[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/1869692.1869694acmconferencesArticle/Chapter ViewAbstractPublication PagesgisConference Proceedingsconference-collections
research-article

Towards personal high-performance geospatial computing (HPC-G): perspectives and a case study

Published: 02 November 2010 Publication History

Abstract

Cluster computing, Cloud computing and GPU computing play overlapping and complementary roles in parallel processing of geospatial data within the general HPC framework. The fast increasing hardware capacities of modern personal computers equipped with chip multiprocessor CPUs and massively parallel GPUs have made high performance computing of large-scale geospatial data in a personal computing environment possible. We discuss the framework of Personal HPC-G and compare it with traditional Cluster computing and the newly emerging Cloud computing. We consider Personal HPC-G possesses many favorable features: low initial and operational costs, good support for data management and excellent support for both numeric modeling and interactive visualization. A case study on developing a parallel spatial statistics module for visual explorations on top of Personal HPC-G is subsequently presented.

References

[1]
S. W. Wang and Y. Liu. TeraGrid GIScience Gateway: Bridging cyberinfrastructure and GIScience. IJGIS 23(5) 631--656.
[2]
C. W. Yang, R. Raskin, and M. A. Goodchild. Geospatial cyberinfrastructure: Past, present and future. Computers, Environment and Urban Systems, 34(4):264--277, 2010.
[3]
TOP500 Supercomputing Sites. http://www.top500.org/
[4]
M. Armbrust, A. Fox, and R. A. Griffith. A view of cloud computing. CACM, 53(4):50--58, 2010.
[5]
A. Clematis, M. Mineter, and R. Marciano. High performance computing with geographical data. Parallel Computing, 29(10):1275--1279, 2003.
[6]
R. Healey, S. Dowers et al. Parallel Processing Algorithms for GIS. CRC, 1997.
[7]
R. G. Healey. Special issue on parallel processing in GIS. IJGIS, 10(6):667--668, 1996.
[8]
S. W. Wang, M. K. Cowles and M. P. Armstrong. Grid computing of spatial statistics: using the TeraGrid for g(i)*(d) analysis. CC&PE, 20(14):1697--1720, 2008.
[9]
R. Harris, A. Singleton, et al. Grid-enabling geographically weighted regression: A case study of participation in higher education in England. Transactions in GIS, 14(1):43--61, 2010.
[10]
A. Plaza, D. Valencia et al. Commodity cluster-based parallel processing of hyperspectral imagery. Journal of Parallel and Distributed Computing, 66(3):345--358, 2006.
[11]
S. H. Han, J. Heo et al. Parallel processing method for airborne laser scanning data using a pc cluster and a virtual grid. Sensors, 9(4):2555--2573, 2009.
[12]
J. Y. Gong and J. Xie. Extraction of drainage networks from large terrain datasets using high throughput computing. Computers Geosciences, 35(2):337--346, 2009.
[13]
Q. F. Guan and K. C. Clarke. A general-purpose parallel raster processing programming library test application using a geographic cellular automata model. IJGIS, 24(5):695--722, 2010.
[14]
X. Li, X. H. Zhang et al. Parallel cellular automata for large-scale urban simulation using load-balancing techniques. IJGIS, 24(6):803--820, 2010.
[15]
J. B. Xie, C. W. Yang et al. High-performance computing for the simulation of dust storms. Computers Environment and Urban Systems, 34(4):278--290, 2010.
[16]
D. B. Kirk and W. Hwu. Programming Massively Parallel Processors: A Hands-on Approach. Morgan Kaufmann, 2010.
[17]
Wikipedia. Nvidia GeForce 400 series specification. http://en.wikipedia.org/wiki/GeForce_400_Series.
[18]
J. D. Owens, M. Houston et al. GPU computing. Proceedings of the IEEE, 96(5):879--899, 2008.
[19]
J. D. Owens, D. Luebke et al. A survey of general-purpose computation on graphics hardware. Computer Graphics Forum, 26(1):80--113, 2007.
[20]
Condor project. http://www.cs.wisc.edu/condor/
[21]
M. J. Fischer, X. Su, and Y. Yin. Assigning tasks for efficiency in Hadoop. ACM SPAA '10. 30--39, 2010.
[22]
B. Hall and M. G. Leahy. Open Source Approaches in Spatial Data Handling. Springer, 2008.
[23]
J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach, 4th Edition. Morgan Kaufmann, 2006.
[24]
Wikipedia, Embarrassingly parallel. http://en.wikipedia.org/wiki/Embarrassingly_parallel
[25]
R. Kothuri, A. Godfrind, and E. Beinat. Pro Oracle Spatial. Apress, 2004.
[26]
A. Pavlo, E. Paulson et al. A comparison of approaches to large-scale data analysis. SIGMOD '09, 165--178, 2009.
[27]
I. Kamel and C. Faloutsos. Parallel R-trees. SIGMOD'92, 195--204, 1992.
[28]
M. H. Ali, A. A. Saad, and M. A. Ismail. The PN-tree: A parallel and distributed multidimensional index. Distributed and Parallel Databases, 17(2):111--133, 2005.
[29]
X. Zhou, D. J. Abel, and D. Truffet. Data partitioning for parallel spatial join processing. GeoInformatica, 2(2):175--204, 1998.
[30]
J. M. Patel and D. J. DeWitt. Clone join and shadow join: two parallel spatial join algorithms. In ACM-GIS '00, 54--61, 2000.
[31]
E. G. Hoel and H. Samet. Data-parallel polygonization. Parallel Computing, 29(10):1381--1401, 2003.
[32]
M. J. Mineter. A software framework to create vector-topology in parallel GIS operations. IJGIS, 17(3):203--222, 2003.
[33]
X. W. Xu, J. Jager, and H. P. Kriegel. A fast parallel clustering algorithm for large spatial databases. Data Mining and Knowledge Discovery, 3(3):263--290, 1999.
[34]
J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters. OSDI'04: 10--10, 2004.
[35]
A. Cary, Z. Sun et al. Experiences on processing spatial data with MapReduce. SSDBM'09, 302--319, 2009.
[36]
Apache Hadoop http://hadoop.apache.org/.
[37]
Y. Kwon, D. Nunley et al. Scalable Clustering Algorithm for N-Body Simulations in a Shared-Nothing Cluster. SSDBM'10: 132--150, 2010.
[38]
Y. Kwon, M. Balazinska et al. Skew-resistant parallel processing of feature-extracting scientific user-defined functions. SoCC'10, 75--86, 2010.
[39]
M. Stonebraker, D. Abadi et al. MapReduce and parallel DBMSs: friends or foes? CACM, 53(1):64--71, 2010.
[40]
A. Abouzied, K. Bajda et al. HadoopDB in action: building real world applications. SIGMOD '10, 1111--1114, 2010.
[41]
Y. Xu, P. Kostamaa, and L. Gao. Integrating Hadoop and parallel DBMS. SIGMOD '10: 969--974, 2010.
[42]
J. Duato, A. J. Pena et al. Modeling the CUDA Remoting Virtualization Behaviour in High Performance Networks. Workshop on Language, Compiler, and Architecture Support for GPGPU, Bangalore, Jan. 2010.
[43]
L. Chen, O. Villa et al. Dynamic load balancing on single- and multi-GPU systems. IEEE IPDPS'10, 2010.
[44]
B. Dally. The future of GPU computing. http://www.nvidia.com/content/GTC/documents/SC09_Dally.pdf.
[45]
A. Ailamaki, D. J. DeWitt et al, 1999. DBMSs on a Modern Processor: Where Does Time Go? VLDB Conference'99, 266--277
[46]
S. Manegold, M. L. Kersten, and P. Boncz. Database architecture evolution: mammals flourished long before dinosaurs became extinct. Proc. VLDB Endow 2(2):1648--1653, 2009.
[47]
B. S. He, M. Lu et al. Relational query coprocessing on graphics processors. ACM TODS 34(4), 2009.
[48]
P. Bakkum and K. Skadron. Accelerating sql database operations on a GPU with CUDA. GPGPU 2010, 94--103.
[49]
CUDA Community Showcase http://www.nvidia.com/object/cuda_apps_flash_new.html
[50]
Manifold GIS. http://www.manifold.net
[51]
Azavea Labs. http://www.azavea.com/blogs/labs/
[52]
A. S. Fotheringham, M. E. Charlton, and C. Brunsdon. Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis. Environment and Planning A, 30(11):1905--1927, 1998.
[53]
J. Mennis. Mapping the results of geographically weighted regression. Cartographic Journal, 43(2):171--179, 2006.
[54]
U. Demsar, A. S. Fotheringham, and M. Charlton. Combining geovisual analytics with spatial statistics: the example of geographically weighted regression. Cartographic Journal, 45(3):182--192, 2008.
[55]
U. Demsar, A. S. Fotheringham, and M. Charlton. Exploring the spatio-temporal dynamics of geographical processes with geographically weighted regression and geovisual analytics. Information Visualization, 7(3--4):181--197, 2008.
[56]
J. Zhang, S. You and G. Gruenwald. Indexing Large-Scale Raster Geospatial Data Using Massively Parallel GPGPU Computing. To appear in ACMGIS'10.
[57]
Wikipedia, Correlation and dependence. http://en.wikipedia.org/wiki/Correlation_and_dependence

Cited By

View all
  • (2022)PyCLKDE: A big data‐enabled high‐performance computational framework for species habitat suitability modeling and mappingTransactions in GIS10.1111/tgis.1290126:4(1754-1774)Online publication date: 10-Feb-2022
  • (2021)PyCLiPSM: Harnessing heterogeneous computing resources on CPUs and GPUs for accelerated digital soil mappingTransactions in GIS10.1111/tgis.1273025:3(1396-1418)Online publication date: 16-Feb-2021
  • (2019)Parallelizing Multiple Flow Accumulation Algorithm using CUDA and OpenACCISPRS International Journal of Geo-Information10.3390/ijgi80903868:9(386)Online publication date: 3-Sep-2019
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
HPDGIS '10: Proceedings of the ACM SIGSPATIAL International Workshop on High Performance and Distributed Geographic Information Systems
November 2010
47 pages
ISBN:9781450304320
DOI:10.1145/1869692
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 02 November 2010

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Research-article

Conference

GIS '10
Sponsor:

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)8
  • Downloads (Last 6 weeks)2
Reflects downloads up to 11 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2022)PyCLKDE: A big data‐enabled high‐performance computational framework for species habitat suitability modeling and mappingTransactions in GIS10.1111/tgis.1290126:4(1754-1774)Online publication date: 10-Feb-2022
  • (2021)PyCLiPSM: Harnessing heterogeneous computing resources on CPUs and GPUs for accelerated digital soil mappingTransactions in GIS10.1111/tgis.1273025:3(1396-1418)Online publication date: 16-Feb-2021
  • (2019)Parallelizing Multiple Flow Accumulation Algorithm using CUDA and OpenACCISPRS International Journal of Geo-Information10.3390/ijgi80903868:9(386)Online publication date: 3-Sep-2019
  • (2018)Using High-Performance Computing to Address the Challenge of Land Use/Land Cover Change Analysis on Spatial Big DataISPRS International Journal of Geo-Information10.3390/ijgi70702737:7(273)Online publication date: 11-Jul-2018
  • (2018)Gaia Scheduler: A Kubernetes-Based Scheduler Framework2018 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Ubiquitous Computing & Communications, Big Data & Cloud Computing, Social Computing & Networking, Sustainable Computing & Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom)10.1109/BDCloud.2018.00048(252-259)Online publication date: Dec-2018
  • (2018)A strategy for raster-based geocomputation under different parallel computing platformsInternational Journal of Geographical Information Science10.1080/13658816.2014.91130028:11(2127-2144)Online publication date: 27-Dec-2018
  • (2017)Parallel Computing for Geocomputational ModelingGeoComputational Analysis and Modeling of Regional Systems10.1007/978-3-319-59511-5_4(37-54)Online publication date: 31-Jul-2017
  • (2016)Migrating GIS Big Data Computing from Hadoop to Spark: An Exemplary Study Using Twitter2016 IEEE 9th International Conference on Cloud Computing (CLOUD)10.1109/CLOUD.2016.0054(351-358)Online publication date: Jun-2016
  • (2015)Large-scale spatial data processing on GPUs and GPU-accelerated clustersSIGSPATIAL Special10.1145/2766196.27662016:3(27-34)Online publication date: 22-Apr-2015
  • (2014)Accelerating experimental high-order spatial statistics calculations using GPUsComputers & Geosciences10.1016/j.cageo.2014.05.01270(128-137)Online publication date: Sep-2014
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media