[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/2688073.2688093acmconferencesArticle/Chapter ViewAbstractPublication PagesitcsConference Proceedingsconference-collections
research-article

Sketching Cuts in Graphs and Hypergraphs

Published: 11 January 2015 Publication History

Abstract

Sketching and streaming algorithms are in the forefront of current research directions for cut problems in graphs. In the streaming model, we show that (1--ε)-approximation for Max-Cut must use n{1-O(ε)} space; moreover, beating 4/5-approximation requires polynomial space. For the sketching model, we show that every r-uniform hypergraph admits a (1+ ε)-cut-sparsifier (i.e., a weighted subhypergraph that approximately preserves all the cuts) with O-2n(r+log n)) edges. We also make first steps towards sketching general CSPs (Constraint Satisfaction Problems).

References

[1]
K. J. Ahn and S. Guha. Graph sparsification in the semi-streaming model. In 36th International Colloquium on Automata, Languages and Programming: Part II, ICALP '09, pages 328--338. Springer-Verlag, 2009. arXiv:0902:0140.
[2]
K. J. Ahn, S. Guha, and A. McGregor. Analyzing graph structure via linear measurements. In Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '12, pages 459--467. SIAM, 2012.
[3]
K. J. Ahn, S. Guha, and A. McGregor. Graph sketches: Sparsification, spanners, and subgraphs. In Proceedings of the 31st Symposium on Principles of Database Systems, PODS '12, pages 5--14. ACM, 2012.
[4]
A. Andoni, R. Krauthgamer, and D. P. Woodru. The sketching complexity of graph cuts. CoRR, abs/1403.7058, 2014. arXiv:1403:7058.
[5]
A. A. Bencz ur and D. R. Karger. Approximating s-t minimum cuts in Õ (n2) time. In Proceedings of the 28th Annual ACM Symposium on Theory of Computing, STOC '96, pages 47--55, New York, NY, USA, 1996. ACM.
[6]
A. A. Bencz ur and D. R. Karger. Randomized approximation schemes for cuts and ows in capacitated graphs. CoRR, cs.DS/0207078, 2002. arXiv:cs/0207078.
[7]
M. K. de Carli Silva, N. J. A. Harvey, and C. M. Sato. Sparse sums of positive semidefinite matrices. CoRR, abs/1107.0088, 2011.arXiv:1107:0088.
[8]
H. Dell and D. van Melkebeek. Satisability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses. In Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC '10, pages 251--260. ACM, 2010.
[9]
E. A. Dinitz, A. V. Karzanov, and M. V. Lomonosov. On the structure of the system of minimum edge cuts in a graph. Issledovaniya po Diskretnoi Optimizatsii, pages 290--306, 1976. URL: http://alexander karzanov:net/ScannedOld/76_cactus_transl:pdf.
[10]
A. Goel, M. Kapralov, and I. Post. Single pass sparsification in the streaming model with edge deletions. CoRR, abs/1203.4900, 2012.arXiv:1203:4900.
[11]
M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut and satisability problems using semidefinite programming. J. ACM, 42(6):1115--1145, Nov. 1995.
[12]
R. E. Gomory and T. C. Hu. Multi-terminal network flows. Journal of the Society for Industrial and Applied Mathematics, 9:551--570, 1961.
[13]
M. Henzinger and D. P. Williamson. On the number of small cuts in a graph. Information Processing Letters, 59(1):41--44, 1996.
[14]
P. Indyk, A. McGregor, I. Newman, and K. Onak. Open questions in data streams, property testing, and related topics. http://people:cs:umass:edu/~mcgregor/papers/11-openproblems:pdf, 2011. See Also http://sublinear:info/45.
[15]
M. Kapralov, S. Khanna, and M. Sudan. Streaming lower bounds for approximating MAX-CUT. In Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms, 2015. To Appear. arXiv:1409:2138.
[16]
M. Kapralov, Y. T. Lee, C. Musco, C. Musco, and A. Sidford. Single pass spectral sparsification in dynamic streams. In Proceedings of the 55th Annual IEEE Symposium on Foundations of Computer Science, 2014. arXiv:1407:1289.
[17]
D. R. Karger. Global min-cuts in RNC, and other ramifications of a simple min-cut algorithm. In Proceedings of the 4th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '93, pages 21{30, Philadelphia, PA, USA, 1993. Society for Industrial and Applied Mathematics. URL: http://dl:acm:org/citation:cfm?id=313559:313605.
[18]
D. R. Karger. Better random sampling algorithms for flows in undirected graphs. In Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '98, pages 490--499. SIAM, 1998. URL: http://dl:acm:org/citation:cfm?id=314613:314833.
[19]
D. R. Karger. Random sampling in cut, ow, and network design problems. Mathematics of Operations Research, 24(2):383--413, 1999.
[20]
T. Kaufman, D. Kazhdan, and A. Lubotzky. Ramanujan complexes and bounded degree topological expanders. In Proceedings of the 55th Annual IEEE Symposium on Foundations of Computer Science, 2014. arXiv:1409:1397.
[21]
S. Khot, G. Kindler, E. Mossel, and R. O'Donnell. Optimal inapproximability results for MAX-CUT and other 2-variable CSPs? SIAM Journal on Computing, 37(1):319--357, 2007.
[22]
R. Klimmek and F. Wagner. A simple hypergraph min cut algorithm. Technical Report B 96-02, Freie Universität Berlin, Fachbereich Mathematik, 1996. URL: http://edocs:fuberlin:de/docs/servlets/MCRFileNodeServlet/FUDOCS_derivate_00000000297/1996_02:pdf.
[23]
F. T. Leighton and A. Moitra. Extensions and limits to vertex sparsification. In 42nd ACM symposium on Theory of computing, STOC, pages 47--56. ACM, 2010.
[24]
M. V. Lomonosov and V. Polesskii. Lower bound of network reliability. Problemy Peredachi Informatsii, 8(2):47--53, 1972. URL: http://www:mathnet:ru/links/36bd620cb75111781cef454d72f0d773/ppi824:pdf.
[25]
A. Louis. Hypergraph Markov operators, eigenvalues and approximation algorithms. CoRR, abs/1408.2425,2014.arXiv:1408:2425.
[26]
A. Louis and Y. Makarychev. Approximation algorithms for hypergraph small set expansion and small set vertex expansion. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014), volume 28, pages 339--355, 2014.
[27]
A. McGregor. Graph stream algorithms: A survey. SIGMOD Rec., 43(1):9--20, May 2014.
[28]
A. Moitra. Approximation algorithms for multicommodity-type problems with guarantees independent of the graph size. In 50th Annual Symposium on Foundations of Computer Science, FOCS, pages 3--12. IEEE, 2009.
[29]
H. Nagamochi, K. Nishimura, and T. Ibaraki. Computing all small cuts in an undirected network. SIAM Journal on Discrete Mathematics, 10(3):469--481, 1997.
[30]
I. Newman and Y. Rabinovich. On multiplicative-approximations and some geometric applications. SIAM Journal on Computing, 42(3):855--883, 2013.
[31]
D. Peleg and A. A. Schäer. Graph spanners. J. Graph Theory, 13(1):99--116, 1989.
[32]
M. Thorup and U. Zwick. Approximate distance oracles. J. ACM, 52(1):1--24, 2005.
[33]
Y. Yamaguchi, A. Ogawa, A. Takeda, and S. Iwata. Cyber security analysis of power networks by hypergraph cut algorithms. In Proceedings of the Fifth Annual IEEE International Conference on Smart Grid Communications, 2014. To appear. URL: http://www:keisu:t:u-tokyo:ac:jp/research/techrep/data/2014/METR14--12:pdf.
[34]
W. Yu and E. Verbin. The streaming complexity of cycle counting, sorting by reversals, and other problems. In Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms, pages 11--25, 2011.
[35]
M. Zelke. Algorithms for Streaming Graphs. PhD thesis, Mathematisch-Naturwissenschaftliche Fakultät II, Humboldt-Universität zu Berlin, 2009. Published at Südwestdeutscher Verlag für Hochschulschriften. URL: http://www:tks:informatik:uni-frankfurt:de/data/doc/diss:pdf.
[36]
M. Zelke. Intractability of min- and max-cut in streaming graphs. Inf. Process. Lett., 111(3):145--150, Jan. 2011.
[37]
J. Zhang. A survey on streaming algorithms for massive graphs. In C. C. Aggarwal and H. Wang, editors, Managing and Mining Graph Data, volume 40 of Advances in Database Systems, pages 393--420. Springer, 2010.

Cited By

View all
  • (2024)Scalable Hypergraph VisualizationIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.332659930:1(595-605)Online publication date: 1-Jan-2024
  • (2024)Near-Optimal Size Linear Sketches for Hypergraph Cut Sparsifiers2024 IEEE 65th Annual Symposium on Foundations of Computer Science (FOCS)10.1109/FOCS61266.2024.00105(1669-1706)Online publication date: 27-Oct-2024
  • (2024)Streaming approximation resistance of every ordering CSPcomputational complexity10.1007/s00037-024-00252-533:1Online publication date: 29-May-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
ITCS '15: Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science
January 2015
404 pages
ISBN:9781450333337
DOI:10.1145/2688073
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 11 January 2015

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. hypergraphs
  2. max-cut
  3. sketching
  4. sparsifiers
  5. streaming

Qualifiers

  • Research-article

Funding Sources

  • USA-Israel BSF
  • Citi Foundation
  • Israel Science Foundation

Conference

ITCS'15
Sponsor:
ITCS'15: Innovations in Theoretical Computer Science
January 11 - 13, 2015
Rehovot, Israel

Acceptance Rates

ITCS '15 Paper Acceptance Rate 45 of 159 submissions, 28%;
Overall Acceptance Rate 172 of 513 submissions, 34%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)36
  • Downloads (Last 6 weeks)4
Reflects downloads up to 18 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Scalable Hypergraph VisualizationIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.332659930:1(595-605)Online publication date: 1-Jan-2024
  • (2024)Near-Optimal Size Linear Sketches for Hypergraph Cut Sparsifiers2024 IEEE 65th Annual Symposium on Foundations of Computer Science (FOCS)10.1109/FOCS61266.2024.00105(1669-1706)Online publication date: 27-Oct-2024
  • (2024)Streaming approximation resistance of every ordering CSPcomputational complexity10.1007/s00037-024-00252-533:1Online publication date: 29-May-2024
  • (2023)Additive Sparsification of CSPsACM Transactions on Algorithms10.1145/362582420:1(1-18)Online publication date: 13-Nov-2023
  • (2023)Recent Advances in Multi-Pass Graph Streaming Lower BoundsACM SIGACT News10.1145/3623800.362380854:3(48-75)Online publication date: 11-Sep-2023
  • (2023)Minimum Cut and Minimum k-Cut in Hypergraphs via Branching ContractionsACM Transactions on Algorithms10.1145/357016219:2(1-22)Online publication date: 15-Apr-2023
  • (2023)(Noisy) Gap Cycle Counting Strikes Back: Random Order Streaming Lower Bounds for Connected Components and BeyondProceedings of the 55th Annual ACM Symposium on Theory of Computing10.1145/3564246.3585192(183-195)Online publication date: 2-Jun-2023
  • (2023)Chaining, Group Leverage Score Overestimates, and Fast Spectral Hypergraph SparsificationProceedings of the 55th Annual ACM Symposium on Theory of Computing10.1145/3564246.3585136(196-206)Online publication date: 2-Jun-2023
  • (2023)Improved Streaming Algorithms for Maximum Directed Cut via Smoothed Snapshots2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS)10.1109/FOCS57990.2023.00055(855-870)Online publication date: 6-Nov-2023
  • (2022)The Quantum and Classical Streaming Complexity of Quantum and Classical Max-Cut2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS)10.1109/FOCS54457.2022.00054(498-506)Online publication date: Oct-2022
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media