely decomposable Markov chains. In: Golub, G., Greenbaum, A., Luskin, M. (eds.) Recent Advances in Iterative Methods. IMA Volumes in Mathematics and its Applications, vol. 60, pp. 201–216. Springer, New York (1994)
Stewart, G.W., Sun, J.G.: Matrix Perturbation Theory. Computer Science and Scientific Computing, xvi+365 pp. Academic Press, Boston (1990)
Stewart, G.W., Zhang, G.: On a direct method for the solution of nearly uncoupled Markov chains. Numer. Math. 59(1), 1–11 (1991)
Stewart, W.J.: Introduction to the Numerical Solution of Markov Chains, xx+539 pp. Princeton University Press, Princeton, NJ (1994)
Sumita, U., Reiders, M.: A new algorithm for computing the ergodic probability vector for large Markov chains: Replacement process approach. Probab. Eng. Inf. Sci. 4, 89–116 (1988)
Torokhti, A., Howlett, P., Pearce, C.: Method of best successive approximations for nonlinear operators. J. Comput. Anal. Appl. 5(3), 299–312 (2003)
Turbin, A.F.: On asymptotic behavior of time of a semi-Markov process being in a reducible set of states. Linear case. Teor. Veroyatn. Mat. Stat. 4, 179–194 (1971). (English translation in Theory Probab. Math. Stat. 4, 167–182)
Turbin, A.F.: An application of the theory of perturbations of linear operators to the solution of certain problems that are connected with Markov chains and semi-Markov processes. Teor. Veroyatn. Mat. Stat. 6, 118–128 (1972). (English translation in Theory Probab. Math. Stat. 6, 119–130)
Van Doorn, E.A., Pollett, P.K.: Quasi-stationary distributions for discrete-state models. Eur. J. Oper. Res. 230, 1–14 (2013)
Vantilborgh, H.: Aggregation with an error of O(\(\varepsilon ^2\)). J. Assoc. Comput. Mach. 32(1), 162–190 (1985)
Verhulst, F.: Methods and Applications of Singular Perturbations: Boundary Layers and Multiple Timescale Dynamics. Texts in Applied Mathematics, vol. 50, xvi+324 pp. Springer, New York (2005)
Vishik, M.I., Lyusternik, L.A.: The solution of some perturbation problems in the case of matrices and self-adjoint and non-self-adjoint differential equations. Uspehi Mat. Nauk 15, 3–80 (1960)
Wentzell, A.D.: Asymptotic expansions in limit theorems for stochastic processes I. Probab. Theory Relat. Fields 106(3), 331–350 (1996)
Wentzell, A.D.: Asymptotic expansions in limit theorems for stochastic processes II. Probab. Theory Relat. Fields 113(2), 255–271 (1999)
Wentzell, A.D., Freidlin, M.I. (1979). Fluctuations in Dynamical Systems Subject to Small Random Perturbations. Probability Theory and Mathematical Statistics, Nauka, Moscow, 424 pp. (English edition: Random Perturbations of Dynamical Systems. Fundamental Principles of Mathematical Sciences, 260, Springer, New York (1998, 2012), xxviii+458 pp)
Wilkinson, J.H.: Error analysis of direct method of matrix inversion. J. Assoc. Comput. Mach. 8, 281–330 (1961)
Yin, G.G., Zhang, Q.: Continuous-time Markov Chains and Applications. A Singular Perturbation Approach. Applications of Mathematics, vol. 37, ivx+349 pp. Springer, New York (1998)
Yin, G., Zhang, Q.: Discrete-time singularly perturbed Markov chains. In: Yao, D.D., Zhang, H., Zhou, X.Y. (eds.) Stochastic Modeling and Optimization, pp. 1–42. Springer, New York (2003)
Yin, G.G., Zhang, Q.: Discrete-time Markov chains. Two-time-scale methods and applications. Stochastic Modelling and Applied Probability, xix+348 pp. Springer, New York (2005)
Yin, G.G., Zhang, Q.: Continuous-Time Markov Chains and Applications. A Two-Time-Scale Approach. Stochastic Modelling and Applied Probability, vol. 37, xxii+427 pp. Springer, New York (2013). (2nd revised edition of Continuous-Time Markov Chains and Applications. A Singular Perturbation Approach. Applications of Mathematics, vol. 37, xvi+349 pp. Springer, New York, 1998)
Yin, G., Zhang, Q., Badowski, G.: Discrete-time singularly perturbed Markov chains: aggregation, occupation measures, and switching diffusion limit. Adv. Appl. Probab. 35(2), 449–476 (2003)
Yin, G., Zhang, Q., Yang, H., Yin, K.: Discrete-time dynamic systems arising from singularly perturbed Markov chains. In: Proceedings of the Third World Congress of Nonlinear Analysts, Part 7, Catania, 2000 (2001). (Nonlinear Anal., 47(7), 4763–4774)
Zakusilo, O.K.: Thinning semi-Markov processes. Teor. Veroyatn. Mat. Stat. 6, 54–59 (1972). (English translation in Theory Probab. Math. Stat. 6, 53–58)
Zakusilo, O.K.: Necessary conditions for convergence of semi-Markov processes that thin. Teor. Veroyatn. Mat. Stat. 7, 65–69 (1972). (English translation in Theory Probab. Math. Stat. 7, 63–66)
Zhang, Q., Yin, G.: Exponential bounds for discrete-time singularly perturbed Markov chains. J. Math. Anal. Appl. 293(2), 645–662 (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Silvestrov, D., Silvestrov, S. (2016). Asymptotic Expansions for Stationary Distributions of Perturbed Semi-Markov Processes. In: Silvestrov, S., Rančić, M. (eds) Engineering Mathematics II. Springer Proceedings in Mathematics & Statistics, vol 179. Springer, Cham. https://doi.org/10.1007/978-3-319-42105-6_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-42105-6_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-42104-9
Online ISBN: 978-3-319-42105-6
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)