[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Survey of Algorithms for Keyword Search on Graph Data

  • Chapter
  • First Online:
Managing and Mining Graph Data

Part of the book series: Advances in Database Systems ((ADBS,volume 40))

Abstract

In this chapter, we survey methods that perform keyword search on graph data. Keyword search provides a simple but user-friendly interface to retrieve information from complicated data structures. Since many real life datasets are represented by trees and graphs, keyword search has become an attractive mechanism for data of a variety of types. In this survey, we discuss methods of keyword search on schema graphs, which are abstract representation for XML data and relational data, and methods of keyword search on schema-free graphs. In our discussion, we focus on three major challenges of keyword search on graphs. First, what is the semantics of keyword search on graphs, or, what qualifies as an answer to a keyword search; second, what constitutes a good answer, or, how to rank the answers; third, how to perform keyword search efficiently. We also discuss some unresolved challenges and propose some new research directions on this topic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A system for keyword-based search over relational databases. In ICDE, 2002.

    Google Scholar 

  2. A. Balmin, V. Hristidis, and Y. Papakonstantinou. ObjectRank: Authority-based keyword search in databases. In VLDB, pages 564–575, 2004.

    Google Scholar 

  3. G. Bhalotia, C. Nakhe, A. Hulgeri, S. Chakrabarti, and S. Sudarshan. Keyword searching and browsing in databases using BANKS. In ICDE, 2002.

    Google Scholar 

  4. S. Brin and L. Page. The anatomy of a large-scale hypertextual Web search engine. Computer networks and ISDN systems, 30(1–7):107–117, 1998.

    Article  Google Scholar 

  5. Y. Cai, X. Dong, A. Halevy, J. Liu, and J. Madhavan. Personal information management with SEMEX. In SIGMOD, 2005.

    Google Scholar 

  6. S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv. XSEarch: A semantic search engine for XML. In VLDB, 2003.

    Google Scholar 

  7. Bhavana Bharat Dalvi, Meghana Kshirsagar, and S. Sudarshan. Keyword search on external memory data graphs. In VLDB, pages 1189–1204, 2008.

    Google Scholar 

  8. B. Ding, J. X. Yu, S. Wang, L. Qing, X. Zhang, and X. Lin. Finding top-k min-cost connected trees in databases. In ICDE, 2007.

    Google Scholar 

  9. S. E. Dreyfus and R. A. Wagner. The Steiner problem in graphs. Networks, 1:195–207, 1972.

    Article  MATH  MathSciNet  Google Scholar 

  10. S. Dumais, E. Cutrell, JJ Cadiz, G. Jancke, R. Sarin, and D. C. Robbins. Stuff i’ve seen: a system for personal information retrieval and re-use. In SIGIR, 2003.

    Google Scholar 

  11. D. Florescu, D. Kossmann, and I. Manolescu. Integrating keyword search into XML query processing. Comput. Networks, 33(1–6):119–135, 2000.

    Article  Google Scholar 

  12. J. Graupmann, R. Schenkel, and G. Weikum. The spheresearch engine for unified ranked retrieval of heterogeneous XML and web documents. In VLDB, pages 529–540, 2005.

    Google Scholar 

  13. L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. XRANK: ranked keyword search over XML documents. In SIGMOD, pages 16–27, 2003.

    Google Scholar 

  14. H. He, H. Wang, J. Yang, and P. S. Yu. BLINKS: Ranked keyword searches on graphs. In SIGMOD, 2007.

    Google Scholar 

  15. H. He, H. Wang, J. Yang, and P. S. Yu. BLINKS: Ranked keyword searches on graphs. Technical report, Duke CS Department, 2007.

    Google Scholar 

  16. V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient IR-style keyword search over relational databases. In VLDB, pages 850–861, 2003.

    Google Scholar 

  17. V. Hristidis, N. Koudas, Y. Papakonstantinou, and D. Srivastava. Keyword proximity search in XML trees. IEEE Transactions on Knowledge and Data Engineering, 18(4):525–539, 2006.

    Article  Google Scholar 

  18. V. Hristidis and Y. Papakonstantinou. Discover: Keyword search in relational databases. In VLDB, 2002.

    Google Scholar 

  19. V. Hristidis, Y. Papakonstantinou, and A. Balmin. Keyword proximity search on XML graphs. In ICDE, pages 367–378, 2003.

    Google Scholar 

  20. Haoliang Jiang, Haixun Wang, Philip S. Yu, and Shuigeng Zhou. GString: A novel approach for efficient search in graph databases. In ICDE, 2007.

    Google Scholar 

  21. V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai, and H. Karambelkar. Bidirectional expansion for keyword search on graph databases. In VLDB, 2005.

    Google Scholar 

  22. G. Kasneci, F.M. Suchanek, G. Ifrim, M. Ramanath, and G. Weikum. Naga: Searching and ranking knowledge. In ICDE, pages 953–962, 2008.

    Google Scholar 

  23. R. Kaushik, R. Krishnamurthy, J. F. Naughton, and R. Ramakrishnan. On the integration of structure indexes and inverted lists. In SIGMOD, pages 779–790, 2004.

    Google Scholar 

  24. B. Kimelfeld and Y. Sagiv. Finding and approximating top-k answers in keyword proximity search. In PODS, pages 173–182, 2006.

    Google Scholar 

  25. Yunyao Li, Cong Yu, and H. V. Jagadish. Schema-free XQuery. In VLDB, pages 72–83, 2004.

    Google Scholar 

  26. F. Liu, C. T. Yu, W. Meng, and A. Chowdhury. Effective keyword search in relational databases. In SIGMOD, pages 563–574, 2006.

    Google Scholar 

  27. Dennis Shasha, Jason T.L. Wang, and Rosalba Giugno. Algorithmics and applications of tree and graph searching. In PODS, pages 39–52, 2002.

    Google Scholar 

  28. Y. Xu and Y. Papakonstantinou. Efficient keyword search for smallest LCAs in XML databases. In SIGMOD, 2005.

    Google Scholar 

  29. Yu Xu and Yannis Papakonstantinou. Efficient LCA based keyword search in XML data. In EDBT, pages 535–546, New York, NY, USA, 2008. ACM.

    Google Scholar 

  30. Xifeng Yan, Philip S. Yu, and Jiawei Han. Substructure similarity search in graph databases. In SIGMOD, pages 766–777, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haixun Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag US

About this chapter

Cite this chapter

Wang, H., Aggarwal, C.C. (2010). A Survey of Algorithms for Keyword Search on Graph Data. In: Aggarwal, C., Wang, H. (eds) Managing and Mining Graph Data. Advances in Database Systems, vol 40. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-6045-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6045-0_8

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-6044-3

  • Online ISBN: 978-1-4419-6045-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics