[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/1995966.1995992acmconferencesArticle/Chapter ViewAbstractPublication PageshtConference Proceedingsconference-collections
research-article

Modeling the structure and evolution of discussion cascades

Published: 06 June 2011 Publication History

Abstract

We analyze the structure and evolution of discussion cascades in four popular websites: Slashdot, Barrapunto, Meneame and Wikipedia. Despite the big heterogeneities between these sites, a preferential attachment (PA) model with bias to the root can capture the temporal evolution of the observed trees and many of their statistical properties, namely, probability distributions of the branching factors (degrees), subtree sizes and certain correlations. The parameters of the model are learned efficiently using a novel maximum likelihood estimation scheme for PA and provide a figurative interpretation about the communication habits and the resulting discussion cascades on the four different websites.

References

[1]
E. Bakshy, B. Karrer, and Lada A. Adamic. Social influence and the diffusion of user-created content. In EC '09, pages 325--334, New York, USA, 2009. ACM.
[2]
A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science, 286(5439):509--512, 1999.
[3]
E. Ben-Naim and P. L. Krapivsky. Stratification in the preferential attachment network. Journal of Physics A: Mathematical and Theoretical, 42(47):475001, 2009.
[4]
B. F. Blasio, A. Svensson, and F. Liljeros. Preferential attachment in sexual networks. PNAS, 104(26):10762--10767, 2007.
[5]
M. Cha, A. Mislove, B. Adams, and K. P. Gummadi. Characterizing social cascades in Flickr. In WOSP '08, pages 13--18, New York, USA, 2008. ACM.
[6]
M. Cha, A. Mislove, and K. P. Gummadi. A measurement-driven analysis of information propagation in the Flickr social network. In WWW'09, pages 721--730, New York, USA, 2009. ACM.
[7]
B. Golub and M. O. Jackson. Using selection bias to explain the observed structure of internet diffusions. PNAS, 107(24):10833--6, 2010.
[8]
V. Gómez, A. Kaltenbrunner, and V. López. Statistical analysis of the social network and discussion threads in slashdot. In WWW '08, pages 645--654. ACM, 2008.
[9]
S. Gonzalez-Bailon, A. Kaltenbrunner, and R. E. Banchs. The structure of political discussion networks: A model for the analysis of e-deliberation. Journal of Information Technology, 25:230--243, 2010.
[10]
M. Götz, J. Leskovec, M. McGlohon, and C. Faloutsos. Modeling blog dynamics. In ICWSM, 2009.
[11]
D. Gruhl, R. Guha, D. Liben-Nowell, and A. Tomkins. Information diffusion through blogspace. In WWW '04, pages 491--501, New York, USA, 2004. ACM.
[12]
J. L. Iribarren and E. Moro. Impact of human activity patterns on the dynamics of information diffusion. Phys. Rev. Lett., 103(3):038702, Jul 2009.
[13]
H. Jeong, Z. Néda, and A. L. Barabási. Measuring preferential attachment in evolving networks. Europhys. Lett., 61(4):567, 2003.
[14]
A. Kaltenbrunner, V. Gómez, and V. López. Description and prediction of Slashdot activity. In LA-WEB '07, Santiago de Chile, 2007. IEEE CS.
[15]
M. Kearns, S. Suri, and N. Montfort. An experimental study of the coloring problem on human subject networks. Science, 313(5788):824--827, 2006.
[16]
R. Kumar, M. Mahdian, and M. McGlohon. Dynamics of conversations. In SIGKDD '10, pages 553--562, New York, USA, 2010. ACM.
[17]
H. Kwak, Ch. Lee, H. Park, and S. Moon. What is Twitter, a social network or a news media? In WWW '10, pages 591--600, New York, USA, 2010. ACM.
[18]
Krapivsky P. L., Redner S., and F. Leyvraz. Connectivity of growing random networks. Phys. Rev. Lett., 85(21):4629--4632, Nov 2000.
[19]
D. Laniado, R. Tasso, Y. Volkovich, and A. Kaltenbrunner. When the Wikipedians talk: Network and tree structure of Wikipedia discussion pages. In ICWSM. The AAAI Press, 2011.
[20]
J. Leskovec, M. McGlohon, C. Faloutsos, N. Glance, and M. Hurst. Cascading behavior in large blog graphs: Patterns and a model. In SDM '07, 2007.
[21]
D. Liben-Nowell and J. Kleinberg. Tracing information flow on a global scale using Internet chain-letter data. PNAS, 105(12):4633--4638, 2008.
[22]
R. D. Malmgren, J. M. Hofman, L. A.N. Amaral, and D. J. Watts. Characterizing individual communication patterns. In SIGKDD '09, pages 607--616, New York,USA, 2009. ACM.
[23]
Everett M. Rogers. Diffusion of innovations. Free Press, New York, 5th edition, 2003.
[24]
E. Sun, I. Rosenn, C. Marlow, and T. M. Lento. Gesundheit! modeling contagion through facebook news feed. In ICWSM. The AAAI Press, 2009.
[25]
C. Wiuf, M. Brameier, O. Hagberg, and M. P. H. Stumpf. A likelihood approach to analysis of network data. PNAS, 103(20):7566--7570, 2006.
[26]
F. Wu and B.A. Huberman. Novelty and collective attention. PNAS, 104(45):17599--17601, 2007.

Cited By

View all
  • (2024)Characterizing the Structure of Online Conversations Across RedditProceedings of the ACM on Human-Computer Interaction10.1145/36869138:CSCW2(1-23)Online publication date: 8-Nov-2024
  • (2024)A Topology-Based Approach for Predicting Toxic Outcomes on Twitter and YouTubeIEEE Transactions on Network Science and Engineering10.1109/TNSE.2024.339821911:5(4875-4885)Online publication date: Sep-2024
  • (2024)Analyzing Hate Speech Dynamics on Twitter/X: Insights from Conversational Data and the Impact of User Interaction PatternsHeliyon10.1016/j.heliyon.2024.e32246(e32246)Online publication date: May-2024
  • Show More Cited By

Index Terms

  1. Modeling the structure and evolution of discussion cascades

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      HT '11: Proceedings of the 22nd ACM conference on Hypertext and hypermedia
      June 2011
      348 pages
      ISBN:9781450302562
      DOI:10.1145/1995966
      • General Chair:
      • Paul De Bra,
      • Program Chair:
      • Kaj Grønbæk
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 06 June 2011

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. conversations
      2. discussion cascades
      3. maximum likelihood
      4. preferential attachment
      5. slashdot
      6. threads
      7. wikipedia

      Qualifiers

      • Research-article

      Conference

      HT '11
      Sponsor:
      HT '11: 22nd ACM Conference on Hypertext and Hypermedia
      June 6 - 9, 2011
      Eindhoven, The Netherlands

      Acceptance Rates

      Overall Acceptance Rate 378 of 1,158 submissions, 33%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)10
      • Downloads (Last 6 weeks)2
      Reflects downloads up to 09 Dec 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Characterizing the Structure of Online Conversations Across RedditProceedings of the ACM on Human-Computer Interaction10.1145/36869138:CSCW2(1-23)Online publication date: 8-Nov-2024
      • (2024)A Topology-Based Approach for Predicting Toxic Outcomes on Twitter and YouTubeIEEE Transactions on Network Science and Engineering10.1109/TNSE.2024.339821911:5(4875-4885)Online publication date: Sep-2024
      • (2024)Analyzing Hate Speech Dynamics on Twitter/X: Insights from Conversational Data and the Impact of User Interaction PatternsHeliyon10.1016/j.heliyon.2024.e32246(e32246)Online publication date: May-2024
      • (2022)A Hypergraph Approach for Estimating Growth Mechanisms of Complex NetworksIEEE Access10.1109/ACCESS.2022.314361210(35012-35025)Online publication date: 2022
      • (2021)Who Has the Last Word? Understanding How to Sample Online DiscussionsACM Transactions on the Web10.1145/345293615:3(1-25)Online publication date: 3-Jun-2021
      • (2021)Non-parametric estimation of the preferential attachment function from one network snapshotJournal of Complex Networks10.1093/comnet/cnab0249:5Online publication date: 29-Sep-2021
      • (2021)Conspiracy vs science: A large-scale analysis of online discussion cascadesWorld Wide Web10.1007/s11280-021-00862-xOnline publication date: 27-Jan-2021
      • (2021)Public Opinion Dynamics in Online Discussions: Cumulative Commenting and Micro-level Spirals of SilenceSocial Computing and Social Media: Experience Design and Social Network Analysis10.1007/978-3-030-77626-8_14(205-220)Online publication date: 3-Jul-2021
      • (2020)Viral vs. broadcast: Characterizing the virality and growth of cascadesEPL (Europhysics Letters)10.1209/0295-5075/131/28002131:2(28002)Online publication date: 25-Aug-2020
      • (2020)NesTPPProceedings of the 31st ACM Conference on Hypertext and Social Media10.1145/3372923.3404796(251-260)Online publication date: 13-Jul-2020
      • Show More Cited By

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media