[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
column

Information diffusion in online social networks: a survey

Published: 16 July 2013 Publication History

Abstract

Online social networks play a major role in the spread of information at very large scale. A lot of effort have been made in order to understand this phenomenon, ranging from popular topic detection to information diffusion modeling, including influential spreaders identification. In this article, we present a survey of representative methods dealing with these issues and propose a taxonomy that summarizes the state-of-the-art. The objective is to provide a comprehensive analysis and guide of existing efforts around information diffusion in social networks. This survey is intended to help researchers in quickly understanding existing works and possible improvements to bring.

References

[1]
L. AlSumait, D. Barbará, and C. Domeniconi. On-line lda: Adaptive topic models for mining text streams with applications to topic detection and tracking. In ICDM '08, pages 3--12, 2008.
[2]
A. Anagnostopoulos, R. Kumar, and M. Mahdian. Influence and correlation in social networks. In KDD '08, pages 7--15, 2008.
[3]
E. Bakshy, I. Rosenn, C. Marlow, and L. Adamic. The role of social networks in information diffusion. In WWW '12, pages 519--528, 2012.
[4]
D. Blei, A. Ng, and M. Jordan. Latent dirichlet allocation. The Journal of Machine Learning Research, 3:993--1022, 2003.
[5]
P. Brown and J. Feng. Measuring user influence on Twitter using modified k-shell decomposition. In ICWSM '11 Workshops, pages 18--23, 2011.
[6]
M. Cataldi, L. Di Caro, and C. Schifanella. Emerging topic detection on Twitter based on temporal and social terms evaluation. In MDMKDD '10, pages 4--13, 2010.
[7]
M. D. Choudhury, Y.-R. Lin, H. Sundaram, K. S. Candan, L. Xie, and A. Kelliher. How does the data sampling strategy impact the discovery of information diffusion in social media? In ICWSM '10, pages 34--41, 2010.
[8]
T. F. Coleman and Y. Li. A reflective newton method for minimizing a quadratic function subject to bounds on some of the variables. SIAM J. on Optimization, 6(4):1040--1058, Apr. 1996.
[9]
I. CVX Research. CVX: Matlab software for disciplined convex programming, version 2.0 beta. http://cvxr.com/cvx, sep 2012.
[10]
R. C. Elandt-Johnson and N. L. Johnson. Survival Models and Data Analysis. John Wiley and Sons, 1980/1999.
[11]
W. Galuba, K. Aberer, D. Chakraborty, Z. Despotovic, and W. Kellerer. Outtweeting the twitterers - predicting information cascades in microblogs. In WOSN '10, pages 3--11, 2010.
[12]
C. F. Gerald and P. O. Wheatley. Applied numerical analysis with MAPLE; 7th ed. Addison-Wesley, Reading, MA, 2004.
[13]
J. Goldenberg, B. Libai, and E. Muller. Talk of the network: A complex systems look at the underlying process of word-of-mouth. Marketing Letters, 2001.
[14]
M. Gomez-Rodriguez, D. Balduzzi, and B. Schölkopf. Uncovering the temporal dynamics of diffusion networks. In ICML '11, pages 561--568, 2011.
[15]
M. Gomez Rodriguez, J. Leskovec, and A. Krause. Inferring networks of diffusion and influence. In KDD '10, pages 1019--1028, 2010.
[16]
M. Gomez-Rodriguez, J. Leskovec, and B. Schökopf. Structure and dynamics of information pathways in online media. In WSDM '13, pages 23--32, 2013.
[17]
M. Granovetter. Threshold models of collective behavior. American journal of sociology, pages 1420--1443, 1978.
[18]
A. Guille, C. Favre, H. Hacid, and D. Zighed. Sondy: An open source platform for social dynamics mining and analysis. In SIGMOD '13, (demonstration) 2013.
[19]
A. Guille and H. Hacid. A predictive model for the temporal dynamics of information diffusion in online social networks. In WWW '12 Companion, pages 1145--1152, 2012.
[20]
M. A. Hasan and M. J. Zaki. A survey of link prediction in social networks. In Social Network Data Analytics, pages 243--275. Springer, 2011.
[21]
H. W. Hethcote. The mathematics of infectious diseases. SIAM REVIEW, 42(4):599--653, 2000.
[22]
P. N. Howard and A. Duffy. Opening closed regimes, what was the role of social media during the arab spring? Project on Information Technology and Political Islam, pages 1--30, 2011.
[23]
A. Hughes and L. Palen. Twitter adoption and use in mass convergence and emergency events. International Journal of Emergency Management, 6(3):248--260, 2009.
[24]
D. Kempe. Maximizing the spread of influence through a social network. In KDD '03, pages 137--146, 2003.
[25]
M. Kitsak, L. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H. Stanley, and H. Makse. Identification of influential spreaders in complex networks. Nature Physics, 6(11):888--893, Aug 2010.
[26]
J. Kleinberg. Bursty and hierarchical structure in streams. In KDD '02, pages 91--101, 2002.
[27]
J. Leskovec, L. Backstrom, and J. Kleinberg. Meme-tracking and the dynamics of the news cycle. In KDD '09, pages 497--506, 2009.
[28]
J. Leskovec, M. Mcglohon, C. Faloutsos, N. Glance, and M. Hurst. Cascading behavior in large blog graphs. In SDM '07, pages 551--556, (short paper) 2007.
[29]
L. Li, A. Scaglione, A. Swami, and Q. Zhao. Phase transition in opinion diffusion in social networks. In ICASSP '12, pages 3073--3076, 2012.
[30]
J. Makkonen, H. Ahonen-Myka, and M. Salmenkivi. Simple semantics in topic detection and tracking. Inf. Retr., 7(3-4):347--368, Sept. 2004.
[31]
S. Myers and J. Leskovec. Clash of the contagions: Cooperation and competition in information diffusion. In ICDM '12, pages 539--548, 2012.
[32]
S. A. Myers, C. Zhu, and J. Leskovec. Information diffusion and external influence in networks. In KDD '12, pages 33--41, 2012.
[33]
A. Narayanan and V. Shmatikov. De-anonymizing social networks. In SP '09, pages 173--187, 2009.
[34]
M. E. J. Newman. The structure and function of complex networks. SIAM Review, 45:167--256, 2003.
[35]
L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking: Bringing order to the web. In WWW '98, pages 161--172, 1998.
[36]
A. Pal and S. Counts. Identifying topical authorities in microblogs. In WSDM '11, pages 45--54, 2011.
[37]
E. M. Rogers. Diffusion of Innovations, 5th Edition. Free Press, 5th edition, aug 2003.
[38]
D. Romero, W. Galuba, S. Asur, and B. Huberman. Influence and passivity in social media. In ECML/PKDD '11, pages 18--33, 2011.
[39]
D. M. Romero, B. Meeder, and J. Kleinberg. Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on Twitter. In WWW '11, pages 695--704, 2011.
[40]
L. Rong and Y. Qing. Trends analysis of news topics on Twitter. International Journal of Machine Learning and Computing, 2(3):327--332, 2012.
[41]
E. Sadikov, M. Medina, J. Leskovec, and H. Garcia-Molina. Correcting for missing data in information cascades. In WSDM '11, pages 55--64, 2011.
[42]
K. Saito, K. Ohara, Y. Yamagishi, M. Kimura, and H. Motoda. Learning diffusion probability based on node attributes in social networks. In ISMIS '11, pages 153--162, 2011.
[43]
G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval. Inf. Process. Manage., 24(5):513--523, 1988.
[44]
G. Salton and M. J. McGill. Introduction to Modern Information Retrieval. McGraw-Hill, 1986.
[45]
S. B. Seidman. Network structure and minimum degree. Social Networks, 5(3):269--287, 1983.
[46]
D. A. Shamma, L. Kennedy, and E. F. Churchill. Peaks and persistence: modeling the shape of microblog conversations. In CSCW '11, pages 355--358, (short paper) 2011.
[47]
T. Takahashi, R. Tomioka, and K. Yamanishi. Discovering emerging topics in social streams via link anomaly detection. In ICDM '11, pages 1230--1235, 2011.
[48]
F. Wang, H. Wang, and K. Xu. Diffusive logistic model towards predicting information diffusion in online social networks. In ICDCS '12 Workshops, pages 133--139, 2012.
[49]
J. Weng, E.-P. Lim, J. Jiang, and Q. He. TwitterRank: finding topic-sensitive influential twitterers. In WSDM '10, pages 261--270, 2010.
[50]
J. Yang and J. Leskovec. Modeling information diffusion in implicit networks. In ICDM '10, pages 599--608, 2010.

Cited By

View all
  • (2025)An “opinion reproduction number” for infodemics in a bounded-confidence content-spreading process on networksChaos: An Interdisciplinary Journal of Nonlinear Science10.1063/5.020643135:1Online publication date: 30-Jan-2025
  • (2025)Information diffusion analysis: process, model, deployment, and applicationThe Knowledge Engineering Review10.1017/S026988892400010939Online publication date: 22-Jan-2025
  • (2025)SADPEA: Structure-aware dual probability evolutionary adaptive algorithm for the budgeted influence maximization problemInformation Sciences10.1016/j.ins.2024.121784699(121784)Online publication date: May-2025
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM SIGMOD Record
ACM SIGMOD Record  Volume 42, Issue 2
May 2013
64 pages
ISSN:0163-5808
DOI:10.1145/2503792
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 16 July 2013
Published in SIGMOD Volume 42, Issue 2

Check for updates

Qualifiers

  • Column

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)234
  • Downloads (Last 6 weeks)35
Reflects downloads up to 28 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2025)An “opinion reproduction number” for infodemics in a bounded-confidence content-spreading process on networksChaos: An Interdisciplinary Journal of Nonlinear Science10.1063/5.020643135:1Online publication date: 30-Jan-2025
  • (2025)Information diffusion analysis: process, model, deployment, and applicationThe Knowledge Engineering Review10.1017/S026988892400010939Online publication date: 22-Jan-2025
  • (2025)SADPEA: Structure-aware dual probability evolutionary adaptive algorithm for the budgeted influence maximization problemInformation Sciences10.1016/j.ins.2024.121784699(121784)Online publication date: May-2025
  • (2025)Network alignment in multiplex social networks using the information diffusion dynamicsChaos, Solitons & Fractals10.1016/j.chaos.2024.115792190(115792)Online publication date: Jan-2025
  • (2025)AI-driven social media text analysis during crisis: A review for natural disasters and pandemicsApplied Soft Computing10.1016/j.asoc.2025.112774(112774)Online publication date: Jan-2025
  • (2024)The Social Media Influence JourneyEnhancing Communication and Decision-Making With AI10.4018/979-8-3693-9246-1.ch003(65-98)Online publication date: 27-Sep-2024
  • (2024)Performance Evaluation and Influencing Factors of Scientific Communication in Research InstitutionsSystems10.3390/systems1206019212:6(192)Online publication date: 30-May-2024
  • (2024)A New Algorithm Framework for the Influence Maximization Problem Using Graph ClusteringInformation10.3390/info1502011215:2(112)Online publication date: 14-Feb-2024
  • (2024)A review on network representation learning with multi-granularity perspectiveIntelligent Data Analysis10.3233/IDA-22732828:1(3-32)Online publication date: 1-Jan-2024
  • (2024)DAG-aware variational autoencoder for social propagation graph generationProceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence and Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence and Fourteenth Symposium on Educational Advances in Artificial Intelligence10.1609/aaai.v38i8.28694(8508-8516)Online publication date: 20-Feb-2024
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media