A New Algorithm Framework for the Influence Maximization Problem Using Graph Clustering
<p>Scheme of Algorithm 3.</p> "> Figure 2
<p>Average number of clusters generated by the MCL algorithm.</p> "> Figure 3
<p>Average runtime of clusters’ generation.</p> "> Figure 4
<p>Comparison of the average execution time of SimpleGreedy and ClusterGreedy algorithms.</p> "> Figure 5
<p>Percentage of average runtime of ClusterGreedy compared with SimpleGreedy.</p> "> Figure 6
<p>Comparison of the average objective function value given by SimpleGreedy and ClusterGreedy algorithms.</p> ">
Abstract
:1. Introduction
2. Related Literature
3. Preliminary
Algorithm 1 Simple Greedy |
Input: : cardinality of the returning set; : monotone and submodular set function |
Output: seed set S |
1: initialize |
2: for to k do |
3: |
4: |
5: end for |
6: return S |
Algorithm 2 SimpleGreedy |
Input: : social graph; arc weights ; k: cardinality of the returning set |
Output: seed set S |
1: function mc-estimate() |
2: counter |
3: for to r do |
4: Perform a simulation of the diffusion process on the graph G using the seed set S. |
5: The number of active nodes once the diffusion concludes. |
6: |
7: end for |
8: return |
9: end function |
10: initialize |
11: for to k do |
12: mc-estimate |
13: |
14: end for |
15: return S |
4. Cluster Greedy Algorithm
Algorithm 3 ClusterGreedy . |
Input: : social graph; arc weights ; k: cardinality of the returning set |
Output: seed set S |
1: generate the clusters of graph G using the MCL algorithm |
2: set m to the number of clusters of G |
3: for to m do |
4: the subgraph induced by the set of nodes in cluster j |
5: SimpleGreedy (Algorithm 2) |
6: end for |
7: compute , the value of spread within cluster with seed set |
8: solve the linear integer program defined by Equations (3)–(6) |
9: Let be the optimal solution obtained |
10: for to k do |
11: for to m do |
12: if then |
13: |
14: end if |
15: end for |
16: end for |
17: return S |
4.1. Markov Cluster Algorithm
4.2. Linking Set
Algorithm 4 Greedy algorithm for the linking set problem. |
1: Set and, for |
2: while do |
3: compute ; |
4: ; |
5: ; |
6: . |
7: end while |
8: for do |
9: if and otherwise. |
10: end for |
4.3. The ClusterGreedy Algorithm
Algorithm 5 Improved ClusterGreedy . |
Input: : social graph; arc weights ; k: cardinality of the returning set |
Output: seed set S |
1: generate the clusters of graph G using the MCL algorithm |
2: set m to the number of clusters of G |
3: for to m do |
4: the subgraph induced by the set of nodes in cluster j |
5: SimpleGreedy (Algorithm 2) |
6: compute , the value of spread within cluster with seed set for |
7: end for |
8: Set and, for |
9: while do |
10: compute ; |
11: ; |
12: ; |
13: . |
14: SimpleGreedy (Algorithm 2) |
15: Set to the optimal value of SimpleGreedy |
16: end while |
17: |
18: for do |
19: |
20: end for |
21: return S |
5. Computational Experiments
5.1. Computational Results with Watts–Strogatz Random Graphs
5.2. Computational Results with Real Datasets
- Email-eu-core [38]: Email records from a major European research institution were utilized to create the network. If individual u has transmitted at least one email to individual v, then there is an edge in the network. The dataset excludes any inbound or outgoing messages from or to the rest of the world; the emails exclusively document communication among members of the institution (the core). “Ground-truth” community memberships of the nodes are also included in the dataset. At the research institute, each individual is affiliated with precisely one of the 42 departments.
- Adolescent health [39]: The construction of this network was informed by a survey done between 1994 and 1995. Each student was directed to create a list of their top five female acquaintances and their top five male acquaintances. A node represents a student, and an edge linking two students signifies that student u has chosen student v as a friend.
- Gnutella peer-to-peer (8 August 2002) [38]: An assemblage of the Gnutella peer-to-peer file-sharing network captures the month span of August 2002. The Gnutella network topology is composed of nodes, which symbolize hosts and edges, which symbolize connections among the hosts.
6. Conclusions
- The proposed algorithm (called ClusterGreedy) needed only, on average, 25% of the classical greedy (SimpleGreedy) runtime to achieve the solution of the influence maximization problem;
- under the general condition that the marginal gains decrease with the increase in the size of the seed set (which is satisfied by the greedy algorithm and by the diffusion function under the linear threshold model), then combining the solutions from the different clusters can be conducted in a much more efficient way. Moreover, the two-phase approach can be improved and a new algorithm that searches for the highest marginal gain between the different clusters can be used. This improved algorithm runs, on average, in of the running time of the ClusterGreedy algorithm.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CELF | Cost-effective lazy forward |
IM | Influence maximization |
LT | Linear threshold |
LSP | Linking set problem |
LP | Linear programming |
MCL | Markov clustering |
Appendix A
m | k | r | Runtime (s) | Objective Function Value | ||||
---|---|---|---|---|---|---|---|---|
MCL | SimpleGreedy | ClusterGreedy | Linking Set | SimpleGreedy | ClusterGreedy | |||
46 | 30 | 50 | 9.63 | 5686.06 | 1272.13 | 52 | 63 | 66 |
74 | 30 | 50 | 8.49 | 6102.56 | 1205.10 | 52 | 63 | 64 |
35 | 30 | 50 | 10.47 | 1842.13 | 2991.36 | 55 | 63 | 66 |
54 | 30 | 50 | 7.18 | 6448.28 | 646.86 | 54 | 64 | 55 |
36 | 30 | 50 | 9.54 | 2507.60 | 1075.74 | 57 | 63 | 67 |
36 | 30 | 50 | 19.01 | 6646.61 | 2276.28 | 55 | 64 | 66 |
57 | 30 | 50 | 11.23 | 3806.67 | 1530.79 | 51 | 62 | 55 |
35 | 30 | 50 | 18.50 | 5989.16 | 2078.36 | 54 | 64 | 67 |
45 | 30 | 50 | 11.30 | 4338.80 | 2415.55 | 51 | 63 | 65 |
35 | 30 | 50 | 11.01 | 4388.51 | 1671.92 | 53 | 63 | 53 |
72 | 30 | 100 | 10.74 | 17,638.40 | 2549,70 | 54 | 64 | 63 |
36 | 30 | 100 | 10.32 | 13,198.84 | 7041.78 | 52 | 64 | 66 |
70 | 30 | 100 | 9.66 | 23,175.31 | 2879.32 | 56 | 64 | 68 |
35 | 30 | 100 | 42.80 | 18,236.07 | 5763.19 | 56 | 64 | 67 |
35 | 30 | 100 | 10.60 | 22,917.41 | 9680.69 | 55 | 65 | 64 |
71 | 30 | 100 | 17.54 | 6037.13 | 3449.89 | 55 | 64 | 65 |
72 | 30 | 100 | 11.30 | 5725.89 | 2720.86 | 54 | 63 | 66 |
35 | 30 | 100 | 10.68 | 5859.43 | 6868.13 | 55 | 64 | 66 |
63 | 30 | 100 | 12.22 | 6199.05 | 1556.98 | 56 | 64 | 68 |
71 | 30 | 100 | 11.39 | 5965.02 | 1091.29 | 54 | 64 | 68 |
Average | 13 | 8635 | 3038 | 54 | 64 | 64 |
m | k | r | Runtime (s) | Objective Function Value | ||||
---|---|---|---|---|---|---|---|---|
MCL | SimpleGreedy | ClusterGreedy | Linking set | SimpleGreedy | ClusterGreedy | |||
37 | 40 | 50 | 20.61 | 19,183.01 | 6084.58 | 70 | 84 | 84 |
94 | 40 | 50 | 17.05 | 15,541.19 | 3535.49 | 71 | 83 | 88 |
47 | 40 | 50 | 24.58 | 17,288.80 | 3378.13 | 72 | 85 | 89 |
78 | 40 | 50 | 25.57 | 19,902.08 | 2953.08 | 70 | 84 | 87 |
70 | 40 | 50 | 20.28 | 19,153.86 | 4529.98 | 71 | 83 | 87 |
48 | 40 | 50 | 24.60 | 15,556.00 | 2729.04 | 73 | 84 | 88 |
95 | 40 | 50 | 20.66 | 9470.89 | 1879.85 | 72 | 84 | 89 |
96 | 40 | 50 | 23.28 | 10,521.98 | 1758.60 | 73 | 84 | 88 |
37 | 40 | 50 | 24.25 | 14,953.14 | 4982.72 | 72 | 84 | 88 |
83 | 40 | 50 | 26.16 | 8261.44 | 2475.15 | 73 | 84 | 88 |
47 | 40 | 100 | 15.73 | 37,350.58 | 16,860.93 | 75 | 85 | 89 |
64 | 40 | 100 | 17.51 | 13,187.33 | 6510.77 | 71 | 84 | 88 |
48 | 40 | 100 | 18.71 | 13,766.84 | 2511.51 | 72 | 85 | 88 |
49 | 40 | 100 | 19.37 | 12,624.12 | 2842.77 | 71 | 84 | 88 |
98 | 40 | 100 | 18.29 | 29,727.57 | 2001.41 | 69 | 85 | 89 |
95 | 40 | 100 | 16.80 | 31,476.40 | 3398.91 | 72 | 85 | 85 |
38 | 40 | 100 | 15.49 | 30,891.72 | 10,749.67 | 70 | 85 | 89 |
42 | 40 | 100 | 16.95 | 31,523.74 | 18,893.21 | 70 | 86 | 88 |
48 | 40 | 100 | 21.75 | 56,815.60 | 18,476.38 | 72 | 86 | 88 |
18 | 40 | 100 | 19.64 | 37,483.61 | 44,788.42 | 64 | 86 | 68 |
Average | 20 | 22,234 | 8067 | 71 | 85 | 87 |
m | k | r | Runtime (s) | Objective Function Value | ||||
---|---|---|---|---|---|---|---|---|
MCL | SimpleGreedy | ClusterGreedy | Linking Set | SimpleGreedy | ClusterGreedy | |||
72 | 50 | 50 | 35.50 | 39,198.99 | 4090.11 | 87 | 104 | 109 |
27 | 50 | 50 | 33.66 | 37,746.83 | 12,551.05 | 83 | 104 | 110 |
35 | 50 | 50 | 38.13 | 43,241.71 | 21,132.67 | 88 | 103 | 97 |
45 | 50 | 50 | 30.11 | 41,008.61 | 15,922.91 | 90 | 105 | 112 |
59 | 50 | 50 | 28.34 | 23,410.06 | 8635.88 | 94 | 103 | 107 |
88 | 50 | 50 | 26.32 | 18,710.15 | 2134.49 | 92 | 104 | 106 |
76 | 50 | 50 | 28.28 | 17,171.25 | 2656.90 | 87 | 105 | 109 |
50 | 50 | 50 | 39.54 | 24,120.51 | 15,279.60 | 86 | 103 | 106 |
60 | 50 | 50 | 20.85 | 12,712.06 | 2265.87 | 91 | 103 | 111 |
60 | 50 | 50 | 23.88 | 10,538.98 | 2520.88 | 88 | 104 | 110 |
61 | 50 | 100 | 27.45 | 48,493.67 | 14,665.65 | 93 | 107 | 113 |
61 | 50 | 100 | 27.15 | 37,923.94 | 16,476.38 | 92 | 106 | 104 |
46 | 50 | 100 | 29.05 | 49,783.73 | 15,885.76 | 84 | 107 | 109 |
59 | 50 | 100 | 28.31 | 78,956.37 | 19,807.02 | 89 | 105 | 110 |
76 | 50 | 100 | 27.38 | 159,351.68 | 16,017.61 | 91 | 106 | 109 |
58 | 50 | 100 | 29.39 | 79,943.63 | 22,085.49 | 90 | 108 | 110 |
60 | 50 | 100 | 29.24 | 37,985.19 | 14,601.94 | 92 | 106 | 112 |
59 | 50 | 100 | 31.62 | 82,649.48 | 25,357.64 | 91 | 105 | 112 |
51 | 50 | 100 | 33.72 | 89,812.26 | 16,172.17 | 86 | 107 | 111 |
59 | 50 | 100 | 35.05 | 78,412.95 | 28,552.08 | 92 | 105 | 112 |
Average | 30 | 50,559 | 13,841 | 89 | 105 | 109 |
m | k | r | Runtime (s) | Objective Function Value | ||||
---|---|---|---|---|---|---|---|---|
MCL | SimpleGreedy | ClusterGreedy | Linking Set | SimpleGreedy | ClusterGreedy | |||
71 | 60 | 50 | 64.63 | 47,839.63 | 13,682.93 | 107 | 124 | 132 |
142 | 60 | 50 | 34.95 | 47,010.98 | 2842.19 | 106 | 124 | 128 |
47 | 60 | 50 | 36.24 | 83,701.97 | 33,636.33 | 101 | 126 | 133 |
72 | 60 | 50 | 66.51 | 172,009.16 | 22,980.20 | 108 | 126 | 129 |
17 | 60 | 50 | 66.52 | 74,947.11 | 88,144.33 | 98 | 126 | 92 |
20 | 60 | 50 | 34.84 | 29,437.34 | 16,364.70 | 101 | 125 | 129 |
71 | 60 | 50 | 34.83 | 57,536.98 | 10,625.88 | 109 | 124 | 132 |
39 | 60 | 50 | 76.57 | 48,285.85 | 33,088.12 | 103 | 123 | 130 |
63 | 60 | 50 | 77.48 | 48,952.40 | 19,807.15 | 105 | 125 | 134 |
61 | 60 | 50 | 35.40 | 52,906.38 | 15,269.56 | 102 | 125 | 132 |
71 | 60 | 100 | 44.85 | 267,189.27 | 14,896.03 | 108 | 129 | 134 |
58 | 60 | 100 | 37.08 | 243,731.77 | 50,383.76 | 110 | 126 | 135 |
72 | 60 | 100 | 38.53 | 159,052.73 | 12,433.80 | 108 | 127 | 135 |
42 | 60 | 100 | 38.51 | 180,923.76 | 82,078.75 | 99 | 126 | 131 |
9 | 60 | 100 | 54.29 | 296,129.56 | 59,096.51 | 102 | 125 | 132 |
70 | 60 | 100 | 34.30 | 262,348.87 | 12,476.31 | 112 | 128 | 136 |
54 | 60 | 100 | 59.83 | 313,372.35 | 36,160.77 | 105 | 126 | 133 |
72 | 60 | 100 | 72.20 | 101,866.35 | 37,024.97 | 111 | 126 | 134 |
73 | 60 | 100 | 72.34 | 106,270.40 | 25,122.75 | 112 | 126 | 128 |
71 | 60 | 100 | 38.18 | 289,850.34 | 51,670.68 | 109 | 126 | 134 |
Average | 51 | 144,168 | 31,889 | 106 | 126 | 130 |
Appendix B
References
- Domingos, P.; Richardson, M. Mining the network value of customers. In Proceedings of the seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 26–29 August 2001; pp. 57–66. [Google Scholar]
- Richardson, M.; Domingos, P. Mining knowledge-sharing sites for viral marketing. In Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 23–26 July 2002; pp. 61–70. [Google Scholar]
- Rui, X.; Meng, F.; Wang, Z.; Yuan, G. A reversed node ranking approach for influence maximization in social networks. Appl. Intell. 2019, 49, 2684–2698. [Google Scholar] [CrossRef]
- Huang, H.; Shen, H.; Meng, Z. Community-based influence maximization in attributed networks. Appl. Intell. 2020, 50, 354–364. [Google Scholar] [CrossRef]
- Leskovec, J.; Adamic, L.A.; Huberman, B.A. The dynamics of viral marketing. ACM Trans. Web TWEB 2007, 1, 5. [Google Scholar] [CrossRef]
- Chen, W.; Castillo, C.; Lakshmanan, L.V. Information and Influence Propagation in Social Networks; Morgan & Claypool Publishers: San Rafael, CA, USA, 2013. [Google Scholar]
- Haleh, S.; Dizaji, S.; Patil, K.; Avrachenkov, K. Influence Maximization in Dynamic Networks Using Reinforcement Learning. SN Comput. Sci. 2024, 5, 169. [Google Scholar]
- Ni, P.; Guidi, B.; Michienzi, A.; Zhu, J. Equilibrium of individual concern-critical influence maximization in virtual and real blending network. Inf. Sci. 2023, 648, 119646. [Google Scholar] [CrossRef]
- Arora, A.; Galhotra, S.; Ranu, S. Debunking the myths of influence maximization: An in-depth benchmarking study. In Proceedings of the 2017 ACM International Conference on Management of Data, New York, NY, USA, 14–19 May 2002; pp. 651–666. [Google Scholar]
- Guille, A.; Hacid, H.; Favre, C.; Zighed, D.A. Information diffusion in online social networks: A survey. In SIGMOD Rec. 2013, 42, 17–28. [Google Scholar] [CrossRef]
- Li, Y.; Fan, J.; Wang, Y.; Tan, K.-L. Influence Maximization on Social Graphs: A Survey. IEEE Trans. Knowl. Data Eng. 2018, 30, 1852–1872. [Google Scholar] [CrossRef]
- Sun, J.; Tang, J. A survey of models and algorithms for social influence analysis. In Social Network Data Analytics; Springer: New York, NY, USA, 2011; pp. 177–214. [Google Scholar]
- Tejaswi, V.; Bindu, P.V.; Thilagam, P.S. Diffusion models and approaches for influence maximization in social networks. In Proceedings of the 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Jaipur, India, 21–24 September 2016; pp. 1345–1351. [Google Scholar]
- Zheng, Y. A Survey: Models, Techniques, and Applications of Influence Maximization Problem; Southern University of Science and Technology: Shenzhen, China, 2018. [Google Scholar]
- Kempe, D.; Kleinberg, J.; Tardos, E. Maximizing the spread of influence through a social network. In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 24–27 August 2003; pp. 137–146. [Google Scholar]
- Ko, Y.-Y.; Cho, K.-J.; Kim, S.-W. Efficient and effective influence maximization in social networks: A hybrid-approach. Inf. Sci. 2018, 465, 144–161. [Google Scholar] [CrossRef]
- Leskovec, J.; Krause, A.; Guestrin, C.; Faloutsos, C.; VanBriesen, J.; Glance, N. Cost-effective outbreak detection in networks. In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Jose, CA, USA, 12–15 August 2007; pp. 420–429. [Google Scholar]
- Taherinia, M.; Esmaeili, M.; Minaei Bidgoli, B. Optimizing CELF Agorithm for Influence Maximization Problem in Social Networks. J. Data Min. 2022, 10, 25–41. [Google Scholar]
- Goyal, A.; Lu, W.; Lakshmanan, L.V.S. Celf++ optimizing the greedy algorithm for influence maximization in social networks. In Proceedings of the 20th International Conference Companion on World Wide Web, Hyderabad, India, 28 March–1 April 2011; pp. 47–48. [Google Scholar]
- Chen, W.; Wang, Y.; Yang, S. Efficient influence maximization in social networks. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France, 28 June–1 July 2009; pp. 199–208. [Google Scholar]
- Cheng, S.; Shen, H.; Huang, J.; Zhang, G.; Cheng, X. Staticgreedy: Solving the scalability-accuracy dilemma in influence maximization. In Proceedings of the 22nd ACM International Conference on Information & Knowledge Management, San Francisco, CA, USA, 27 October–1 November 2013. [Google Scholar]
- Goyal, A.; Lu, W.; Lakshmanan, L.V.S. Simpath: An efficient algorithm for influence maximization under the linear threshold model. In Proceedings of the 2011 IEEE 11th International Conference on Data Mining, Vancouver, BC, Canada, 11–14 December 2011; IEEE: New York, NY, USA, 2011; pp. 211–220. [Google Scholar]
- Rahimkhani, K.; Aleahmad, A.; Rahgozar, M.; Moeini, A. A fast algorithm for finding most influential people based on the linear threshold model. Expert Syst. Appl. 2015, 42, 1353–1361. [Google Scholar] [CrossRef]
- Shang, J.; Zhou, S.; Li, X.; Liu, L.; Wu, H. COFIM: A community-based framework for influence maximization on large-scale networks. Knowl. Based Syst. 2017, 117, 88–100. [Google Scholar] [CrossRef]
- Bozorgi, A.; Haghighi, H.; Zahedi, M.S.; Rezvani, M. Incim: A community-based algorithm for influence maximization problem under the linear threshold model. Inf. Process. Manag. 2016, 52, 1188–1199. [Google Scholar] [CrossRef]
- Girvan, M.; Newman, M.E.J. Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 2002, 99, 7821–7826. [Google Scholar] [CrossRef]
- Ghayour-Baghbani, F.; Asadpour, M.; Faili, H. Mlpr: Efficient influence maximization in linear threshold propagation model using linear programming. Soc. Netw. Anal. Min. 2021, 11, 3. [Google Scholar] [CrossRef]
- Baghbani, F.G.; Asadpour, M.; Faili, H. Integer linear programming for influence maximization. Iran. J. Sci. Technol. Trans. Electr. Eng. 2019, 43, 627–634. [Google Scholar] [CrossRef]
- Keskin, M.E.; Güler, M.G. Influence maximization in social networks: An integer programming approach. Turk. J. Electr. Eng. Comput. 2018, 26, 3383–3396. [Google Scholar] [CrossRef]
- Wu, H.-H.; Küçükyavuz, S. A Two-stage Stochastic Programming Approach for Influence Maximization in Social Networks. Comput. Optim. Appl. 2018, 69, 563–595. [Google Scholar] [CrossRef]
- Ackerman, E.; Ben-Zwi, O.; Wolfovitz, G. Combinatorial model and bounds for target set selection. Theor. Comput. Sci. 2010, 411, 4017–4022. [Google Scholar] [CrossRef]
- Schaeffer, S.E. Graph clustering. Comput. Sci. Rev. 2007, 1, 27–64. [Google Scholar] [CrossRef]
- Vlasblom, J.; Wodak, S.J. Markov Clustering versus Affinity Propagation for the Partitioning of Protein Interaction Graphs. BMC Bioinform. 2009, 10, 99. [Google Scholar] [CrossRef]
- Van Dongen, S. Graph Clustering Via a Discrete Uncoupling Process. SIAM J. Matrix Anal. Appl. 2008, 30, 121–141. [Google Scholar] [CrossRef]
- Van Dongen, S. Graph Clustering by Flow Simulation. Ph.D. Thesis, Utrecht University, Utrecht, The Netherlands, 2000. [Google Scholar]
- Agra, A.; Requejo, C. The linking set problem: A polynomial special case of the multiple-choice knapsack problem. J. Math. Sci. 2009, 161, 919–929. [Google Scholar] [CrossRef]
- Fairbanks, J.; Besançon, M.; Simon, S.; Hoffiman, J.; Eubank, N.; Karpinski, S. Juliagraphs/Graphs.jl: An Optimized Graph Package for the Julia Programming Language. 2021. Available online: https://github.com/JuliaGraphs/Graphs.Jl (accessed on 6 February 2024).
- Leskovec, J.; Krevl, A. SNAP Datasets: Stanford Large Network Dataset Collection. 2014. Available online: http://snap.stanford.edu/data (accessed on 6 February 2024).
- Moody, J. Peer Influence Groups: Identifying Dense Clusters in Large Networks. Soc. Netw. 2001, 23, 261–283. [Google Scholar] [CrossRef]
- Agra, A.; Cerdeira, J.O.; Requejo, C. A decomposition approach for the p-median problem on disconnected graphs. Comput. Oper. Res. 2017, 86, 79–85. [Google Scholar] [CrossRef]
Notation | Description |
---|---|
Directed graph G with vertex set V and edge set E | |
n | Number of vertices in the graph G |
m | Number of clusters |
S | Seed set |
Set of activated nodes at step t of SimpleGeedy algorithm | |
Set of activated nodes in cluster j | |
Set of activated nodes in cluster j at step t of SimpleGeedy algorithm | |
Cardinality of set A | |
k | Number of seeds to be selected |
r | Number of Monte Carlo simulations |
The total number of nodes activated by the set of nodes S | |
Set of vertices u of directed graph such that the arc |
Network Statistics | Email-Eu-Core Network | Adolescent Health Network | Gnutella Peer-to-Peer Network |
---|---|---|---|
Nodes | 1005 | 2539 | 8114 |
Edges | 25,571 | 12,969 | 26,013 |
Average clustering coefficient | 0.3994 | 0.1419 | 0.0095 |
Type | Directed | Directed | Directed |
Network | n | m | k | r | Runtime (s) | Objective Function Value | ||||
---|---|---|---|---|---|---|---|---|---|---|
MCL | SimpleGreedy | ClusterGreedy | Linking Set | SimpleGreedy | ClusterGreedy | |||||
Email-eu-core | 1005 | 181 | 10 | 100 | 0.30 | 60,630.30 | 2327.60 | 131.268 | 530.814 | 411.78 |
Adolescent health | 2539 | 406 | 25 | 50 | 25.87 | 2511.18 | 1768.04 | 82.181 | 176.257 | 157.273 |
Gnutella peer-to-peer | 8114 | 13 | 81 | 50 | 59.87 | 482,067.82 | 288,061.54 | 244.29 | 763.558 | 771.724 |
Average | 29 | 181,736 | 97,386 | 153 | 490 | 447 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agra, A.; Samuco, J.M. A New Algorithm Framework for the Influence Maximization Problem Using Graph Clustering. Information 2024, 15, 112. https://doi.org/10.3390/info15020112
Agra A, Samuco JM. A New Algorithm Framework for the Influence Maximization Problem Using Graph Clustering. Information. 2024; 15(2):112. https://doi.org/10.3390/info15020112
Chicago/Turabian StyleAgra, Agostinho, and Jose Maria Samuco. 2024. "A New Algorithm Framework for the Influence Maximization Problem Using Graph Clustering" Information 15, no. 2: 112. https://doi.org/10.3390/info15020112
APA StyleAgra, A., & Samuco, J. M. (2024). A New Algorithm Framework for the Influence Maximization Problem Using Graph Clustering. Information, 15(2), 112. https://doi.org/10.3390/info15020112