[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Near-eye light field displays

Published: 01 November 2013 Publication History

Abstract

We propose near-eye light field displays that enable thin, lightweight head-mounted displays (HMDs) capable of presenting nearly correct convergence, accommodation, binocular disparity, and retinal defocus depth cues. Sharp images are depicted by out-of-focus elements by synthesizing light fields corresponding to virtual objects within a viewer's natural accommodation range. We formally assess the capabilities of microlens arrays to achieve practical near-eye light field displays. Building on concepts shared with existing integral imaging displays and light field cameras, we optimize performance in the context of near-eye viewing. We establish fundamental trade-offs between the quantitative parameters of resolution, field of view, and depth of field, as well as the ergonomic parameters of form factor and ranges of allowed eye movement. As with light field cameras, our design supports continuous accommodation of the eye throughout a finite depth of field; as a result, binocular configurations provide a means to address the accommodation-convergence conflict occurring with existing stereoscopic displays. We construct a complete prototype display system, comprising: a custom-fabricated HMD using modified off-the-shelf parts and real-time, GPU-accelerated light field renderers (including a general ray tracing method and a "backward compatible" rasterization method supporting existing stereoscopic content). Through simulations and experiments, we motivate near-eye light field displays as thin, lightweight alternatives to conventional near-eye displays.

Supplementary Material

ZIP File (a220-lanman.zip)
Supplemental material.

References

[1]
Akeley, K., Watt, S. J., Girshick, A. R., and Banks, M. S. 2004. A stereo display prototype with multiple focal distances. ACM Trans. Graph. 23, 804--813.
[2]
Anderson, R. H. 1979. Close-up imaging of documents and displays with lens arrays. Applied Optics 18, 4, 477--484.
[3]
Bunkenburg, J., and Droessler, T. A. 1998. Innovative diffractive eyepiece for a helmet-mounted display. In Proc. SPIE, vol. 3430, 41--49.
[4]
Dodgson, N. A. 2002. Analysis of the viewing zone of multiview autostereoscopic displays. In SPIE SD&A XIII, 254--265.
[5]
Goodman, J. 2004. Introduction to Fourier Optics. Roberts and Company Publishers.
[6]
Gotoda, H. 2010. A multilayer liquid crystal display for autostereoscopic 3D viewing. In SPIE SD&A XXI, vol. 7524, 1--8.
[7]
Held, R. T., Cooper, E. A., and Banks, M. S. 2012. Blur and disparity are complementary cues to depth. Current Biology 22, 5, 426--431.
[8]
Hobbs, P. C. D. 2009. Building Electro-Optical Systems: Making It all Work. John Wiley & Sons.
[9]
Holroyd, M., Baran, I., Lawrence, J., and Matusik, W. 2011. Computing and fabricating multilayer models. ACM Trans. Graph. 30, 6, 187:1--187:8.
[10]
Hutley, M. C., Hunt, R., Stevens, R. F., and Savander, P. 1994. The moiré magnifier. Pure and Applied Optics 3, 2.
[11]
Ives, F. E., 1903. Parallax stereogram and process of making same. United States Patent 725,567.
[12]
Jin, F., Jang, J.-S., and Javidi, B. 2004. Effects of device resolution on three-dimensional integral imaging. Optics Letters 29, 12, 1345--1347.
[13]
Kim, Y., Kim, J., Kang, J.-M., Jung, J.-H., Choi, H., and Lee, B. 2007. Point light source integral imaging with improved resolution and viewing angle by the use of electrically movable pinhole array. Optics Express 15, 26, 18253--18267.
[14]
Kress, B., and Starner, T. 2013. A review of head-mounted displays (HMD) technologies and applications for consumer electronics. In Proc. SPIE, vol. 8720.
[15]
Lehtinen, J., Aila, T., Chen, J., Laine, S., and Durand, F. 2011. Temporal light field reconstruction for rendering distribution effects. ACM Trans. Graph. 30, 4, 55:1--55:12.
[16]
Levoy, M., Zhang, Z., and McDowall, I. 2009. Recording and controlling the 4D light field in a microscope using microlens arrays. Journal of Microscopy 235, 2, 144--162.
[17]
Lippmann, G. 1908. Épreuves réversibles donnant la sensation du relief. Journal of Physics 7, 4, 821--825.
[18]
Liu, S., Hua, H., and Cheng, D. 2010. A novel prototype for an optical see-through head-mounted display with addressable focus cues. IEEE Trans. Visualization and Computer Graphics 16, 3, 381--393.
[19]
Love, G. D., Hoffman, D. M., Hands, P. J., Gao, J., Kirby, A. K., and Banks, M. S. 2009. High-speed switchable lens enables the development of a volumetric stereoscopic display. Optics Express 17, 18, 15716--15725.
[20]
Mann, S. 2012. Through the glass, lightly. IEEE Technology and Society Magazine 31, 3, 10--14.
[21]
Massof, R. W., Brown, L. G., Shapiro, M. D., Barnett, G. D., Baker, F. H., and Kurosawa, F. 2003. Full-field high-resolution binocular HMD. SID Digest 34, 1, 1145--1147.
[22]
Ng, R., Levoy, M., Brédif, M., Duval, G., Horowitz, M., and Hanrahan, P. 2005. Light field photography with a handheld plenoptic camera. Tech. Rep. CTSR 2005-02, Stanford.
[23]
Olson, J., Krum, D., Suma, E., and Bolas, M. 2011. A design for a smartphone-based head mounted display. In IEEE Virtual Reality, 233--234.
[24]
Pamplona, V. F., Mohan, A., Oliveira, M. M., and Raskar, R. 2010. NETRA: interactive display for estimating refractive errors and focal range. ACM Trans. Graph. 29.
[25]
Pamplona, V. F., Oliveira, M. M., Aliaga, D. G., and Raskar, R. 2012. Tailored displays to compensate for visual aberrations. ACM Trans. Graph. 31, 4, 81:1--81:12.
[26]
Papas, M., Houit, T., Nowrouzezahrai, D., Gross, M., and Jarosz, W. 2012. The magic lens: refractive steganography. ACM Trans. Graph. 31, 6, 186:1--186:10.
[27]
Parker, S. G., et al. 2010. OptiX: a general purpose ray tracing engine. ACM Trans. Graph. 29, 4, 66:1--66:13.
[28]
Pastoor, S., and Wöpking, M. 1997. 3-D displays: A review of current technologies. Displays 17, 2, 100--110.
[29]
Perlin, K., Paxia, S., and Kollin, J. S. 2000. An autostereoscopic display. In ACM SIGGRAPH, 319--326.
[30]
Rolland, J., and Hua, H. 2005. Head-mounted display systems. Encyclopedia of Optical Engineering, 1--13.
[31]
Rolland, J. P., Krueger, M. W., and Goon, A. 2000. Multifocal planes head-mounted displays. Applied Optics 39, 19.
[32]
Shaoulov, V., Martins, R., and Rolland, J. P. 2004. Compact microlenslet-array-based magnifier. Optics Letters 29, 7.
[33]
Shibata, T., Kim, J., Hoffman, D. M., and Banks, M. S. 2011. The zone of comfort: Predicting visual discomfort with stereo displays. Journal of Vision 11, 8.
[34]
Sutherland, I. E. 1968. A head-mounted three dimensional display. In AFIPS Fall Joint Computer Conference, 757--764.
[35]
Takaki, Y. 2006. High-density directional display for generating natural three-dimensional images. Proceedings of the IEEE 94.
[36]
Urey, H., and Powell, K. D. 2005. Microlens-array-based exit-pupil expander for full-color displays. Applied Optics 44.
[37]
Wandell, B. A. 1995. Foundations of Vision. Sinauer Associates.
[38]
Wetzstein, G., Lanman, D., Hirsch, M., and Raskar, R. 2012. Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting. ACM Trans. Graph. 31, 4, 80:1--80:11.
[39]
Zwicker, M., Matusik, W., Durand, F., and Pfister, H. 2006. Antialiasing for automultiscopic 3D displays. In EGSR.

Cited By

View all
  • (2024)光场表征及其分辨率提升技术:文献综述及最新进展(特邀)Infrared and Laser Engineering10.3788/IRLA2024034753:9(20240347)Online publication date: 2024
  • (2024)Light Field Visualization for Training and Education: A ReviewElectronics10.3390/electronics1305087613:5(876)Online publication date: 24-Feb-2024
  • (2024)Resolution Improvement in Near-Virtual-Image-Mode Light-Field Display Using Resolution-Priority TechniqueApplied Sciences10.3390/app1421996214:21(9962)Online publication date: 31-Oct-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 32, Issue 6
November 2013
671 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2508363
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 November 2013
Published in TOG Volume 32, Issue 6

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. accommodation-convergence conflict
  2. head-mounted displays
  3. light field displays
  4. microlens arrays
  5. virtual reality

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)256
  • Downloads (Last 6 weeks)40
Reflects downloads up to 20 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)光场表征及其分辨率提升技术:文献综述及最新进展(特邀)Infrared and Laser Engineering10.3788/IRLA2024034753:9(20240347)Online publication date: 2024
  • (2024)Light Field Visualization for Training and Education: A ReviewElectronics10.3390/electronics1305087613:5(876)Online publication date: 24-Feb-2024
  • (2024)Resolution Improvement in Near-Virtual-Image-Mode Light-Field Display Using Resolution-Priority TechniqueApplied Sciences10.3390/app1421996214:21(9962)Online publication date: 31-Oct-2024
  • (2024)Varifocal occlusion in an optical see-through near-eye display with a single phase-only liquid crystal on siliconPhotonics Research10.1364/PRJ.50994812:4(833)Online publication date: 1-Apr-2024
  • (2024)Wide field-of-view light-field head-mounted display for virtual reality applicationsOptics Continuum10.1364/OPTCON.5095623:4(574)Online publication date: 25-Mar-2024
  • (2024)Depth expansion of a light-field head-mounted display using dual-focal lens arrayOptics Express10.1364/OE.53987432:26(47360)Online publication date: 12-Dec-2024
  • (2024)Efficient light field acquisition for integral imaging with adaptive viewport optimizationOptics Express10.1364/OE.53126432:18(31280)Online publication date: 13-Aug-2024
  • (2024)Full-color time-sequential super multi-view near-eye display with front-lit waveguide illuminationOptics Express10.1364/OE.52336832:14(23975)Online publication date: 17-Jun-2024
  • (2024)Mapping-based design method for high-quality integral projection systemOptics Express10.1364/OE.52076632:10(18379)Online publication date: 3-May-2024
  • (2024)Measurement method of virtual image distance for a head-mounted display based on a variable-focus liquid lensApplied Optics10.1364/AO.52435363:15(4175)Online publication date: 17-May-2024
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media