[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Image retrieval: Ideas, influences, and trends of the new age

Published: 08 May 2008 Publication History

Abstract

We have witnessed great interest and a wealth of promise in content-based image retrieval as an emerging technology. While the last decade laid foundation to such promise, it also paved the way for a large number of new techniques and systems, got many new people involved, and triggered stronger association of weakly related fields. In this article, we survey almost 300 key theoretical and empirical contributions in the current decade related to image retrieval and automatic image annotation, and in the process discuss the spawning of related subfields. We also discuss significant challenges involved in the adaptation of existing image retrieval techniques to build systems that can be useful in the real world. In retrospect of what has been achieved so far, we also conjecture what the future may hold for image retrieval research.

References

[1]
Aigrain, P., Zhang, H., and Petkovic, D. 1996. Content-based representation and retrieval of visual media: A review of the state-of-the-art. Multimed. Tools Appl. 3, 3, 179--202.
[2]
Airliners.Net. 2005. Airliners.net homepage. http://www.airliners.net.
[3]
Alipr. 2006. Alipr homepage. http://www.alipr.com.
[4]
Amores, J., Sebe, N., and Radeva, P. 2005. Fast spatial pattern discovery integrating boosting with constellations of contextual descriptors. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[5]
Amores, J., Sebe, N., and Radeva, P. 2006. Boosting the distance estimation: Application to the k-nearest neighbor classifier. Pattern Recogn. Lett. 27, 3, 201--209.
[6]
Amores, J., Sebe, N., Radeva, P., Gevers, T., and Smeulders, A. 2004. Boosting contextual information in content-based image retrieval. In Proceedings of the 6th ACM SIGMM International Workshop on Multimedia Information Retrieval (MIR) at the International Multimedia Conference.
[7]
Armitage, L. H. and Enser, P. G. B. 1997. Analysis of user need in image archives. J. Inf. Sci. 23, 4, 287--299.
[8]
Assfalg, J., Del Bimbo, A., and Pala, P. 2002. Three-Dimensional interfaces for querying by example in content-based image retrieval. IEEE Trans. Visualiz. Comput. Graphics 8, 4, 305--318.
[9]
Bar-Hillel, A., Hertz, T., Shental, N., and Weinshall, D. 2005. Learning a Mahalanobis metric from equivalence constraints. J. Mach. Learn. Res. 6, 937--965.
[10]
Barnard, K., Duygulu, P., Forsyth, D., de Freitas, N., Blei, D. M., and Jordan, M. I. 2003. Matching words and pictures. J. Mach. Learn. Res. 3, 1107--1135.
[11]
Barni, M., Pelagotti, A., and Piva, A. 2005. Image processing for the analysis and conservation of paintings: Opportunities and challenges. IEEE Signal Process. Mag. 22, 141--144.
[12]
Bartolini, I., Ciaccia, P., and Patella, M. 2005. Warp: Accurate retrieval of shapes using phase of Fourier descriptors and time warping distance. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1, 142--147.
[13]
Belongie, S., Malik, J., and Puzicha, J. 2002. Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24, 4, 509--522.
[14]
Benchathlon. 2005. Benchathlon homepage. http://www.benchathlon.net.
[15]
Berezhnoy, I. E., Postma, E. O., and Herik, J. V. D. 2005. Computerized visual analysis of paintings. In Proceedings of the International Conference on the Association for History and Computing.
[16]
Berretti, S., Bimbo, A. D., and Vicario, E. 2001. Efficient matching and indexing of graph models in content-based retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 23, 10, 1089--1105.
[17]
Berretti, S. and Del Bimbo, A. 2006. Modeling spatial relationships between 3D objects. In Proceedings of the 18th International IEEE Conference on Pattern Recognition (ICPR).
[18]
Berretti, S., Del Bimbo, A., and Pala, P. 2000. Retrieval by shape similarity with perceptual distance and effective indexing. IEEE Trans. Multimed. 2, 4, 225--239.
[19]
Berretti, S., Del Bimbo, A., and Vicario, E. 2003. Weighted walkthroughs between extended entities for retrieval by spatial arrangement. IEEE Trans. Multimed. 5, 1, 52--70.
[20]
Bertini, E., Cali, A., Catarci, T., Gabrielli, S., and Kimani, S. 2005. Interaction-Based adaptation for small screen devices. In Proceedings of the 10th International Conference on User Modeling (UM). Lecture Notes in Computer Science, Vol. 3538. Springer, 277--281.
[21]
Bertini, M., Cucchiara, R., Del Bimbo, A., and Prati, A. 2003. Object and event detection for semantic annotation and transcoding. In Proceedings of the IEEE International Conference on Multimedia and Expo (ICME).
[22]
Blei, D. M. and Jordan, M. I. 2003. Modeling annotated data. In Proceedings of the Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.
[23]
Bohm, C., Berchtold, S., and Keim, D. A. 2001. Searching in high-dimensional space index structures for improving the performance of multimedia databases. ACM Comput. Surv. 33, 3, 322--373.
[24]
Bouchard, G. and Triggs, B. 2005. Hierarchical part-based visual object categorization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[25]
Cai, D., He, X., Li, Z., Ma, W. Y., and Wen, J. R. 2004. Hierarchical clustering of www image search results using visual, textual and link information. In Proceedings of the ACM International Conference on Multimedia.
[26]
Caltech101. 2004. http://www.vision.caltech.edu/image_datasets/caltech101/caltech101.html.
[27]
Carballido-Gamio, J., Belongie, S., and Majumdar, S. 2004. Normalized cuts in 3-D for spinal MRI segmentation. IEEE Trans. Medical Imag. 23, 1, 36--44.
[28]
Carneiro, G. and Lowe, D. 2006. Sparse flexible models of local features. In Proceedings of the European Conference on Computer Vision (ECCV).
[29]
Carneiro, G. and Vasconcelos, N. 2005. Minimum Bayes error features for visual recognition by sequential feature selection and extraction. In Proceedings of the Canadian Conference on Computer and Robot Vision.
[30]
Carson, C., Belongie, S., Greenspan, H., and Malik, J. 2002. Blobworld: Image segmentation using expectation-maximization and its application to image querying. IEEE Trans. Pattern Anal. Mach. Intell. 24, 8, 1026--1038.
[31]
Chalechale, A., Naghdy, G., and Mertins, A. 2005. Sketch-based image matching using angular partitioning. IEEE Trans. Syst. Man Cybernet. 35, 1, 28--41.
[32]
Chang, E. Y., Goh, K., Sychay, G., and Wu, G. 2003. CBSA: Content-based soft annotation for multimodal image retrieval using Bayes point machines. IEEE Trans. Circ. Systems Video Technol. 13, 1, 26--38.
[33]
Chang, S., Shi, Q., and Yan, C. 1987. Iconic indexing by 2-D strings. IEEE Trans. Pattern Anal. Mach. Intell. 9, 3, 413--427.
[34]
Chang, S., Yan, C., Dimitroff, D., and Arndt, T. 1988. An intelligent image database system. IEEE Trans. Softw. Eng. 14, 5, 681--688.
[35]
Chang, S.-F., Smith, J., Beigi, M., and Benitez, A. 1997. Visual information retrieval from large distributed online repositories. Commun. ACM 40, 12, 63--71.
[36]
Chen, C.-C., Wactlar, H., Wang, J. Z., and Kiernan, K. 2005. Digital imagery for significant cultural and historical materials---An emerging research field bridging people, culture, and technologies. Int. J. Digital Libr. 5, 4, 275--286.
[37]
Chen, J., Pappas, T., Mojsilovic, A., and Rogowitz, B. 2002. Adaptive image segmentation based on color and texture. In Proceedings of the IEEE International Conference on Image Processing (ICIP).
[38]
Chen, L. Q., Xie, X., Fan, X., Ma, W. Y., Zhang, H. J., and Zhou, H. Q. 2003. A visual attention model for adapting images on small displays. Multimed. Syst. 9, 4, 353--364.
[39]
Chen, Y. and Wang, J. Z. 2002. A region-based fuzzy feature matching approach to content-based image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 24, 9, 252--1267.
[40]
Chen, Y. and Wang, J. Z. 2004. Image categorization by learning and reasoning with regions. J. Mach. Learn. Res. 5, 913--939.
[41]
Chen, Y., Wang, J. Z., and Krovetz, R. 2005. Clue: Cluster-based retrieval of images by unsupervised learning. IEEE Trans. Image Process. 14, 8, 1187--1201.
[42]
Chen, Y., Zhou, X., and Huang, T. S. 2002. One-class SVM for learning in image retrieval. In Proceedings of the IEEE International Conference on Image Processing (ICIP).
[43]
Chew, M. and Tygar, J. D. 2004. Image recognition captchas. In Proceedings of the Information Security Conference.
[44]
Choi, Y. and Rasmussen, E. M. 2002. User's relevance criteria in image retrieval in American history. Inf. Process. Manage. 38, 5, 695--726.
[45]
Christel, M. G. and Conescu, R. M. 2005. Addressing the challenge of visual information access from digital image and video libraries. In Proceedings of the 5th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL).
[46]
Ciaccia, P., Patella, M., and Zezula, P. 1997. M-Tree: An efficient access method for similarity search in metric spaces. In Proceedings of the International Conference on Very Large Databases (VLDB).
[47]
CNN. 2005. Computer decodes Mona Lisa's smile. http://www.cnn.com/2005/TECH/12/16/mona.lisa.smile/index.html.
[48]
Comaniciu, D. and Meer, P. 2002. Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24, 5, 603--619.
[49]
Cox, I. J., Miller, M. L., Minka, T. P., Papathomas, T. V., and Yianilos, P. N. 2000. The Bayesian image retrieval system, PicHunter: Theory, implementation, and psychophysical experiments. IEEE Trans. Image Process. 9, 1, 20--37.
[50]
Csillaghy, A., Hinterberger, H., and Benz, A. 2000. Content based image retrieval in astronomy. Inf. Retriev. 3, 3, 229--241.
[51]
Cucchiara, R., Grana., C., and Prati, A. 2003. Semantic video transcoding using classes of relevance. Int. J. Image Graph. 3, 1, 145--170.
[52]
Cunningham, S. J., Bainbridge, D., and Masoodian, M. 2004. How people describe their image information needs: A grounded theory analysis of visual arts queries. In Proceedings of the ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL).
[53]
Dagli, C. and Huang, T. S. 2004. A framework for grid-based image retrieval. In Proceedings of the International IEEE Conference on Pattern Recognition (ICPR).
[54]
Datta, R., Ge, W., Li, J., and Wang, J. Z. 2007. Toward bridging the annotation-retrieval gap in image search. IEEE Multimed. 14, 3, 24--35.
[55]
Datta, R., Joshi, D., Li, J., and Wang, J. Z. 2006. Studying aesthetics in photographic images using a computational approach. In Proceedings of the European Conference on Computer Vision (ECCV).
[56]
Datta, R., Joshi, D., Li, J., and Wang, J. Z. 2007. Tagging over time: Real-world image annotation by lightweight meta-learning. In Proceedings of the ACM International Conference on Multimedia.
[57]
Datta, R., Li, J., and Wang, J. Z. 2005. IMAGINATION: A robust image-based captcha generation system. In Proceedings of the ACM International Conference on Multimedia.
[58]
Datta, R., Li, J., and Wang, J. Z. 2007. Learning the consensus on visual quality for next-generation image management. In Proceedings of the ACM International Conference on Multimedia.
[59]
de Silva, V. and Tenenbaum, J. 2003. Global versus local methods in nonlinear dimensionality reduction. In Proceedings of the Conference on Advances in Neural Information Processing Systems (NIPS).
[60]
Del Bimbo, A. D. 1999. Visual Information Retrieval. Morgan Kaufmann.
[61]
Del Bimbo, A. and Pala, P. 1997. Visual image retrieval by elastic matching of user sketches. IEEE Trans. Pattern Anal. Mach. Intell. 19, 2, 121--132.
[62]
Deng, Y. and Manjunath, B. 2001. Unsupervised segmentation of color-texture regions in images and video. IEEE Trans. Pattern Anal. Mach. Intell. 23, 8, 800--810.
[63]
Deng, Y., Manjunath, B. S., Kenney, C., Moore, M. S., and Shin, H. 2001. An efficient color representation for image retrieval. IEEE Trans. Image Process. 10, 1, 140--147.
[64]
Do, M. N. and Vetterli, M. 2002. Wavelet-Based texture retrieval using generalized Gaussian density and Kullback-Leibler distance. IEEE Trans. Image Process. 11, 2, 146--158.
[65]
Dong, A. and Bhanu, B. 2003. Active concept learning for image retrieval in dynamic databases. In Proceedings of the IEEE International Conference on Computer Vision (ICCV).
[66]
Du, Y. and Wang, J. Z. 2001. A scalable integrated region-based image retrieval system. In Proceedings of the IEEE International Conference on Image Processing (ICIP).
[67]
Duygulu, P., Barnard, K., de Freitas, N., and Forsyth, D. 2002. Object recognition as machine translation: Learning a lexicon for a fixed image vocabulary. In Proceedings of the European Conference on Computer Vision (ECCV).
[68]
Fagin, R. 1997. Combining fuzzy information from multiple systems. In Proceedings of the ACM-SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS).
[69]
Fang, Y. and Geman, D. 2005. Experiments in mental face retrieval. In Proceedings of the International Conference on Audio- and Video-Based Biometric Person Authentication (AVBPA).
[70]
Fang, Y., Geman, D., and Boujemaa, N. 2005. An interactive system for mental face retrieval. In Proceedings of the ACM SIGMM International Workshop on Multimedia Information Retrieval (MIR) at the International Multimedia Conference.
[71]
Feng, H., Shi, R., and Chua, T. S. 2004. A bootstrapping framework for annotating and retrieving www images. In Proceedings of the ACM International Conference on Multimedia.
[72]
Fergus, R., Perona, P., and Zisserman, A. 2003. Object class recognition by unsupervised scale-invariant learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[73]
Fergus, R., Perona, P., and Zisserman, A. 2005. A sparse object category model for efficient learning and exhaustive recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[74]
Finlayson, G. 1996. Color in perspective. IEEE Trans. Pattern Anal. Mach. Intell. 18, 10, 1034--1038.
[75]
Flickner, M., Sawhney, H., Niblack, W., Ashley, J., Huang, Q., Dom, B., Gorkani, M., Hafner, J., Lee, D., Petkovic, D., Steele, D., and Yanker, P. 1995. Query by image and video content: The QBIC system. IEEE Comput. 28, 9, 23--32.
[76]
Flickr. 2002. The flickr homepage. http://www.flickr.com.
[77]
Gao, B., Liu, T.-Y., Qin, T., Zheng, X., Cheng, Q.-S., and Ma, W.-Y. 2005. Web image clustering by consistent utilization of visual features and surrounding texts. In Proceedings of the ACM International Conference on Multimedia.
[78]
Gevers, T. and Smeulders, A. 2000. Pictoseek: Combining color and shape invariant features for image retrieval. IEEE Trans. Image Process, 9, 1, 102--119.
[79]
GlobalMemoryNet. 2006. Global Memory Net homepage. http://www.memorynet.org.
[80]
Goh, K.-S., Chang, E. Y., and Cheng, K.-T. 2001. SVM binary classifier ensembles for image classification. In Proceedings of the ACM International Conference on Information and Knowledge Management (CIKM).
[81]
Goh, K.-S., Chang, E. Y., and Lai, W.-C. 2004. Multimodal concept-dependent active learning for image retrieval. In Proceedings of the ACM International Conference on Multimedia.
[82]
Google Scholar. 2004. Google scholar homepage. http://scholar.google.com.
[83]
Gordon, S., Greenspan, H., and Goldberger, J. 2003. Applying the information bottleneck principle to unsupervised clustering of discrete and continuous image representations. In Proceedings of the IEEE International Conference on Computer Vision (ICCV).
[84]
Gouet, V. and Boujemaa, N. 2002. On the robustness of color points of interest for image retrieval. In Proceedings of the IEEE International Conference on Image Processing (ICIP).
[85]
Grauman, K. and Darrell, T. 2005. Efficient image matching with distributions of local invariant features. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[86]
Gunther, N. J. and Beratta, G. B. 2001. Benchmark for image retrieval using distributed systems over the Internet: Birds-I. In Proceedings of the SPIE Conference on Internet Imaging III, Vol. 4311, 252--267.
[87]
Gupta, A. and Jain, R. 1997. Visual information retrieval. Commun. ACM 40, 5, 70--79.
[88]
Guyon, I. and Elisseeff, A. 2003. An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157--1182.
[89]
Hadjidemetriou, E., Grossberg, M. D., and Nayar, S. K. 2004. Multiresolution histograms and their use for recognition. IEEE Trans. Pattern Anal. Mach. Intell. 26, 7, 831--847.
[90]
Han, J., Ngan, K. N., Li, M., and Zhang, H.-J. 2005. A memory learning framework for effective image retrieval. IEEE Trans. Image Process. 14, 4, 511--524.
[91]
Haralick, R. 1979. Statistical and structural approaches to texture. Proc. IEEE 67, 5, 786--804.
[92]
Hastie, T., Tibshirani, R., and Friedman, J. 2001. The Elements of Statistical Learning. Springer-Verlag.
[93]
Hauptmann, A. G. and Christel, M. G. 2004. Successful approaches in the TREC video retrieval evaluations. In Proceedings of the ACM International Conference on Multimedia.
[94]
He, J., Li, M., Zhang, H.-J., Tong, H., and Zhang, C. 2004a. Manifold-ranking based image retrieval. In Proceedings of the ACM International Conference on Multimedia.
[95]
He, J., Li, M., Zhang, H.-J., Tong, H., and Zhang, C. 2004b. Mean version space: A new active learning method for content-based image retrieval. In Proceedings of the ACM SIGMM International Workshop on Multimedia Information Retrieval (MIR) at the International Multimedia Conference.
[96]
He, X. 2004. Incremental semi-supervised subspace learning for image retrieval. In Proceedings of the ACM International Conference on Multimedia.
[97]
He, X., Ma, W.-Y., and Zhang, H.-J. 2004c. Learning an image manifold for retrieval. In Proceedings of the ACM International Conference on Multimedia.
[98]
Hoi, C.-H. and Lyu, M. R. 2004a. Group-based relevance feedback with support vector machine ensembles. In Proceedings of the IEEE International Conference on Pattern Recognition (ICPR).
[99]
Hoi, C.-H. and Lyu, M. R. 2004b. A novel log-based relevance feedback technique in content-based image retrieval. In Proceedings of the ACM International Conference on Multimedia.
[100]
Hoiem, D., Sukthankar, R., Schneiderman, H., and Huston, L. 2004. Object-based image retrieval using the statistical structure of images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[101]
Huang, J., Ravi Kumar, S., Mitra, M., Zhu, W.-J., and Zabih, R. 1999. Spatial color indexing and applications. Int. J. Comput. Vision 35, 3, 245--268.
[102]
Huijsmans, D. P. and Sebe, N. 2005. How to complete performance graphs in content-based image retrieval: Add generality and normalize scope. IEEE Trans. Pattern Anal. Mach. Intell. 27, 2, 245--251.
[103]
Huynh, D. F., Drucker, S. M., Baudisch, P., and Wong, C. 2005. Time quilt: Scaling up zoomable photo browsers for large, unstructured photo collections. In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems (CHI).
[104]
IEEE(TIP). 2004. Special issue on image processing for cultural heritage. IEEE Trans. Image Process. 13, 3.
[105]
ImageCLEF. 2006. The CLEF cross language image retrieval track (ImageCLEF) homepage. http://ir.shef.ac.uk/imageclef.
[106]
ImagEVAL. 2005. The ImageEval homepage. http://www.imageval.org.
[107]
Iqbal, Q. and Aggarwal, J. K. 2002. Retrieval by classification of images containing large manmade objects using perceptual grouping. Pattern Recogn. J. 35, 7, 1463--1479.
[108]
Jaimes, A., Omura, K., Nagamine, T., and Hirata, K. 2004. Memory cues for meeting video retrieval. In Proceedings of the 1st ACM Workshop on Continuous Archival and Retrieval of Personal Experiences (CARPE) at the ACM International Multimedia Conference.
[109]
Jaimes, A., Sebe, N., and Gatica-Perez, D. 2006. Human-centered computing: A multimedia perspective. In Proceedings of the ACM International Conference on Multimedia (Special Session on Human-Centered Multimedia).
[110]
Jain, A. and Farrokhnia, F. 1990. Unsupervised texture segmentation using Gabor filters. Proceedings of the International Conference on Systems, Man and Cybernetics.
[111]
Jansen, B. J., Spink, A., and Pedersen, J. 2003. An analysis of multimedia searching on AltaVista. In Proceedings of the ACM SIGMM International Workshop on Multimedia Information Retrieval (MIR) at the International Multimedia Conference.
[112]
Jeon, J., Lavrenko, V., and Manmatha, R. 2003. Automatic image annotation and retrieval using cross-media relevance models. In Proceedings of the Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.
[113]
Jeong, S., Won, C. S., and Gray, R. 2004. Image retrieval using color histograms generated by Gauss mixture vector quantization. Comput. Vision Image Understand. 9, 1--3, 44--66.
[114]
Johnson Jr., C. R., Hendriks, E., Berezhony, I., Brevdo, E., Hughes, S., Daubechies, I., Li, J., Postma, E., and Wang, J. Z. 2008. Image processing for artist identification---computerized analysis of Vincent van Gogh's painting brush stokes. IEEE Sign. Process. 25 (Special Issue on Visual Cultural Heritage).
[115]
Jin, R., Chai, J. Y., and Si, L. 2004. Effective automatic image annotation via a coherent language model and active learning. In Proceedings of the ACM International Conference on Multimedia.
[116]
Jin, R. and Hauptmann, A. 2002. Using a probabilistic source model for comparing images. In Proceedings of the IEEE International Conference on Image Processing (ICIP).
[117]
Jin, Y., Khan, L., Wang, L., and Awad, M. 2005. Image annotations by combining multiple evidence and Wordnet. In Proceedings of the ACM International Conference on Multimedia.
[118]
Jing, F., Li, M., Zhang, H.-J., and Zhang, B. 2004a. An efficient and effective region-based image retrieval framework. IEEE Trans. Image Process. 13, 5, 699--709.
[119]
Jing, F., Li, M., Zhang, H.-J., and Zhang, B. 2004b. Relevance feedback in region-based image retrieval. IEEE Trans. Circ. Syst. Video Technol. 14, 5, 672--681.
[120]
Jing, F., Li, M., Zhang, H. J., and Zhang, B. 2005. A unified framework for image retrieval using keyword and visual features. IEEE Trans. Image Process. 14, 7, 978--989.
[121]
Jing, F., Wang, C., Yao, Y., Deng, K., Zhang, L., and Ma, W. Y. 2006. Igroup: Web image search results clustering. In Proceedings of the ACM International Conference on Multimedia.
[122]
Joshi, D., Datta, R., Zhuang, Z., Weiss, W., Friedenberg, M., Wang, J., and Li, J. 2006a. Paragrab: A comprehensive architecture for Web image management and multimodal querying. In Proceedings of the International Conference on VLDB.
[123]
Joshi, D., Naphade, M., and Natsev, A. 2007. A greedy performance driven algorithm for decision fusion learning. In Proceedings of the IEEE International Conference on Image Processing (ICIP).
[124]
Joshi, D., Wang, J. Z., and Li, J. 2006b. The story picturing engine---a system for automatic text illustration. ACM Trans. Multimed. Comput. Commun. Appl. 2, 1, 68--89.
[125]
Kaster, T., Pfeiffer, M., and Bauckhage, C. 2003. Combining speech and haptics for intuitive and efficient navigation through image databases. In Proceedings of the 5th International Conference on Multimidia Interfaces (ICMI).
[126]
Ke, Y., Sukthankar, R., and Huston, L. 2004. Efficient near-duplicate detection and subimage retrieval. In Proceedings of the ACM International Conference on Multimedia.
[127]
Kherfi, M. L., Ziou, D., and Bernardi, A. 2004. Image retrieval from the World Wide Web: Issues, techniques, and systems. ACM Comput. Surv. 36, 1, 35--67.
[128]
Kim, D.-H. and Chung, C.-W. 2003. Qcluster: Relevance feedback using adaptive clustering for content based image retrieval. In Proceedings of the ACM International Conference on Management of Data (SIGMOD).
[129]
Kim, Y. S., Street, W. N., and Menczer, F. 2000. Feature selection in unsupervised learning via evolutionary search. In Proceedings of the ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD).
[130]
Ko, B. and Byun, H. 2002. Integrated region-based image retrieval using region's spatial relationships. In Proceedings of the IEEE International Conference on Pattern Recognition (ICPR).
[131]
Kotoulas, L. and Andreadis, I. 2003. Colour histogram content-based image retrieval and hardware implementation. IEEE Proc. Circ. Dev. Syst. 150, 5, 387--393.
[132]
Laaksonen, J., Koskela, M., Laakso, S., and Oja, E. 2001. Self-organizing maps as a relevance feedback technique in content-based image retrieval. Pattern Anal. Appl. 4, 140--152.
[133]
Laaksonen, J., Koskela, M., and Oja, E. 2002. PicSom-Self-Organizing image retrieval with mpeg-7 content descriptors. IEEE Trans. Neural Netw. 13, 4, 841--853.
[134]
Latecki, L. J. and Lakamper, R. 2000. Shape similarity measure based on correspondence of visual parts. IEEE Trans. Pattern Anal. Mach. Intell. 22, 10, 1185--1190.
[135]
Lavrenko, V., Manmatha, R., and Jeon, J. 2003. A model for learning the semantics of pictures. In Proceedings of the Conference on Advances in Neural Information Pracessing Systems (NIPS).
[136]
Lazebnik, S., Schmid, C., and Ponce, J. 2003. Affine-invariant local descriptors and neighborhood statistics for texture recognition. In Proceedings of the IEEE International Conference on Computer Vision (ICCV).
[137]
Levina, E. and Bickel, P. 2001. The earth mover's distance is the Mallows distance: Some insights from statistics. In Proceedings of the IEEE International Conference on Computer Vision (ICCV).
[138]
Lew, M., Sebe, N., Djeraba, C., and Jain, R. 2006. Content-based multimedia information retrieval: State-of-the-art and challenges. ACM Trans. Multimed. Comput. Commun. Appl. 2, 1, 1--19.
[139]
Li, B., Goh, K.-S., and Chang, E. Y. 2003. Confidence-based dynamic ensemble for image annotation and semantics discovery. In Proceedings of the ACM International Conference on Multimedia.
[140]
Li, J. 2005. Two-scale image retrieval with significant meta-information feedback. In Proceedings of the ACM International Conference on Multimedia.
[141]
Li, J., Gray, R. M., and Olshen, R. A. 2000. Multiresolution image classification by hierarchical modeling with two dimensional hidden Markov models. IEEE Trans. Inf. Theory 46, 5, 1826--1841.
[142]
Li, J., Najmi, A., and Gray, R. M. 2000. Image classification by a two dimensional hidden Markov model. IEEE Trans. Signal Process. 48, 2, 527--533.
[143]
Li, J. and Sun, H.-H. 2003. On interactive browsing of large images. IEEE Trans. Multimed. 5, 4, 581--590.
[144]
Li, J. and Wang, J. Z. 2003. Automatic linguistic indexing of pictures by a statistical modeling approach. IEEE Trans. Pattern Anal. Mach. Intell. 25, 9, 1075--1088.
[145]
Li, J. and Wang, J. Z. 2004. Studying digital imagery of ancient paintings by mixtures of stochastic models. IEEE Trans. Image Process. 13, 3, 340--353.
[146]
Li, J. and Wang, J. Z. 2006. Real-Time computerized annotation of pictures. In Proceedings of the ACM International Conference on Multimedia.
[147]
Li, J. and Wang, J. Z. 2008. Real-time computerized annotation of pictures. IEEE Trans. Pattern Anal. Mach. Intell. 30, 6, 985--1002.
[148]
Li, J., Wang, J. Z., and Wiederhold, G. 2000. IRM: Integrated region matching for image retrieval. In Proceedings of the ACM International Conference on Multimedia.
[149]
Li, Z.-W., Xie, X., Liu, H., Tang, X., Li, M., and Ma, W.-Y. 2004. Intuitive and effective interfaces for www image search engines. In Proceedings of the ACM International Conference on Multimedia.
[150]
Lin, Y.-Y., Liu, T.-L., and Chen, H.-T. 2005. Semantic manifold learning for image retrieval. In Proceedings of the ACM International Conference on Multimedia.
[151]
Liu, W. and Tang, X. 2005. Learning an image-word embedding for image auto-annotation on the nonlinear latent space. In Proceedings of the ACM International Conference on Multimedia.
[152]
Lu, Y., Hu, C., Zhu, X., Zhang, H., and Yang, Q. 2000. A unified framework for semantics and feature based relevance feedback in image retrieval systems. In Proceedings of the ACM International Conference on Multimedia.
[153]
Lyu, S., Rockmore, D., and Farid, H. 2004. A digital technique for art authentication. Proc. Nat. Acad. Sci. 101, 49, 17006--17010.
[154]
Ma, W. and Manjunath, B. 1997. Netra: A toolbox for navigating large image databases. In Proceedings of the IEEE International Conference on Image Processing (ICIP).
[155]
Ma, W.-Y. and Manjunath, B. 1998. Texture thesaurus for browsing large aerial photographs. J. Amer. Soc. Inf. Sci. 49, 7, 633--648.
[156]
Maitre, H., Schmitt, F., and Lahanier, C. 2001. 15 years of image processing and the fine arts. In Proceedings of the IEEE International Conference on Image Processing (ICIP).
[157]
Malik, J., Belongie, S., Leung, T. K., and Shi, J. 2001. Contour and texture analysis for image segmentation. Int. J. Comput. Vision 43, 1, 7--27.
[158]
Malik, J. and Perona, P. 1990. Preattentive texture discrimination with early vision mechanisms. J. Optical Soc. Amer. A 7, 5, 923--932.
[159]
Mallows, C. L. 1972. A note on asymptotic joint normality. Ann. Math. Statist. 43, 2, 508--515.
[160]
Manjunath, B. and Ma, W.-Y. 1996. Texture features for browsing and retrieval of image data. IEEE Trans. Pattern Anal. Mach. Intell. 18, 8, 837--842.
[161]
Manjunath, B. S., Ohm, J.-R., Vasudevan, V. V., and Yamada, A. 2001. Color and texture descriptors. IEEE Trans. Circ. Syst. Video Technol. 11, 6, 703--715.
[162]
Marsicoi, M. D., Cinque, L., and Levialdi, S. 1997. Indexing pictorial documents by their content: A survey of current techniques. Image Vision Comput. 15, 2, 119--141.
[163]
Martinez, K., Cupitt, J., Saunders, D., and Pillay, R. 2002. Ten years of art imaging research. Proc. IEEE 90, 28--41.
[164]
Mathiassen, J. R., Skavhaug, A., and Bo, K. 2002. Texture similarity measure using Kullback-Leibler divergence between gamma distributions. In Proceedings of the European Conference on Computer Vision (ECCV).
[165]
McLachlan, G. and Peel, D. 2000. Finite Mixture Models. Wiley-Interscience.
[166]
Mehrotra, R. and Gary, J. E. 1995. Similar-Shape retrieval in shape data management. IEEE Comput. 28, 9, 57--62.
[167]
Melzer, T., Kammerer, P., and Zolda, E. 1998. Stroke detection of brush strokes in protrait miniatures using a semi-parametric and a model based approach. In Proceedings of the International IEEE Conference on Pattern Recognition (ICPR).
[168]
Mikolajczk, K. and Schmid, C. 2003. A performance evaluation of local descriptors. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[169]
Mikolajczyk, K. and Schmid, C. 2004. Scale and affine invariant interest point detectors. Intl. J. Comput. Vision 60, 1, 63--86.
[170]
Miller, G. 1995. Wordnet: A lexical database for English. Comm. ACM 38, 11, 39--41.
[171]
Mirsky, S. 2006. Computers get the picture. Sci. Amer. (Nov.).
[172]
Mitra, P., Murthy, C., and Pal, S. 2002. Unsupervised feature selection using feature similarity. IEEE Trans. Pattern Anal. Mach. Intell. 24, 3, 301--312.
[173]
Mokhtarian, F. 1995. Silhouette-Based isolated object recognition through curvature scale space. IEEE Trans. Pattern Anal. Mach. Intell. 17, 5, 539--544.
[174]
Monay, F. and Gatica-Perez, D. 2003. On image auto-annotation with latent space models. In Proceedings of the ACM International Conference on Multimedia.
[175]
Mori, G. and Malik, J. 2003. Recognizing objects in adversarial clustter: Breaking a visual captcha. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[176]
Mukherjea, S., Hirata, K., and Hara, Y. 1999. Amore: A World Wide Web image retrieval engine. In Proceedings of the International World Wide Web Conference (WWW).
[177]
Muller, H., Marchand-Maillet, S., and Pun, T. 2002. The truth about Corel---Evaluation in image retrieval. In Proceedings of the International Conference on Video Retrieval (CIVR). Lecture Notes in Computer Science, vol. 2383. Springer, 36--45.
[178]
Muller, H., Michoux, N., Bandon, D., and Geissbuhler, A. 2004. A review of content-based image retrieval systems in medical applications---Clinical benefits and future directions. Int. J. Medical Inf. 73, 1, 1--23.
[179]
Muller, H., Muller, W., Squire, D. M., Marchand-Maillet, S., and Pun, T. 2001. Performance evaluation in content-based image retrieval: Overview and proposals. Pattern Recogn. Lett. 22, 5, 593--601.
[180]
Muller, H., Pun, T., and Squire, D. 2004. Learning from user behavior in image retrieval: Application of market basket analysis. Int. J. Comput. Vision 56, 1--2, 65--77.
[181]
Nagamine, T., Jaimes, A., Omura, K., and Hirata, K. 2004. A visuospatial memory cue system for meeting video retrieval. In Proceedings of the ACM International Conference on Multimedia (demonstration).
[182]
Nakano, K. and Takamichi, E. 2003. An image retrieval system using fpgas. In Proceedings of the Asia South Pacific Design Automation Conference.
[183]
Nakazato, M., Dagli, C., and Huang, T. 2003. Evaluating group-based relevance feedback for content-based image retrieval. In Proceedings of the IEEE International Conference on Image Processing (ICIP).
[184]
Natsev, A., Naphade, M. R., and Tesic, J. 2005. Learning the semantics of multimedia queries and concepts from a small number of examples. In Proceedings of the ACM International Conference on Multimedia.
[185]
Natsev, A., Rastogi, R., and Shim, K. 2004. Walrus: A similarity retrieval algorithm for image databases. IEEE Trans. Knowl. Data Eng. 16, 3, 301--316.
[186]
Natsev, A. and Smith, J. 2002. A study of image retrieval by anchoring. In Proceedings of the IEEE International Conference on Multimedia and Expo (ICME).
[187]
Ng, T.-T., Chang, S.-F., Hsu, J., Xie, L., and Tsui, M.-P. 2005. Physics-Motivated features for distinguishing photographic images and computer graphics. In Proceedings of the ACM International Conference on Multimedia.
[188]
Painter, T. H., Dozier, J., Roberts, D. A., Davis, R. E., and Green, R. O. 2003. Retrieval of subpixel snow-covered area and grain size from imaging spectrometer data. Remote Sens. Env. 85, 1, 64--77.
[189]
Panda, N. and Chang, E. Y. 2006. Efficient top-k hyperplane query processing for multimedia information retrieval. In Proceedings of the ACM International Conference on Multimedia.
[190]
Pentland, A., Picard, R., and Sclaroff, S. 1994. Photobook: Tools for content-based manipulation of image databases. In Proceedings of the Conference on Storage and Retrieval for Image and Video Database II, SPIE, San Jose, CA.
[191]
Petraglia, G., Sebillo, M., Tucci, M., and Tortora, G. 2001. Virtual images for similarity retrieval in image databases. IEEE Trans. Knowl. Data Eng. 13, 6, 951--967.
[192]
Petrakis, E. and Faloutsos, A. 1997. Similarity searching in medical image databases. IEEE Trans. Knowl. Data Eng. 9, 3, 435--447.
[193]
Petrakis, E. G. M., Diplaros, A., and Milios, E. 2002. Matching and retrieval of distorted and occluded shapes using dynamic programming. IEEE Trans. Pattern Anal. Mach. Intell. 24, 4, 509--522.
[194]
Petrakis, E. G. M., Faloutsos, C., and Lin, K. I. 2002. Imagemap: An image indexing method based on spatial similarity. IEEE Trans. Knowl. Data Eng. 14, 5, 979--987.
[195]
Photo.Net. 1993. Photonet homepage. http://www.photo.net.
[196]
Photo.Net(RatingSystem). Photonet standards. 1993. http://www.photo.net/gallery/photocritique/standards.
[197]
Pi, M., Mandal, M. K., and Basu, A. 2005. Image retrieval based on histogram of fractal parameters. IEEE Trans. Multimed. 7, 4, 597--605.
[198]
Picasa. 2004. Picasa homepage. http://picasa.google.com/.
[199]
Portilla, J. and Simoncelli, E. 2000. A parametric texture model based on joint statistics of complex wavelet coefficients. Int. J. Comput. Vision 40, 1, 49--71.
[200]
Quack, T., Monich, U., Thiele, L., and Manjunath, B. S. 2004. Cortina: A system for largescale, content-based Web image retrieval. In Proceedings of the ACM International Conference on Multimedia.
[201]
Rodden, K., Basalaj, W., Sinclair, D., and Wood, K. 2001. Does organization by similarity assist image browsing? In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems (CHI).
[202]
Rodden, K. and Wood, K. 2003. How do people manage their digital photographs? In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems (CHI).
[203]
Rowe, N. C. 2002. Marie-4: A high-recall, self-improving Web crawler that finds images using captions. IEEE Intell. Syst. 17, 4, 8--14.
[204]
Rubner, Y., Tomasi, C., and Guibas, L. J. 2000. The earth mover's distance as a metric for image retrieval. Int. J. Comput. Vision 40, 99--121.
[205]
Rubner, Y., Tomasi, C., and Guibas, L. J. 1999. A metric for distribution with applications to image databases. In Proceedings of the IEEE International Conference on Computer Vision (ICCV).
[206]
Rui, Y., Huang, T., and Chang, S.-F. 1999. Image retrieval: Current techniques, promising directions and open issues. J. Visual Commun. Image Represent. 10, 1, 39--62.
[207]
Rui, Y., Huang, T., and Mehrotra, S. 1997. Content-based image retrieval with relevance feedback in Mars. In Proceedings of the IEEE International Conference on Image Processing (ICIP).
[208]
Rui, Y. and Huang, T. S. 2000. Optimizing learning in image retrieval. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[209]
Rui, Y., Huang, T. S., Ortega, M., and Mehrotra, S. 1998. Relevance feedback: A power tool in interactive content-based image retrieval. IEEE Trans. Circ. Syst. Video Technol. 8, 5, 644--655.
[210]
Sablatnig, R., Kammerer, P., and Zolda, E. 1998. Hierarchical classification of paintings using face- and brush stroke models. In Proceedings of the International IEEE Conference on Pattern Recognition (ICPR).
[211]
Saux, B. L. and Boujemaa, N. 2002. Unsupervised robust clustering for image database categorization. In Proceedings of the International IEEE Conference on Pattern Recognition (ICPR).
[212]
Schaffalitzky, F. and Zisserman, A. 2001. Viewpoint invariant texture matching andwide baseline stereo. In Proceedings of the IEEE International Conference on Computer Vision (ICCV).
[213]
Schmid, C. and Mohr, R. 1997. Local grayvalue invariants for image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 19, 5, 530--535.
[214]
Schroder, M., Rehrauer, H., Seidel, K., and Datcu, M. 2000. Interactive learning and probabilistic retrieval in remote sensing image archives. IEEE Trans. Geosci. Remote Sens. 38, 5, 2288--2298.
[215]
Sebe, N., Lew, M. S., and Huijsmans, D. P. 2000. Toward improved ranking metrics. IEEE Trans. Pattern Anal. Mach. Intell. 22, 10, 1132--1141.
[216]
Sebe, N., Lew, M. S., Zhou, X., Huang, T. S., and Bakker, E. 2003. The state of the art in image and video retrieval. In Proceedings of the International Conference on Video Retrieval (CIVR).
[217]
Shanableh, T. and Ghanbari, M. 2000. Heterogeneous video transcoding to lower spatio-temporal resolutions and different encoding formats. IEEE Trans. Multimed. 2, 2, 101--110.
[218]
Shi, J. and Malik, J. 2000. Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 8, 888--905.
[219]
Shirahatti, N. V. and Barnard, K. 2005. Evaluating image retrieval. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR).
[220]
Slashdot. 2005. Searching by image instead of keywords. Slashdot News (May).
[221]
Smeaton, A. F. and Over, P. 2003. Benchmarking the effectiveness of information retrieval tasks on digital video. In Proceedings of the International Conference on Video Retrieval (CIVR).
[222]
Smeulders, A. W., Worring, M., Santini, S., Gupta, A., and Jain, R. 2000. Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. 22, 12, 1349--1380.
[223]
Smith, J. and Chang, S.-F. 1997a. Integrated spatial and feature image query. IEEE Trans. Knowl. Data Eng. 9, 3, 435--447.
[224]
Smith, J. and Chang, S.-F. 1997b. Visualseek: A fully automated content-based image query system. In Proceedings of the ACM International Conference on Multimedia.
[225]
Smolka, B., Szczepanski, M., Lukac, R., and Venetsanopoulos, A. N. 2004. Robust color image retrieval for the World Wide Web. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP).
[226]
Snoek, C. G. M. and Worring, M. 2005. Multimodal video indexing: A review of the state-of-the-art. Multimed. Tools Appl. 25, 1, 5--35.
[227]
Staedter, T. 2006. Digital pics ‘read’ by computer. http://dsc.discovery.com/news/2006/11/09/images_tec. html.
[228]
Su, Z., Zhang, H.-J., Li, S., and Ma, S. 2003. Relevance feedback in content-based image retrieval: Bayesian framework, feature subspaces, and progressive learning. IEEE Trans. Image Process. 12, 8, 924--937.
[229]
Swain, M. and Ballard, B. 1991. Color indexing. Int. J. Comput. Vision 7, 1, 11--32.
[230]
Swets, D. and Weng, J. 1996. Using discriminant eigenfeatures for image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 18, 8, 831--836.
[231]
Terragalleria. 2001. Terragalleria homepage. http://www.terragalleria.com.
[232]
Theoharatos, C., Laskaris, N. A., Economou, G., and Fotopoulos, S. 2005. A generic scheme for color image retrieval based on the multivariate Wald-Wolfowitz test. IEEE Trans. Knowl. Data Eng. 17, 6, 808--819.
[233]
Tian, Q., Sebe, N., Lew, M. S., Loupias, E., and Huang, T. S. 2001. Image retrieval using wavelet-based salient points. J. Electron. Imag. 10, 4, 835--849.
[234]
Tieu, K. and Viola, P. 2004. Boosting image retrieval. Int. J. Comput. Vision 56, 1--2, 17--36.
[235]
Tishby, N., Pereira, F., and Bialek, W. 1999. The information botflencek method. In Proceedings of the Allerton Conference on Communication and Computation.
[236]
Tong, S. and Chang, E. 2001. Support vector machine active learning for image retrieval. In Proceedings of the ACM International Conference on Multimedia.
[237]
Tope, A. S. and Enser, P. G. P. 2000. Design and implementation factors in electronic image retrieval systems. Res. Rep. 105, Library and Information Commission.
[238]
Torres, R. S., Silva, C. G., Medeiros, C. B., and Rocha, H. V. 2003. Visual structures for image browsing. In Proceedings of the ACM International Conference on Information and Knowledge Management (CIKM).
[239]
TRECVID. 2001. TRECVID homepage. http://www-nlpir.nist.gov/projects/trecvid.
[240]
Tu, Z. and Zhu, S.-C. 2002. Image segmentation by data-driven Markov chain Monte Carlo. IEEE Trans. Pattern Anal. Mach. Intell. 24, 5, 657--673.
[241]
Tuytelaars, T. and van Gool, L. 1999. Content-Based image retrieval based on local affinely invariant regions. In Proceedings of the International Conference on Visual Information Systems (VISUAL).
[242]
Unser, M. 1995. Texture classification and segmentation using wavelet frames. IEEE Trans. Image Process. 4, 11, 1549--1560.
[243]
Vailaya, A., Figueiredo, M. A. T., Jain, A. K., and Zhang, H.-J. 2001. Image classification for content-based indexing. IEEE Trans. Image Process. 10, 1, 117--130.
[244]
Vasconcelos, N. 2004. On the efficient evaluation of probabilistic similarity functions for image retrieval. IEEE Trans. Inf. Theory 50, 7, 1482--1496.
[245]
Vasconcelos, N. and Lippman, A. 2000a. Learning from user feedback in image retrieval systems. In Proceedings of the Conference on Advances in Neural Information Processing Systems (NIPS).
[246]
Vasconcelos, N. and Lippman, A. 2000b. A probabilistic architecture for content-based image retrieval. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[247]
Vasconcelos, N. and Lippman, A. 2005. A multiresolution manifold distance for invariant image similarity. IEEE Trans. Multimed. 7, 1, 127--142.
[248]
Velivelli, A., Ngo, C.-W., and Huang, T. S. 2004. Detection of documentary scene changes by audio-visual fusion. In Proceedings of the International Conference on Video Retrieval (CIVR).
[249]
Vetro, A., Christopoulos, C., and Sun, H. 2003. Video transcoding architectures and techniques: An overview. IEEE Signal Process. Mag. 20, 2, 18--29.
[250]
Vinay, V., Cox, I. J., Milic-Frayling, N., and Wood, K. 2004. Evaluating relevance feedback and display strategies for searching on small displays. In Proceedings of the 7th International Symposium on String Processing Information Retrieval. Lecture Notes in Computer Science, vol. 3246, 131--133.
[251]
Vinay, V., Cox, I. J., Milic-Frayling, N., and Wood, K. 2005. Evaluating relevance feedback algorithms for searching on small displays. In Proceedings of the European Conference on IR Research (ECIR). Lecture Notes in Computer Science, vol. 3408. Springer, 185--199.
[252]
von Ahn, L. and Dabbish, L. 2004. Labeling images with a computer game. In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems (CHI).
[253]
Wang, J., Li, J., and Wiederhold, G. 2001. SIMPLIcity: Semantics-sensitive integrated matching for picture libraries. IEEE Trans. Pattern Anal. Mach. Intell. 23, 9, 947--963.
[254]
Wang, J., Wiederhold, G., Firschein, O., and Wei, S. 1998. Content-Based image indexing and searching using Daubechies' wavelets. Int. J. Digital Librar. 1, 4, 311--328.
[255]
Wang, J. Z., Boujemaa, N., Del Bimbo, A., Geman, D., Hauptmann, A., and Tesic, J. 2006. Diversity in multimedia information retrieval research. In Proceedings of the ACM SIGMM International Workshop on Multimedia Information Retrieval (MIR) at the International Conference on Multimedia.
[256]
Wang, J. Z., Li, J., Gray, R. M., and Wiederhold, G. 2001. Unsupervised multiresolution segmentation for images with low depth of field. IEEE Trans. Pattern Anal. Mach. Intell. 23, 1, 85--90.
[257]
Wang, X.-J., Ma, W.-Y., He, Q.-C., and Li, X. 2004a. Grouping Web image search result. In Proceedings of the ACM International Conference on Multimedia.
[258]
Wang, X. J., Ma, W. Y., Xue, G. R., and Li, X. 2004b. Multi-Model similarity propagation and its application for Web image retrieval. In Proceedings of the ACM International Conference on Multimedia.
[259]
Wang, Y. H. 2003. Image indexing and similarity retrieval based on spatial relationship model. Inf. Sci. Inf. Comput. Sci. 154, 1-2, 39--58.
[260]
Wang, Z., Chi, Z., and Feng, D. 2002. Fuzzy integral for leaf image retrieval. In Proceedings of the IEEE International Conference on Fuzzy Systems.
[261]
Webe, M., Welling, M., and Perona, P. 2000. Unsupervised learning of models for recognition. In Proceedings of the European Conference on Computer Vision (ECCV).
[262]
Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T., and Vapnik, V. 2000. Feature selection for SVMS. In Proceedings of the Conference on Advances in Neural Information Processing Systems (NIPS).
[263]
Wilson, R. and Hancock, E. 1997. Structural matching by discrete relaxation. IEEE Trans. Pattern Anal. Mach. Intell. 19, 6, 634--648.
[264]
Wolfson, H. and Rigoutsos, I. 1997. Geometric hashing: An overview. IEEE Trans. Comput. Sci. Eng. 4, 4, 10--21.
[265]
Woodrow, E. and Heinzelman, W. 2002. Spin-It: A data centric routing protocol for image retrieval in wireless networks. In Proceedings of the IEEE International Conference on Image Processing (ICIP).
[266]
Wu, G., Chang, E. Y., and Panda, N. 2005. Formulating context-dependent similarity functions. In Proceedings of the ACM International Conference on Multimedia.
[267]
Wu, H., Lu, H., and Ma, S. 2004. Willhunter: Interactive image retrieval with multilevel relevance measurement. In Proceedings of the IEEE International Conference on Pattern Recognition (ICPR).
[268]
Wu, P. and Manjunath, B. S. 2001. Adaptive nearest neighbor search for relevance feedback in large image databases. In Proceedings of the ACM International Conference on Multimedia.
[269]
Wu, Y., Chang, E. Y., Chang, K. C. C., and Smith, J. R. 2004. Optimal multimodal fusion for multimedia data analysis. In Proceedings of the ACM International Conference on Multimedia.
[270]
Wu, Y., Tian, Q., and Huang, T. S. 2000. Discriminant-EM algorithm with application to image retrieval. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[271]
Xie, X., Liu, H., Goumaz, S., and Ma, W.-Y. 2005. Learning user interest for image browsing on small-form-factor devices. In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems (CHI).
[272]
Xing, E., Ng, A., Jordan, M., and Russell, S. 2003. Distance metric learning, with application to clustering with side-information. In Proceedings of the Conference on Advances in Neural Information Processing Systems (NIPS).
[273]
Yang, C., Dong, M., and Fotouhi, F. 2005a. Region based image annotation through multiple-instance learning. In Proceedings of the ACM International Conference on Multimedia.
[274]
Yang, C., Dong, M., and Fotouhi, F. 2005b. Semantic feedback for interactive image retrieval. In Proceedings of the ACM International Conference on Multimedia.
[275]
Yee, K.-P., Swearingen, K., Li, K., and Hearst, M. 2003. Faceted metadata for image search and browsing. In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems (CHI).
[276]
Yu, J., Amores, J., Sebe, N., and Tian, Q. 2006. Toward robust distance metric analysis for similarity estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[277]
Yu, S. X. and Shi, J. 2004. Segmentation given partial grouping constraints. IEEE Trans. Pattern Anal. Mach. Intell. 26, 2, 173--183.
[278]
Zhai, Y., Yilmaz, A., and Shah, M. 2005. Story segmentation in news videos using visual and textual cues. In Proceedings of the ACM International Conference on Multimedia.
[279]
Zhang, D.-Q. and Chang, S.-F. 2004. Detecting image near-duplicate by stochastic attributed relational graph matching with learning. In Proceedings of the ACM International Conference on Multimedia.
[280]
Zhang, H., Rahmani, R., Cholleti, S. R., and Goldman, S. A. 2006. Local image representations using pruned salient points with applications to cbir. In Proceedings of the ACM International Conference on Multimedia.
[281]
Zhang, H. J., Wenyin, L., and Hu, C. 2000. IFIND---A system for semantics and feature based image retrieval over Internet. In Proceedings of the ACM International Conference on Multimedia.
[282]
Zhang, L., Chen, L., Jing, F., Deng, K., and Ma, W. Y. 2006. Enjoyphoto----A vertical image search engine for enjoying high-quality photos. In Proceedings of the ACM International Conference on Multimedia.
[283]
Zhang, L., Chen, L., Li, M., and Zhang, H.-J. 2003. Automated annotation of human faces in family albums. In Proceedings of the ACM International Conference on Multimedia.
[284]
Zhang, Q., Goldman, S. A., Yu, W., and Fritts, J. E. 2002. Content-based image retrieval using multiple-instance learning. In Proceedings of the International Conference on Machine Learning (ICML).
[285]
Zhang, R. and Zhang, Z. 2004. Hidden semantic concept discovery in region based image retrieval. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[286]
Zhang, Y., Brady, M., and Smith, S. 2001. Segmentation of brain mr images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Medical Imag. 20, 1, 45--57.
[287]
Zhao, W., Chellappa, R., Phillips, P. J., and Rosenfeld, A. 2003. Face recognition: A literature survey. ACM Comput. Surv. 35, 4, 399--458.
[288]
Zheng, B., McClean, D. C., and Lu, X. 2006. Identifying biological concepts from a protein-related corpus with a probabilistic topic model. BMC Bioinf. 7, 58.
[289]
Zheng, X., Cai, D., He, X., Ma, W.-Y., and Lin, X. 2004. Locality preserving clustering for image database. In Proceedings of the ACM International Conference on Multimedia.
[290]
Zhou, D., Weston, J., Gretton, A., Bousquet, O., and Scholkopf, B. 2003. Ranking on data manifolds. In Proceedings of the Conference on Advances in Neural Information Processing Systems (NIPS).
[291]
Zhou, X. S. and Huang, T. S. 2001a. Comparing discriminating transformations and svm for learning during multimedia retrieval. In Proceedings of the ACM International Conference on Multimedia.
[292]
Zhou, X. S. and Huang, T. S. 2001b. Small sample learning during multimedia retrieval using biasmap. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[293]
Zhou, X. S. and Huang, T. S. 2002. Unifying keywords and visual contents in image retrieval. IEEE Multimed. 9, 2, 23--33.
[294]
Zhou, X. S. and Huang, T. S. 2003. Relevance feedback in image retrieval: A comprehensive review. Multimed. Syst. 8, 536--544.
[295]
Zhu, L., Zhang, A., Rao, A., and Srihari, R. 2000. Keyblock: An approach for content-based image retrieval. In Proceedings of the ACM International Conference on Multimedia.
[296]
Zhu, S.-C. and Yuille, A. 1996. Region competition: Unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 18, 9, 884--900.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Computing Surveys
ACM Computing Surveys  Volume 40, Issue 2
April 2008
130 pages
ISSN:0360-0300
EISSN:1557-7341
DOI:10.1145/1348246
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 08 May 2008
Accepted: 01 July 2007
Revised: 01 June 2007
Received: 01 November 2006
Published in CSUR Volume 40, Issue 2

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Content-based image retrieval
  2. annotation
  3. learning
  4. modeling
  5. tagging

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)511
  • Downloads (Last 6 weeks)45
Reflects downloads up to 20 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2025)Visual place recognition for aerial imagery: A surveyRobotics and Autonomous Systems10.1016/j.robot.2024.104837183(104837)Online publication date: Jan-2025
  • (2024)Improving the Precision of Image Search Engines with the Psychological Intention DiagramElectronics10.3390/electronics1301020813:1(208)Online publication date: 2-Jan-2024
  • (2024)Deep Attention Fusion Hashing (DAFH) Model for Medical Image RetrievalBioengineering10.3390/bioengineering1107067311:7(673)Online publication date: 2-Jul-2024
  • (2024)Cross-View Geo-Localization via Effective Negative Sampling2024 24th International Conference on Control, Automation and Systems (ICCAS)10.23919/ICCAS63016.2024.10773330(1078-1083)Online publication date: 29-Oct-2024
  • (2024)Fabric image retrieval based on decoupling of texture and color featureJournal of Engineered Fibers and Fabrics10.1177/1558925024124607419Online publication date: 20-May-2024
  • (2024)Multi-Proxy Deep Hashing for Image RetrievalProceedings of 2024 ACM ICMR Workshop on Multimodal Video Retrieval10.1145/3664524.3675368(33-38)Online publication date: 10-Jun-2024
  • (2024)Content-Based Exclusion Queries in Keyword-Based Image RetrievalProceedings of the 2024 International Conference on Multimedia Retrieval10.1145/3652583.3657619(1145-1149)Online publication date: 30-May-2024
  • (2024)Unsupervised Cross-Domain Image Retrieval with Semantic-Attended Mixture-of-ExpertsProceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3626772.3657826(197-207)Online publication date: 10-Jul-2024
  • (2024)SHADE: Empowering Consumer Choice for Sustainable Fashion with AI and Digital ToolingExtended Abstracts of the CHI Conference on Human Factors in Computing Systems10.1145/3613905.3651025(1-5)Online publication date: 11-May-2024
  • (2024)PhotoScout: Synthesis-Powered Multi-Modal Image SearchProceedings of the 2024 CHI Conference on Human Factors in Computing Systems10.1145/3613904.3642319(1-15)Online publication date: 11-May-2024
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media