Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T04:26:39.818Z Has data issue: false hasContentIssue false

Oligosaccharides: state of the art

Published online by Cambridge University Press:  05 March 2007

N. M. Delzenne*
Affiliation:
Unit of Pharmacokinetics, Metabolism, Nutrition and Toxicology, PMNT-7369 School of Pharmacy, Université Catholique de Louvain, Avenue Mounier, 73 B-1200, Brussels, Belgium
*
*Corresponding author: Dr N. Delzenne, fax +32 2 764 7359, Delzenne@pmnt.ucl.ac.be
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Oligosaccharides, consisting of a mixture of hexose oligomers with a variable extent of polymerisation, are food products with interesting nutritional properties. They may be naturally present in food, mostly in fruits, vegetables or grains, or produced by biosynthesis from natural sugars or polysaccharides and added to food products because of their nutritional properties or organoleptic characteristics. The dietary intake of oligosaccharides is difficult to estimate, but it may reach 3–13 g/d per person (for fructo-oligosaccharides), depending on the population. The extent of resistance to enzymic reactions occurring in the upper part of the gastrointestinal tract allows oligosaccharides to become ‘colonic nutrients’, as some intestinal bacterial species express specific hydrolases and are able to convert oligosaccharides into short-chain fatty acids (acetate, lactate, propionate, butyrate) and/or gases by fermentation. Oligosaccharides that selectively promote some interesting bacterial species (e.g. lactobacilli, bifidobacteria), and thus equilibrate intestinal microflora, are now termed prebiotics. The pattern of short-chain fatty acid production in the caeco-colon, as well as the prebiotic effect, if demonstrated, are dynamic processes that vary with the type of oligosaccharide (e.g. extent of polymerisation, nature of hexose moieties), the duration of the treatment, the initial composition of flora or the diet in which they are incorporated. Experimental data obtained in vitro and in vivo in animals, and also recent data obtained in human subjects, support the involvement of dietary oligosaccharides in physiological processes in the different intestinal cell types (e.g. mucins production, cell division, immune cells function, ionic transport) and also outside the gastrointestinal tract (e.g. hormone production, lipid and carbohydrates metabolism). The present paper gives an overview of the future development of oligosaccharides, newly recognised as dietary fibre.

Type
Session: Nutrients contributing to the fibre effect
Copyright
Copyright © The Nutrition Society 2003

References

Bernalier, A, Doré, J, Durand, M (1999) Biochemistry of fermentation. In Colonic Microbiota, Nutrition and Health, pp.3753 [Gibson, GR, Roberfroid, MB, editors]. The Netherlands: Kluwer Academic Publishers.CrossRefGoogle Scholar
Blottière, HM, Champ, M, Hoebler, C, Michel, C, Cherbut, C (1999) Les acides gras à chaîne courte: de la production aux effets physiologiques gastro-intestinaux (Production and digestive effects of short-chain fatty acids: from production towards gastrointestinal physiological effects). Science des Aliments 19, 269290.Google Scholar
Bolognani, F, Rumney, CJ, Pool-Zobel, BL, Rowland, JR (2001) Effect of lactobacilli, bifidobacteria and inulin on the formation of aberrant crypt foci in rats. European Journal of Nutrition 40, 293300.CrossRefGoogle ScholarPubMed
Buddington, KK, Donahoo, JB, Buddington, RK (2002) Dietary oligofructose and inulin protect mice from enteric and systemic pathogens and tumor inducers. Journal of Nutrition 132, 472477.CrossRefGoogle ScholarPubMed
Butel, M-J, Waligora-Dupriet, A-J, Szylit, O (2002) Oligofructose and experimental model of neonatal necrotising enterocolitis. British Journal of Nutrition 87, S213S219 Suppl. 2CrossRefGoogle ScholarPubMed
Cherbut, C (2002) Inulin and oligofructose in the dietary fibre concept. British Journal of Nutrition 87, S159S162 Suppl. 2CrossRefGoogle ScholarPubMed
Daubioul, C, De Wispelaere, L, Taper, H, Delzenne, N (2000) Dietary oligofructose lessens hepatic steatosis, but does not prevent hypertriglyceridemia in obese Zucker rats. Journal of Nutrition 130, 13141319.CrossRefGoogle Scholar
Daubioul, C, Rousseau, N, Demeure, R, Gallez, B, Taper, H, Declerck, B, Delzenne, N (2002) Dietary fructans, but not cellulose, decrease triglyceride accumulation in the liver of obese Zucker fa/fa rats. Journal of Nutrition 132, 967973.CrossRefGoogle Scholar
Delzenne, N, Daubioul, C, Neyrinck, A, Lasa, M, Taper, H (2002) Inulin and oligofructose modulated lipid metabolism in animals: review of biochemical events and future prospects. British Journal of Nutrition 87, S255S259 Suppl. 2CrossRefGoogle ScholarPubMed
Delzenne, N, Kok, N, Deloyer, P, Dandrifosse, G (2000) Dietary fructans modulate polyamine concentration in the cecum of rats. Journal of Nutrition 130, 24562460.Google ScholarPubMed
Delzenne, N, Williams, CM (2002) Prebiotics and lipid metabolism. Current Opinion in Lipidology 13, 6167.CrossRefGoogle ScholarPubMed
Demigné, C, Rémésy, C, Morand, C (1999) Short chain fatty acids. In Colonic Microbiota, Nutrition and Health, pp. 55–69 [Gibson, G and Roberfroid, M. editors]. Dordrecht, The Netherlands: Kluwer Academic Publishers.Google Scholar
Flamm, G, Glinsmann, W, Kristchevsky, D, Prosky, L, Roberfroid, M (2001) Inulin and oligofructose as dietary fiber: a review of the evidence. Critical Reviews in Food Science and Nutrition 41, 353362.CrossRefGoogle ScholarPubMed
Gibson, GR, Roberfroid, MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. Journal of Nutrition 125, 14011412.CrossRefGoogle ScholarPubMed
Greger, JL (1999) Non digestible carbohydrate and mineral bioavailability. Journal of Nutrition 129, 1434514355.CrossRefGoogle Scholar
Griffin, IJ, Davila, PM, Abrams, SA (2002) Non-digestible oligosaccharides and calcium absorption in girls with adequate calcium intakes. British Journal of Nutrition 87, S179S186 Suppl. 2CrossRefGoogle ScholarPubMed
Kok, N, Morgan, L, Williams, C, Roberfroid, M, Thissen, JP, Delzenne, N (1998a) Insulin, glucagon-like peptide 1, glucosedependent insulinotropic polypeptide and insulin-like growth factor I as putative mediators of the hypolipidemic effect of oligofructose in rats. Journal of Nutrition 128, 10991103.CrossRefGoogle ScholarPubMed
Kok, N, Taper, H, Delzenne, N (1998b) Oligofructose modulates lipid metabolism alterations induced by a fat-rich diet in rats. Journal of Applied Toxicology 18, 4753.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Le Blay, G, Michel, C, Blottière, H, Cherbut, C (1999) Prolonged intake of fructo-oligosaccharides induces a short-term elevation of lactic acid-producing bacteria and a persistent increase in cecal butyrate in rats. Journal of Nutrition 129, 22312235.CrossRefGoogle Scholar
Lopez, HW, Coudray, C, Levrat-Verny, M, Feillet-Coudray, C, Demigné, C, Rémésy, C (2000) Fructooligosaccharides enhance mineral apparent absorption and counteract the deleterious effects of the phytic acid on mineral homeostasis in rats. Journal of Nutritional Biochemistry 11, 500508.CrossRefGoogle ScholarPubMed
Murphy, O (2001) Non polyol low-digestible carbohydrates: food applications and functional benefits. British Journal of Nutrition 85, S47S53 Suppl. 1CrossRefGoogle ScholarPubMed
Pool-Zobel, B, Van Loo, J, Rowland, I, Roberfroid, M (2002) Experimental evidence on the potential of prebiotics fructans to reduce the risk of colon cancer. British Journal of Nutrition 87, S273S281 Suppl. 2CrossRefGoogle ScholarPubMed
Rao, V (2001) The prebiotic properties of oligofructose at low intake level. Nutrition Research 21, 843848.CrossRefGoogle Scholar
Roberfroid, M, Delzenne, N (1998) Dietary fructans. Annual Review of Nutrition 18, 117143.CrossRefGoogle ScholarPubMed
Roberfroid, M, Slavin, J (2000) Non digestible oligosaccharides. Critical Reviews in Food Sciences and Nutrition 46, 461480.CrossRefGoogle Scholar
Saavedra, JM, Tschernia, A (2002) Human studies with probiotics and prebiotics: clinical implications. British Journal of Nutrition 87, S241S246 Suppl. 2CrossRefGoogle ScholarPubMed
Sakaguchi, E, Sakoda, C, Toramaru, Y (1998) Caecal fermentation and energy accumulation in the rat fed on indigestible oligosaccharides. British Journal of Nutrition 80, 469476.CrossRefGoogle ScholarPubMed
Scheppach, W, Luehrs, H, Menzel, T (2001) Beneficial health effects of low-digestible carbohydrate consumption. British Journal of Nutrition 85, S23S30 Suppl. 1CrossRefGoogle ScholarPubMed
Schley, PD, Field, CJ (2002) The immune-enhancing effects of dietary fibres and prebiotics. British Journal of Nutrition 87, S221S230 Suppl. 2CrossRefGoogle ScholarPubMed
Scholz-Ahrens, KE, Schrezenmeir, J (2002) Inulin, oligofructose and mineral metabolism – experimental mechanism. British Journal of Nutrition 87, S179S186 Suppl. 2CrossRefGoogle Scholar
Tahiri, M, Tressol, JC, Arnaud, J, Bornet, F, Bouteloup-Demande, C, Feillet-Coudray, C, Ducros, V, Petin, D, Brouns, F, Rayssiguier, AP, Coudray, C (2001) Five-week intake of short-chain fructooligosaccharides increases intestinal absorption and status of magnesium in postmenopausal women. Journal of Bone and Mineral Research 16, 21522160.CrossRefGoogle ScholarPubMed
Taper, HS, Roberfroid, M (2002) Inulin, oligofructose and anticancer therapy. British Journal of Nutrition 87, S283S286 Suppl. 2CrossRefGoogle ScholarPubMed
Tuohy, KM, Finlay, RK, Wynne, AG, Gibson, GR (2001a) A human volunteer study on the prebiotic effects of HP-inulin – Faecal bacteria enumerated using fluorescent in situ hybridisation. Anaerobe 7 3 113118.CrossRefGoogle Scholar
Tuohy, KM, Kolida, S, Lustenberger, AM, Gibson, GR (2001b) The prebiotic effects of biscuits containing partially hydrolysed guar gum and fructo-oligosaccharides: a human volunteer study. British Journal of Nutrition 86, 341348.CrossRefGoogle ScholarPubMed
Van Loo, J, Coussement, P, De Leenheer, L, Hoebregs, H, Smith, G (1995) On the presence of inulin and oligofructose as natural ingredients in the Western Diet. Critical Reviews in Food Science and Nutrition 35, 525552.CrossRefGoogle ScholarPubMed
Younes, H, Coudray, C, Bellanger, J, Demigné, C, Rayssiguier, Y, Rémésy, C (2001) Effects of two fermentable carbohydrates (inulin and resistant starch) and their combination on calcium and magnesium balance in rats. British Journal of Nutrition 86, 479485.CrossRefGoogle ScholarPubMed