[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/2882903.2882941acmconferencesArticle/Chapter ViewAbstractPublication PagesmodConference Proceedingsconference-collections
research-article

Top-k Relevant Semantic Place Retrieval on Spatial RDF Data

Published: 26 June 2016 Publication History

Abstract

RDF data are traditionally accessed using structured query languages, such as SPARQL. However, this requires users to understand the language as well as the RDF schema. Keyword search on RDF data aims at relieving the user from these requirements; the user only inputs a set of keywords and the goal is to find small RDF subgraphs which contain all keywords. At the same time, popular RDF knowledge bases also include spatial semantics, which opens the road to location-based search operations. In this work, we propose and study a novel location-based keyword search query on RDF data. The objective of top-k relevant semantic places (kSP) retrieval is to find RDF subgraphs which contain the query keywords and are rooted at spatial entities close to the query location. The novelty of kSP queries is that they are location-aware and that they do not rely on the use of structured query languages. We design a basic method for the processing of kSP queries. To further accelerate kSP retrieval, two pruning approaches and a data preprocessing technique are proposed. Extensive empirical studies on two real datasets demonstrate the superior and robust performance of our proposals compared to the basic method.

References

[1]
Alternative fueling station locator. http://www.afdc.energy.gov/locator/stations/.
[2]
Bbc lab post. http://www.bbc.co.uk/blogs/internet/entries/63841314-c3c6--33d2-a7b8-f58ca040a65b.
[3]
Crime in chicagoland. http://crime.chicagotribune.com/.
[4]
Data.gov. http://www.data.gov.
[5]
Dbpedia. http://wiki.dbpedia.org.
[6]
Hospital compare. http://health.data.gov/def/cqld.
[7]
Owlim-se. http://owlim.ontotext.com/display/OWLIMv43/OWLIM-SE.
[8]
Parliament. http://parliament.semwebcentral.org.
[9]
Patients like me. www.patientslikeme.com.
[10]
Spot crime. http://www.spotcrime.com/.
[11]
Virtuoso. http://virtuoso.openlinksw.com.
[12]
Yago. http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/.
[13]
S. Agrawal, S. Chaudhuri, and G. Das. Dbxplorer: A system for keyword-based search over relational databases. In ICDE, pages 5--16, 2002.
[14]
R. Battle and D. Kolas. Enabling the geospatial semantic web with parliament and geosparql. Semantic Web, 3(4):355--370, 2012.
[15]
N. Bikakis, G. Giannopoulos, J. Liagouris, D. Skoutas, T. Dalamagas, and T. Sellis. Rdivf: Diversifying keyword search on RDF graphs. In TPDL, pages 413--416, 2013.
[16]
A. Brodt, D. Nicklas, and B. Mitschang. Deep integration of spatial query processing into native RDF triple stores. In SIGSPATIAL, pages 33--42, 2010.
[17]
X. Cao, G. Cong, and C. S. Jensen. Retrieving top-k prestige-based relevant spatial web objects. PVLDB, 3(1):373--384, 2010.
[18]
X. Cao, G. Cong, C. S. Jensen, and M. L. Yiu. Retrieving regions of interest for user exploration. PVLDB, 7(9):733--744, 2014.
[19]
P. Cappellari, R. D. Virgilio, A. Maccioni, and M. Roantree. A path-oriented RDF index for keyword search query processing. In DEXA, pages 366--380, 2011.
[20]
J. Cheng, S. Huang, H. Wu, and A. W. Fu. Tf-label: a topological-folding labeling scheme for reachability querying in a large graph. In SIGMOD, pages 193--204, 2013.
[21]
S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv. Xsearch: A semantic search engine for XML. In VLDB, pages 45--56, 2003.
[22]
B. B. Dalvi, M. Kshirsagar, and S. Sudarshan. Keyword search on external memory data graphs. PVLDB, 1(1):1189--1204, 2008.
[23]
S. Elbassuoni and R. Blanco. Keyword search over RDF graphs. In CIKM, pages 237--242, 2011.
[24]
S. Elbassuoni, M. Ramanath, R. Schenkel, and G. Weikum. Searching RDF graphs with SPARQL and keywords. IEEE Data Eng. Bull., 33(1):16--24, 2010.
[25]
R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware. In PODS, 2001.
[26]
H. Fu and K. Anyanwu. Effectively interpreting keyword queries on RDF databases with a rear view. In ISWC, pages 193--208, 2011.
[27]
G. Giannopoulos, E. Biliri, and T. Sellis. Personalizing keyword search on RDF data. In TPDL, pages 272--278, 2013.
[28]
L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. XRANK: ranked keyword search over XML documents. In SIGMOD, pages 16--27, 2003.
[29]
A. Guttman. R-trees: A dynamic index structure for spatial searching. In SIGMOD, pages 47--57, 1984.
[30]
C. Halaschek-Wiener, B. Aleman-Meza, I. B. Arpinar, and A. P. Sheth. Discovering and ranking semantic associations over a large RDF metabase. In VLDB, pages 1317--1320, 2004.
[31]
H. He, H. Wang, J. Yang, and P. S. Yu. BLINKS: ranked keyword searches on graphs. In SIGMOD, pages 305--316, 2007.
[32]
J. A. Hendler, J. Holm, C. Musialek, and G. Thomas. US government linked open data: Semantic.data.gov. IEEE Intelligent Systems, 27(3):25--31, 2012.
[33]
G. R. Hjaltason and H. Samet. Distance browsing in spatial databases. ACM Trans. Database Syst., 24(2):265--318, 1999.
[34]
J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum. YAGO2: A spatially and temporally enhanced knowledge base from wikipedia. Artif. Intell., 194:28--61, 2013.
[35]
V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient ir-style keyword search over relational databases. In VLDB, pages 850--861, 2003.
[36]
V. Hristidis and Y. Papakonstantinou. DISCOVER: keyword search in relational databases. In VLDB, pages 670--681, 2002.
[37]
J. Inglis. Inverted indexes and multi-list structures. Comput. J., 17(1):59--63, 1974.
[38]
H. Jiang, H. Wang, P. S. Yu, and S. Zhou. Gstring: A novel approach for efficient search in graph databases. In ICDE, pages 566--575, 2007.
[39]
R. Jin, N. Ruan, S. Dey, and J. X. Yu. SCARAB: scaling reachability computation on large graphs. In SIGMOD, pages 169--180, 2012.
[40]
R. Jin, N. Ruan, Y. Xiang, and H. Wang. Path-tree: An efficient reachability indexing scheme for large directed graphs. ACM Trans. Database Syst., 36(1):7, 2011.
[41]
V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai, and H. Karambelkar. Bidirectional expansion for keyword search on graph databases. In VLDB, pages 505--516, 2005.
[42]
K. Kyzirakos, M. Karpathiotakis, and M. Koubarakis. Strabon: A semantic geospatial DBMS. In ISWC, pages 295--311, 2012.
[43]
W. Le, F. Li, A. Kementsietsidis, and S. Duan. Scalable keyword search on large RDF data. TKDE, 26(11):2774--2788, 2014.
[44]
J. Leskovec and C. Faloutsos. Sampling from large graphs. In KDD, pages 631--636, 2006.
[45]
S. T. Leutenegger, J. M. Edgington, and M. A. Lopez. STR: A simple and efficient algorithm for R-tree packing. In ICDE97, pages 497--506, 1997.
[46]
J. Liagouris, N. Mamoulis, P. Bouros, and M. Terrovitis. An effective encoding scheme for spatial RDF data. PVLDB, 7(12):1271--1282, 2014.
[47]
X. Lian, E. D. Hoyos, A. Chebotko, B. Fu, and C. Reilly. k-nearest keyword search in RDF graphs. J. Web Sem., 22:40--56, 2013.
[48]
T. Neumann and G. Weikum. RDF-3X: a risc-style engine for RDF. PVLDB, 1(1):647--659, 2008.
[49]
J. M. Ponte and W. B. Croft. A language modeling approach to information retrieval. In SIGIR, pages 275--281, 1998.
[50]
E. Prud'Hommeaux, A. Seaborne, et al. Sparql query language for rdf. W3C recommendation, 15, 2008.
[51]
D. Shasha, J. T. L. Wang, and R. Giugno. Algorithmics and applications of tree and graph searching. In PODS, pages 39--52, 2002.
[52]
T. Tran, H. Wang, S. Rudolph, and P. Cimiano. Top-k exploration of query candidates for efficient keyword search on graph-shaped (RDF) data. In ICDE, pages 405--416, 2009.
[53]
S. J. van Schaik and O. de Moor. A memory efficient reachability data structure through bit vector compression. In SIGMOD, pages 913--924, 2011.
[54]
C. Wang, W. Ku, and H. Chen. Geo-store: a spatially-augmented SPARQL query evaluation system. In SIGSPATIAL, pages 562--565, 2012.
[55]
D. Wang, L. Zou, Y. Feng, X. Shen, J. Tian, and D. Zhao. S-store: An engine for large RDF graph integrating spatial information. In DASFAA, pages 31--47, 2013.
[56]
H. Wang and C. C. Aggarwal. A survey of algorithms for keyword search on graph data. In Managing and Mining Graph Data, pages 249--273. 2010.
[57]
X. Yan, P. S. Yu, and J. Han. Substructure similarity search in graph databases. In SIGMOD, pages 766--777, 2005.
[58]
H. Yildirim, V. Chaoji, and M. J. Zaki. GRAIL: scalable reachability index for large graphs. PVLDB, 3(1):276--284, 2010.
[59]
K. Zeng, J. Yang, H. Wang, B. Shao, and Z. Wang. A distributed graph engine for web scale RDF data. PVLDB, 6(4):265--276, 2013.
[60]
L. Zou, J. Mo, L. Chen, M. T. Özsu, and D. Zhao. gstore: Answering SPARQL queries via subgraph matching. PVLDB, 4(8):482--493, 2011.

Cited By

View all
  • (2024)SGIR-Tree: Integrating R-Tree Spatial Indexing as Subgraphs in Graph Database Management SystemsISPRS International Journal of Geo-Information10.3390/ijgi1310034613:10(346)Online publication date: 27-Sep-2024
  • (2024)DKWS: A Distributed System for Keyword Search on Massive GraphsIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2023.3313726(1-16)Online publication date: 2024
  • (2024)Path-based approximate matching of fuzzy spatiotemporal RDF dataWorld Wide Web10.1007/s11280-024-01247-627:2Online publication date: 3-Feb-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGMOD '16: Proceedings of the 2016 International Conference on Management of Data
June 2016
2300 pages
ISBN:9781450335317
DOI:10.1145/2882903
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 26 June 2016

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. graph processing
  2. knowledge bases
  3. semantic retrieval
  4. spatial RDF

Qualifiers

  • Research-article

Funding Sources

  • Hong Kong RGC
  • EU
  • National Nat- ural Science Foundation of China

Conference

SIGMOD/PODS'16
Sponsor:
SIGMOD/PODS'16: International Conference on Management of Data
June 26 - July 1, 2016
California, San Francisco, USA

Acceptance Rates

Overall Acceptance Rate 785 of 4,003 submissions, 20%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)13
  • Downloads (Last 6 weeks)0
Reflects downloads up to 31 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)SGIR-Tree: Integrating R-Tree Spatial Indexing as Subgraphs in Graph Database Management SystemsISPRS International Journal of Geo-Information10.3390/ijgi1310034613:10(346)Online publication date: 27-Sep-2024
  • (2024)DKWS: A Distributed System for Keyword Search on Massive GraphsIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2023.3313726(1-16)Online publication date: 2024
  • (2024)Path-based approximate matching of fuzzy spatiotemporal RDF dataWorld Wide Web10.1007/s11280-024-01247-627:2Online publication date: 3-Feb-2024
  • (2023)Proportionality on Spatial Data with ContextACM Transactions on Database Systems10.1145/358843448:2(1-37)Online publication date: 13-May-2023
  • (2023)Exploiting Cluster-Skipping Inverted Index for Semantic Place RetrievalProceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3539618.3591983(1981-1985)Online publication date: 19-Jul-2023
  • (2023)SSPR: A Skyline-Based Semantic Place Retrieval MethodNeural Information Processing10.1007/978-3-031-30105-6_28(331-342)Online publication date: 13-Apr-2023
  • (2022)Privacy-Preserving Top-k Query Processing in Distributed SystemsTransactions on Large-Scale Data- and Knowledge-Centered Systems XLII10.1007/978-3-662-60531-8_1(1-24)Online publication date: 11-Mar-2022
  • (2021)Flexible Aggregate Nearest Neighbor Queries and its Keyword-Aware Variant on Road NetworksIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2020.297599833:12(3701-3715)Online publication date: 1-Dec-2021
  • (2021)A Generic Ontology Framework for Indexing Keyword Search on Massive GraphsIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2019.295653533:6(2322-2336)Online publication date: 1-Jun-2021
  • (2021)A comprehensive overview of RDF for spatial and spatiotemporal data managementThe Knowledge Engineering Review10.1017/S026988892100008436Online publication date: 22-Jun-2021
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media