[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/1401132.1401166acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
research-article

Flow simulations using particles: bridging computer graphics and CFD

Published: 11 August 2008 Publication History

Abstract

The simulation of the motion of interacting particles is a deceivingly simple, yet powerful and natural method for exploring and animating flows in physical systems as diverse as planetary dark accretion and sea waves, unsteady aerodynamics and nanofluidics.

Supplemental Material

MOV File

References

[1]
A. Angelidis and F. Neyret. Simulation of smoke based on vortex filament primitives. In ACM-SIGGRAPH/EG Symposium on Computer Animation (SCA), 2005.
[2]
P. Angot, C. H. Bruneau, and P. Fabrie. A penalization method to take into account obstacles in incompressible viscous flows. NUMERISCHE MATHEMATIK, 81(4):497--520, Feb 1999.
[3]
J. T. Beale. A convergent 3-D vortex method with grid-free stretching. 46:401--424, 1986.
[4]
M. Bergdorf, G. H. Cottet, and P. Koumoutsakos. Multilevel adaptive particle methods for convection-diffusion equations. Multiscale Modeling and Simulation, 4(1):328--357, 2005.
[5]
M. Bergdorf and P. Koumoutsakos. A lagrangian particle-wavelet method. MULTISCALE MODELING AND SIMULATION, 5(3):980--995, 2006.
[6]
M. Bergdorf, I. F. Sbalzarini, and P. Koumoutsakos. Particle simulations of growth. J. Computational Physics, 2008 (submitted).
[7]
M. J. BERGER and J. OLIGER. Adaptive mesh refinement for hyperbolic partial-differential equations. JOURNAL OF COMPUTATIONAL PHYSICS, 53(3):484--512, 1984.
[8]
W. L. Briggs, V. E. Henson, and S. F. McCormick. A multigrid tutorial: second edition. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2000.
[9]
S. Bryson and D. Levy. High-order central WENO schemes for multidimensional Hamilton-Jacobi equations. 41(4):1339--1369, 2003.
[10]
M. CARLSON, P. MUCHA, and G. TURK. Rigid fluid: Animating the interplay between rigid bodies and fluid, 2004.
[11]
A. K. Chaniotis, C. E. Frouzakis, J. C. Lee, A. G. Tomboulides, D. Poulikakos, and K. Boulouchos. Remeshed smoothed particle hydrodynamics for the simulation of laminar chemically reactive flows. 191(1):1--17, 2003.
[12]
P. Chatelain, A. Curioni, M. Bergdorf, D. Rossinelli, W. Andreoni, and P. Koumoutsakos. Billion vortex particle direct numerical simulations of aircraft wakes. Computer Methods in Applied Mechanics and Engineering, 197(13--16):1296--1304, 2008.
[13]
C. G. Chatelain P. and K. P. Particle mesh hydrodynamics for astrophysics simulations. Int. J. Modern Physics C, 18(4):610--618, 2007.
[14]
D. Chopp and J. Sethian. Flow under curvature: Singularity formation, minimal surfaces, and geodesics. 2(4):235--255, 1993.
[15]
D. L. Chopp. Computing minimal-surfaces via level set curvature flow. 106(1):77--91, 1993.
[16]
A. J. Chorin. Numerical study of slightly viscous flow. 57(4):785--796, 1973.
[17]
M. Coquerelle and G.-H. Cottet. A vortex level set method for the two-way coupling of an incompressible fluid with colliding rigid bodies. J. Comput. Phys., (in print), 2008.
[18]
G. Cottet. A particle model for fluid-structure interaction. C. R. Acad. Sci. Paris, Ser. I(335):833--838, 2002.
[19]
G. H. Cottet. A particle-grid superposition method for the Navier-Stokes equations. 89:301--318, 1990.
[20]
G. H. Cottet. Multi-physics and particle methods. COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, pages 1296--1298, 2003.
[21]
G.-H. Cottet and P. Koumoutsakos. Vortex Methods, Theory and Practice. Cambridge University Press, 2000.
[22]
G.-H. Cottet, P. Koumoutsakos, and M. L. O. Salihi. Vortex methods with spatially varying cores. 162(1):164--185, 2000.
[23]
G. H. Cottet and E. Maitre. A level set method for fluid-structure interactions with immersed surfaces. Mathematical Models and Methods In Applied Sciences, 16(3):415--438, Mar 2006.
[24]
G.-H. Cottet and P. Poncet. Advances in direct numerical simulations of 3D wallbounded flows by Vortex-in-Cell methods. 193(1):136--158, 2004.
[25]
S. Elcott, Y. Y. Tong, E. Kanso, P. Schroder, and M. Desbrun. Stable, circulation-preserving, simplicial fluids. ACM TRANSACTIONS ON GRAPHICS, 26(1), 2007.
[26]
M. Ellero, M. Serrano, and P. Espanol. Incompressible smoothed particle hydrodynamics. JOURNAL OF COMPUTATIONAL PHYSICS, 226(2):1731--1752, Oct 2007.
[27]
D. Enright, S. Marschner, and R. Fedkiw. Animation and rendering of complex water surfaces, 2002.
[28]
R. Fedkiw, J. Stam, and H. W. Jensen. Visual simulation of smoke. In E. Fiume, editor, SIGGRAPH 2001, Computer Graphics Proceedings, pages 15--22. ACM Press / ACM SIGGRAPH, 2001.
[29]
N. Foster and D. Metaxas. Realistic animation of liquids. Graphical models and image processing: GMIP, 58(5):471--483, 1996.
[30]
F. Gibou, R. Fedkiw, R. Caflisch, and S. Osher. A level set approach for the numerical simulation of dendritic growth. J. Sci. Comput., 19(1--3):183--199, 2003.
[31]
R. A. Gingold and J. J. Monaghan. Smoothed particle hydrodynamics: theory and application to non-spherical stars. Month Notices Roy. Astron. Soc., 181:375--389, 1977.
[32]
M. Grayson. A short note on the evolution of surfaces via mean curvatures. 58:285--314, 1989.
[33]
L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. 73:325--348, 1987.
[34]
F. H. Harlow. Particle-in-cell computing method for fluid dynamics. 3:319--343, 1964.
[35]
L. Hernquist. Some cautionary remarks about smoothed particle hydrodynamics. ASTROPHYSICAL JOURNAL, 404(2):717--722, Feb 1993.
[36]
J. L. Hess. Higher order numerical solution of the integral equation for the two-dimensional Neumann problem. 2:1--15, 1973.
[37]
S. E. Hieber and P. Koumoutsakos. A lagrangian particle level set method. J. Computational Physics, 210:342--367, 2005.
[38]
S. E. Hieber, J. H. Walther, and P. Koumoutsakos. Remeshed smoothed particle hydrodynamics simulation of the mechanical behavior of human organs. 12(4):305--314, 2004.
[39]
C. W. Hirt and B. D. Nichols. Volume of fluid (Vof) method for the dynamics of free boundaries. 39(1):201--225, 1981.
[40]
R. W. Hockney and J. W. Eastwood. Computer Simulation Using Particles. Institute of Physics Publishing, Bristol, PA, USA, 2 edition, 1988.
[41]
X. Y. Hu and N. A. Adams. An incompressible multi-phase sph method. JOURNAL OF COMPUTATIONAL PHYSICS, 227(1):264--278, Nov 2007.
[42]
Y. Kawaguchi. A morphological study of the form of nature. SIGGRAPH Comput. Graph., 16(3):223--232, 1982.
[43]
S. Kern and P. Koumoutsakos. Simulations of optimized anguilliform swimming. JOURNAL OF EXPERIMENTAL BIOLOGY, 209(24):4841--4857, Dec 2006.
[44]
R. A. Kerr. Planetary origins: A quickie birth for jupiters and saturns. Science, 298(5599):1698b--1699, 2002.
[45]
A. Kolb and N. Cuntz. Dynamic particle coupling for GPU-based fluid simulation. In Proc. ASIM, pages 722--727, 2005.
[46]
A. Kolb, L. Latta, and C. Rezk-Salama. Hardware-based simulation and collision detection for large particle systems. In Proc. Graphics Hardware, pages 123--131. ACM/Eurographics, 2004.
[47]
P. Koumoutsakos. Inviscid axisymmetrization of an elliptical vortex. JOURNAL OF COMPUTATIONAL PHYSICS, 138(2):821--857, Dec 1997.
[48]
P. Koumoutsakos. Multiscale flow simulations using particles. ANNUAL REVIEW OF FLUID MECHANICS, 37:457--487, 2005.
[49]
P. KOUMOUTSAKOS and A. LEONARD. High-resolution simulations of the flow around an impulsively started cylinder using vortex methods. JOURNAL OF FLUID MECHANICS, 296:1--38, 1995.
[50]
P. Koumoutsakos, A. Leonard, and F. Pépin. Boundary conditions for viscous vortex methods. 113(1):52--61, 1994.
[51]
R. Krasny. A study of singularity formation in a vortex sheet by the point vortex approximation. JFM, 167:65--93, 1986.
[52]
A. Leonard. Review. vortex methods for flow simulation. 37:289--335, 1980.
[53]
R. J. LeVeque. High-resolution conservative algorithms for advection in incompressible flow. 33(2):627--665, 1996.
[54]
W. Liu, S. Jun, and S. Zhang. Reproducing kernel particle methods. 20(8--9):1081--1106, 1995.
[55]
F. Losasso, J. O. Talton, N. Kwatra, and R. Fedkiw. Two-way coupled sph and particle level set fluid simulation. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 14(4):797--804, Jul-Aug 2008.
[56]
L. B. Lucy. A numerical approach to the testing of the fission hypothesis. Astron. J., 82:1013--1024, 1977.
[57]
S. MALLAT and W. L. HWANG. Singularity detection and processing with wavelets. IEEE TRANSACTIONS ON INFORMATION THEORY, 38(2):617--643, Mar 1992.
[58]
F. Milde, M. Bergdorf, and P. Koumoutsakos. A hybrid model for turmor induced angioegenesis. Biophys J, 2008.
[59]
K. Miller and R. N. Miller. Moving finite elements. I. SIAM J. Numer. Anal., 18(6):1019--1032, 1981.
[60]
M. L. Minion and D. L. Brown. Performance of under-resolved two-dimensional incompressible flow simulations, ii. Journal of Computational Physics, 138:734--765, 1997.
[61]
R. Mittal and G. Iaccarino. Immersed boundary methods for viscous flow. 37:to appear, 2005.
[62]
J. J. Monaghan. Extrapolating B splines for interpolation. 60(2):253--262, 1985.
[63]
J. J. Monaghan. Smoothed particle hydrodynamics. REPORTS ON PROGRESS IN PHYSICS, 68(8):1703--1759, Aug 2005.
[64]
J. P. Morris. Simulating surface tension with smoothed particle hydrodynamics. 33(3):333--353, 2000.
[65]
S. D. Muller, I. Mezic, J. H. Walther, and P. Koumoutsakos. Transverse momentum micromixer optimization with evolution strategies. COMPUTERS and FLUIDS, 33(4):521--531, May 2004.
[66]
S. Osher and R. P. Fedkiw. Level set methods: An overview and some recent results. 169(2):463--502, 2001.
[67]
S. Osher and J. A. Sethian. Front propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulation. 79(1):12--49, 1988.
[68]
S. J. Osher and R. P. Fedkiw. Level set methods and dynamic implicit surfaces. Springer Verlag, 2002.
[69]
M. L. Ould-Salihi, G.-H. Cottet, and M. El Hamraoui. Blending finite-difference and vortex methods for incompressible flow computations. 22(5):1655--1674, 2000.
[70]
C. S. PESKIN. Numerical-analysis of blood-flow in heart. JOURNAL OF COMPUTATIONAL PHYSICS, 25(3):220--252, 1977.
[71]
H. Pfister and M. Gross. Point-based computer graphics. IEEE COMPUTER GRAPHICS AND APPLICATIONS, 24(4):22--23, Jul-Aug 2004.
[72]
P. Ploumhans, G. S. Winckelmans, J. K. Salmon, A. Leonard, and M. S. Warren. Vortex methods for direct numerical simulation of three-dimensional bluff body flows: Applications to the sphere at Re = 300, 500 and 1000. 178:427--463, 2002.
[73]
S. Premoze, T. Tasdizen, J. Bigler, A. Lefohn, and R. T. Whitaker. Particle-based simulation of fluids. COMPUTER GRAPHICS FORUM, 22(3):401--410, 2003.
[74]
W. T. Reeves. Particle systems - a technique for modeling a class of fuzzy objects. Computer Graphics, 17:359--376, 1983.
[75]
W. J. Rider and D. B. Kothe. Reconstructing volume tracking. 141:112--152, 1998.
[76]
L. Rosenhead. The spread of vorticity in the wake behind a cylinder. 127(A):590--612, 1930.
[77]
L. Rosenhead. The formation of vortices from a surface of discontinuity. 134:170--192, 1931.
[78]
I. F. Sbalzarini, A. Hayer, A. Helenius, and P. Koumoutsakos. Simulations of (an)isotropic diffusion on curved biological surfaces. Biophys J, 90(3):878--885, 2006.
[79]
R. Scardovelli and S. Zaleski. Direct numerical simulation of free-surface and interfacial flow. 31:567--603, 1999.
[80]
I. J. Schoenberg. Contribution to the problem of approximation of equidistant data by analytic functions. Quart. Appl. Math., 4:45--99, 112--141, 1946.
[81]
A. Selle, N. Rasmussen, and R. Fedkiw. A vortex particle method for smoke, water and explosions. ACM Trans. Graph., 24(3):910--914, 2005.
[82]
J. Sethian. Numerical algorithms for propagating interfaces: Hamilton-Jacobi equations and conservations laws. 31:131--161, 1990.
[83]
J. A. Sethian. A fast marching level set method for monotonically advancing fronts. 93(4):1591--1595, 1996.
[84]
J. A. Sethian. Fast marching methods. SIAM Rev., 41(2):199--235, 1999.
[85]
J. A. Sethian. Evolution, implementation, and application of level set and fast marching methods for advancing fronts. 169(2):503--555, 2001.
[86]
J. A. Sethian and P. Smereka. Level set methods for fluid interfaces. 35:341--372, 2003.
[87]
K. Sims. Particle animation and rendering using data parallel computation. Computer Graphics (Siggraph '90 proceedings), pages 405--413, 1990.
[88]
A. R. Smith. Plants, fractals, and formal languages. SIGGRAPH Comput. Graph., 18(3):1--10, 1984.
[89]
H. A. STONE. A simple derivation of the time-dependent convective-diffusion equation for surfactant transport along a deforming interface. PHYSICS OF FLUIDS A-FLUID DYNAMICS, 2(1):111--112, Jan 1990.
[90]
J. Strain. Fast adaptive 2D vortex methods. 132:108--122, 1997.
[91]
J. Strain. A fast semi-lagrangian contouring method for moving interfaces. 161(2):512--536, 2001.
[92]
M. Sussman and E. Fatemi. An efficient, interface-preserving level set redistancing algorithm and its application to interfacial incompressible fluid flow. 20(4):1165--1191, 1999.
[93]
M. Sussman, P. Smereka, and S. Osher. A level set approach for computing solutions to incompressible 2-phase flow. 114(1):146--159, 1994.
[94]
C. Varea, J. L. Aragon, and R. A. Barrio. Turing patterns on a sphere. PHYSICAL REVIEW E, 60(4):4588--4592, Oct 1999.
[95]
O. V. Vasilyev. Solving multi-dimensional evolution problems with localized structures using second generation wavelets. INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 17(2):151--168, Apr 2003.
[96]
L. Verlet. Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. 159(1):98--103, 1967.
[97]
J. H. Walther and P. Koumoutsakos. Three-dimensional particle methods for particle laden flows with two-way coupling. 167:39--71, 2001.
[98]
N. Zabusky, M. Hughes, and K. Roberts. Contour dynamics for the euler equations in two dimensions. 30:96--106, 1979.
[99]
S. T. Zalesak. Fully multidimensional flux-corrected transport algorithms for fluids. 31(3):335--362, 1979.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGGRAPH '08: ACM SIGGRAPH 2008 classes
August 2008
5354 pages
ISBN:9781450378451
DOI:10.1145/1401132
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 11 August 2008

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Research-article

Conference

SIGGRAPH '08
Sponsor:

Acceptance Rates

Overall Acceptance Rate 1,822 of 8,601 submissions, 21%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)13
  • Downloads (Last 6 weeks)1
Reflects downloads up to 02 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2016)Schrödinger's smokeACM Transactions on Graphics10.1145/2897824.292586835:4(1-13)Online publication date: 11-Jul-2016
  • (2014)A PPPM fast summation method for fluids and beyondACM Transactions on Graphics10.1145/2661229.266126133:6(1-11)Online publication date: 19-Nov-2014
  • (2013)Consistent surface model for SPH-based fluid transportProceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation10.1145/2485895.2485902(95-103)Online publication date: 19-Jul-2013
  • (2012)Temporal Blending for Adaptive SPHComputer Graphics Forum10.1111/j.1467-8659.2012.03186.x31:8(2436-2449)Online publication date: 1-Dec-2012
  • (2010)Improved Variational Guiding of Smoke AnimationsComputer Graphics Forum10.1111/j.1467-8659.2009.01640.x29:2(705-712)Online publication date: 7-Jun-2010
  • (2010)World LinesIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2010.22316:6(1458-1467)Online publication date: 1-Nov-2010
  • (2009)Guiding of smoke animations through variational coupling of simulations at different resolutionsProceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation10.1145/1599470.1599499(217-226)Online publication date: 1-Aug-2009

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media