[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/1377676.1377687acmconferencesArticle/Chapter ViewAbstractPublication PagessocgConference Proceedingsconference-collections
research-article

Diameters, centers, and approximating trees of delta-hyperbolicgeodesic spaces and graphs

Published: 09 June 2008 Publication History

Abstract

δ-Hyperbolic metric spaces have been defined by M. Gromov via a simple 4-point condition: for any four points u,v,w,x, the two larger of the sums d(u,v)+d(w,x), d(u,w)+d(v,x), d(u,x)+d(v,w) differ by at most 2δ. Given a finite set S of points of a δ-hyperbolic space, we present simple and fast methods for approximating the diameter of S with an additive error 2δ and computing an approximate radius and center of a smallest enclosing ball for S with an additive error 3δ. These algorithms run in linear time for classical hyperbolic spaces and for δ-hyperbolic graphs and networks. Furthermore, we show that for δ-hyperbolic graphs G=(V,E) with uniformly bounded degrees of vertices, the exact center of S can be computed in linear time O(|E|). We also provide a simple construction of distance approximating trees of δ-hyperbolic graphs G on n vertices with an additive error O(δlog2 n). This construction has an additive error comparable with that given by Gromov for n-point δ-hyperbolic spaces, but can be implemented in O(|E|) time (instead of O(n2)). Finally, we establish that several geometrical classes of graphs have bounded hyperbolicity.

References

[1]
P.K. Agarwal, S. Har-Peled, K. Varadarajan, Geometricapproximation via coresets, Combinatorial and ComputationalGeometry (J.E. Goodman et al., Eds.), Cambridge University Press,New York, 2005, 1--30.
[2]
D. Aingworth, C. Chekuri, P. Indyk, R.Motwani, Fast estimation of diameter and shortest paths (withoutmatrix multiplication), SIAM J. Comput. 28 (1999),1167--1181.
[3]
J.M. Alonso, T. Brady, D. Cooper, V. Ferlini, M. Lustig, M. Mihalik, M. Shapiro, H. Short, Notes on wordhyperbolic groups, Group Theory from a Geometrical Viewpoint, ICTP Trieste 1990 (E. Ghys, A. Haefliger, and A. Verjovsky, eds.), World Scientific, 1991, pp. 3--63.
[4]
H.-J. Bandelt, V. Chepoi, 1-Hyperbolic graphs, SIAM J.Discr. Math. 16 (2003) 323--334.
[5]
H.-J. Bandelt, V. Chepoi, Metric graph theory and geometry: asurvey, Contemp. Math. (to appear).
[6]
B. Ben-Moshe, B.K. Bhattacharya, Q. Shi, A. Tamir, Efficient algorithms for center problems in cactusnetworks, Theor. Comput. Sci. 378 (2007) 237--252.
[7]
M. de Berg, On rectilinear link distance, Comput.Geom. 1 (1991) 13--34.
[8]
A. Brandstädt, V. Chepoi, F. Dragan, Distance approximating trees for chordal and dually chordal graphs. J. Algorithms 30 (1999) 166--184.
[9]
M. Bridson, A. Haefliger, Metric Spaces of Non-Positive Curvature, Springer, Berlin, 1999.
[10]
V. Chepoi, Graphs of some CAT(0) complexes, Adv. Appl. Math. 24 (2000) 125--179.
[11]
V. Chepoi, F. Dragan, A linear time algorithm for computinga link central point of a simple rectilinear polygon (unpublishedmanuscript) (1992).
[12]
V. Chepoi, F. Dragan, On link diameter of a simple rectilinear polygon, Comput. Sci. J. of Moldova 1 (1993) 62--74.
[13]
V. Chepoi, F. Dragan,Linear-time algorithm for finding a central vertex of a chordalgraph, In ESA 1994, pp.159--170.
[14]
V. Chepoi, F. Dragan,A note on distance approximating trees in graphs, Europ. J.Combin. 21 (2000) 761--766.
[15]
V. Chepoi, F. Dragan, Y. Vaxès, Center and diameter problem inplanar quadrangulations and triangulations, In SODA 2002 pp.346--355.
[16]
V. Chepoi, B. Estellon, Packing and coveringδ-hyperbolic spaces by balls, In APPROX-RANDOM 2007 pp.59--73.
[17]
K.L. Clarkson, P.W. Shor, Applications of randomsampling in computational geometry, II, Disrc. Comput. Geom. 4 (1989), 387--421.
[18]
D.G. Corneil, F.F. Dragan, M. Habib, C.Paul, Diameter determination on restricted graph families, Discr. Appl. Math. 113 (2001) 143--166.
[19]
H. Djidjev, A. Lingas, J.-R. Sack, An O(nłogn) algorithm for computing the link center of a simple polygon, Discr. Comput. Geom. 8 (1992) 131--152.
[20]
Y. Dourisboure, C. Gavoille, Tree-decompositions with bags ofsmall diameter, Discr. Math. 307 (2007) 208--229.
[21]
D. Dvir, G. Handler, The absolute center of anetwork, Networks 43 (2004), 109--118.
[22]
M.E. Dyer, On a multidimensional search procedure and itsapplication to the Euclidean one-centre problem, SIAM J.Comput. 13 (1984) 31--45.
[23]
D. Eppstein, Squarepants in a tree: sum of subtree clustering and hyperbolicpants decomposition, In SODA' 2007.
[24]
C. Gavoille, O. Ly, Distance labeling in hyperbolicgraphs, In ISAAC 2005 pp. 171--179.
[25]
E. Ghys, P. de la Harpe eds., Les groupes hyperboliques d'après M. Gromov, Progress in Mathematics Vol. 83 (1990).
[26]
M. Gromov, Hyperbolic Groups, In: Essays in grouptheory (S.M. Gersten ed.), MSRI Series 8 (1987) pp.75--263.
[27]
M. Farber, R.E. Jamison, On local convexity in graphs, Discr. Math. 66 (1987), 231--247.
[28]
F. Haglund, Complexes simpliciaux hyperboliques de grandedimension, Prepublication Orsay 71 (2003), 32pp.
[29]
F. Haglund, J. Swiatkowski, Separating quasi-convex subgroupsin 7-systolic groups, Groups, Geometry, and Dynamics (toappear).
[30]
S.L. Hakimi, Optimum location of switching centersand absolute centers and medians of a graph, Oper. Res. 12 (1964) 450--459.
[31]
J. Hershberger, S. Suri, Matrix searching with theshortest-path metric, SIAM J. Comput. 26 (1997)1612--1634.
[32]
T. Januszkiewicz, J. Swiatkowski, Simplicial nonpositivecurvature, Publ. Math. IHES 104 (2006) 1--85.
[33]
J. Koolen, V. Moulton, Hyperbolic bridged graphs, Europ. J. Combin. 23 (2002) 683--699.
[34]
R. Krauthgamer, J.R. Lee, Algorithms on negatively curved spaces, In FOCS 2006.
[35]
W. Lenhart, R. Pollack, J.-R. Sack, R.Seidel, M. Sharir, S. Suri, G. T. Toussaint, S. Whitesides, C.-K. Yap, Computing the link center of a simple polygon, Discr. Comput. Geom. 3 (1988), 281--293.
[36]
E. Magazanik, M. A. Perles, Staircase connectedsets, Discr. Comput. Geom. 37 (2007) 587--599.
[37]
G. Malandain, J.-D. Boissonnat, Computing the diameter of a pointset, Int. J. Comput. Geom. Appl. 12 (2002), 489--510.
[38]
N. Megiddo, Linear-time algorithms for linear programming in R3 and related problems, SIAM J. Comput. 12 (1983)759--776.
[39]
B. Nilsson and S. Schuierer, An optimal algorithm for therectilinear link center of a rectilinear polygon, Comput.Geom. 6 (1996) 169--194.
[40]
P. Papasoglu, Strongly geodesically automatic groups are hyperbolic, Inventiones Math. 121 (1995) 323--334.
[41]
R. Pollack, M. Sharir, G. Rote, Computing thegeodesic center of a simple polygon, Discr. Comput. Geom. 4 (1989), 611--626.
[42]
Y. Shavitt, T. Tankel, On internet embedding inhyperbolic spaces for overlay construction and distance estimation, In INFOCOM 2004.
[43]
V.P. Soltan, V.D. Chepoi, Conditions for invarianceof set diameters under d-convexification in a graph, Cybernetics 19 (1983) 750--756 (Russian, English transl.).
[44]
S. Suri, Computing geodesic furthest neighbors in simple polygons, J. Comput. Syst. Sci. 39 (1989) 220--235.
[45]
E. Welzl, Smallest enclosing disks (balls and ellipsoids), In New Resultsand New Trends in Computer Science, (H. Maurer, Ed.), LNCS 555 (1991) 359--370.

Cited By

View all
  • (2025)Helly groupsGeometry & Topology10.2140/gt.2025.29.129:1(1-70)Online publication date: 1-Jan-2025
  • (2024)Fast deterministic algorithms for computing all eccentricities in (hyperbolic) Helly graphsJournal of Computer and System Sciences10.1016/j.jcss.2024.103606(103606)Online publication date: Nov-2024
  • (2024)$$\alpha _i$$-Metric Graphs: Radius, Diameter and all EccentricitiesAlgorithmica10.1007/s00453-024-01223-686:7(2092-2129)Online publication date: 25-Mar-2024
  • Show More Cited By

Index Terms

  1. Diameters, centers, and approximating trees of delta-hyperbolicgeodesic spaces and graphs

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    SCG '08: Proceedings of the twenty-fourth annual symposium on Computational geometry
    June 2008
    304 pages
    ISBN:9781605580715
    DOI:10.1145/1377676
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 09 June 2008

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. center
    2. delta-hyperbolic space
    3. diameter
    4. radius

    Qualifiers

    • Research-article

    Conference

    SoCG08
    SoCG08: 24th Annual Symposium on Computational Geometry
    June 9 - 11, 2008
    MD, College Park, USA

    Acceptance Rates

    Overall Acceptance Rate 625 of 1,685 submissions, 37%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)34
    • Downloads (Last 6 weeks)2
    Reflects downloads up to 13 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2025)Helly groupsGeometry & Topology10.2140/gt.2025.29.129:1(1-70)Online publication date: 1-Jan-2025
    • (2024)Fast deterministic algorithms for computing all eccentricities in (hyperbolic) Helly graphsJournal of Computer and System Sciences10.1016/j.jcss.2024.103606(103606)Online publication date: Nov-2024
    • (2024)$$\alpha _i$$-Metric Graphs: Radius, Diameter and all EccentricitiesAlgorithmica10.1007/s00453-024-01223-686:7(2092-2129)Online publication date: 25-Mar-2024
    • (2023)Hyperbolic representation learningProceedings of the 40th International Conference on Machine Learning10.5555/3618408.3620062(39639-39659)Online publication date: 23-Jul-2023
    • (2023)On computing discretized Ricci curvatures of graphsTheoretical Computer Science10.1016/j.tcs.2023.114127975:COnline publication date: 9-Oct-2023
    • (2023)$$\alpha _i$$-Metric Graphs: Radius, Diameter and all EccentricitiesGraph-Theoretic Concepts in Computer Science10.1007/978-3-031-43380-1_20(276-290)Online publication date: 23-Sep-2023
    • (2022)Coning-off CAT(0) cube complexesAnnales de l'Institut Fourier10.5802/aif.343071:4(1535-1599)Online publication date: 15-Mar-2022
    • (2022)Enumeration of Far-apart Pairs by Decreasing Distance for Faster Hyperbolicity ComputationACM Journal of Experimental Algorithmics10.1145/356916927(1-29)Online publication date: 13-Dec-2022
    • (2022)Fellow Travelers Phenomenon Present in Real-World NetworksComplex Networks & Their Applications X10.1007/978-3-030-93409-5_17(194-206)Online publication date: 1-Jan-2022
    • (2021)On the joint spectral radius for isometries of non-positively curved spaces and uniform growthAnnales de l'Institut Fourier10.5802/aif.3374(1-75)Online publication date: 15-Apr-2021
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media