Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T22:07:47.491Z Has data issue: false hasContentIssue false

The immune-enhancing effects of dietary fibres and prebiotics

Published online by Cambridge University Press:  09 March 2007

P. D. Schley
Affiliation:
Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton AB, Canada T6G 2P5
C. J. Field*
Affiliation:
Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton AB, Canada T6G 2P5
*
*Corresponding author: Dr C. J. Field, tel +1 780 492 2597, fax +1 780 492 9130, email Catherine.field@ualberta.ca
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The gastrointestinal tract is subjected to enormous and continual foreign antigenic stimuli from food and microbes. This organ must integrate complex interactions among diet, external pathogens, and local immunological and non-immunological processes. It is critical that protective immune responses are made to potential pathogens, while hypersensitivity reactions to dietary antigens are minimised. There is increasing evidence that fermentable dietary fibres and the newly described prebiotics can modulate various properties of the immune system, including those of the gut-associated lymphoid tissues (GALT). This paper reviews evidence for the immune-enhancing effects of dietary fibres. Changes in the intestinal microflora that occur with the consumption of prebiotic fibres may potentially mediate immune changes via: the direct contact of lactic acid bacteria or bacterial products (cell wall or cytoplasmic components) with immune cells in the intestine; the production of short-chain fatty acids from fibre fermentation; or by changes in mucin production. Although further work is needed to better define the changes, mechanisms for immunomodulation, and the ultimate impact on immune health, there is convincing preliminary data to suggest that the consumption of prebiotics can modulate immune parameters in GALT, secondary lymphoid tissues and peripheral circulation. Future protocols on the physiological impact of consuming prebiotics should be designed to include assessments of the gut microflora, gut physiology and the function and composition of the various regions of GALT.

Type
Research Article
Copyright
Copyright © The Nutrition Society 2002

References

Abreumartin, MT & Targan, SR (1996) Regulation of immune responses of the intestinal mucosa. Critical Reviews In Immunology 16, 277309.CrossRefGoogle ScholarPubMed
Alexander, JW (1995) Specific nutrients and the immune response. Nutrition 11, 229232.Google ScholarPubMed
Barcelo, A, Claustre, J, Moro, F, Chayvialle, J-A, Cuber, J-C & Plaisancie, P (2000) Mucin secretion is modulated by luminal factors in the isolated vascularly perfused rat colon. Gut 46, 218224.CrossRefGoogle ScholarPubMed
Berg, RD (1985) Indigenous intestinal microflora and the host immune response. EOS Journal of Immunology and Immunopharmacology 4, 161168.Google Scholar
Bloom, BR, Salgame, P & Diamond, B (1992) Revisiting and revising suppressor T cells. Immunology Today 13, 131136.CrossRefGoogle ScholarPubMed
Bohmig, GA, Krieger, P-M, Saemann, MD, Wenhardt, C, Pohanka, E & Zlabinger, GJ (1997) n-Butyrate downregulates the stimulatory function of peripheral blood-derived antigen-presenting cells: a potential mechanism for modulating T-cell responses by short-chain fatty acids. Immunology 92, 234243.CrossRefGoogle ScholarPubMed
Bouhnik, Y, Flourie, B, Riottot, M, Bisetti, N, Gailing, M-F, Guibert, A, Bornet, F & Rambaud, J-C (1996) Effects of fructo-oligosaccharides ingestion on fecal bifidobacteria and selected metabolic indexes of colon carcinogenesis in healthy humans. Nutrition and Cancer 26, 2129.CrossRefGoogle ScholarPubMed
Buddington, RK, Williams, CH, Chen, S-C & Witherly, SA (1996) Dietary supplement of neosugar alters the fecal flora and decreases activities of some reductive enzymes in human subjects. American Journal of Clinical Nutrition 63, 709716.CrossRefGoogle ScholarPubMed
Bustos-Fernandez, L, de Paolo, IL, Hamamura, S, Gonzalez, E, Celener, D, Caldarini, MI & Tiscornia, OM (1978) Does secretin influence rat colonic absorption and secretion? American Journal of Gastroenterology 70, 265269.Google ScholarPubMed
Chen, Y, Kuchroo, VK, Inobe, J, Hafler, DA & Weiner, HL (1994) Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 265, 12371240.CrossRefGoogle ScholarPubMed
Chiang, BL, Sheih, YH, Wang, LH, Liao, CK & Gill, HS (2000) Enhancing immunity by dietary consumption of a probiotic lactic acid bacterium (Bifidobacterium lactis HN019): optimization and definition of cellular immune responses. European Journal of Clinical Nutrition 54, 849855.CrossRefGoogle ScholarPubMed
De Simone, C, Ciardi, A, Grassi, A, Lambert Gardini, S, Tzantzoglou, S, Trinchieri, V, Moretti, S & Jirillo, E (1992) Effect of Bifidobacterium bifidum and Lactobacillus acidophilus on gut mucosa and peripheral blood B lymphocytes. Immunopharmacology and Immunotoxicology 14, 331340.CrossRefGoogle ScholarPubMed
De Simone, C, Tzantzoglou, S, Baldinelli, L, Di Fabio, S, Bianchi Salvadori, B, Jirillo, E & Vesely, R (1988 a) Enhancement of host resistance against Salmonella typhimurium infection by a diet supplemented with yogurt. Immunopharmacology and Immunotoxicology 10, 399415.CrossRefGoogle ScholarPubMed
De Simone, C, Grassi, PP, Bianchi Salvadori, B, Miragliotta, G, Vesely, R & Jirillo, E (1988 b) Adherence of specific yogurt microorganisms to human peripheral blood lymphocytes. Microbios 55, 4957.Google ScholarPubMed
De Simone, C, Vesely, R, Negri, R, Bianchi Salvadori, B, Zanzoglu, S, Cilli, A & Lucci, L (1987) Enhancement of immune response of murine Peyer's patches by a diet supplemented with yogurt. Immunopharmacology and Immunotoxicology 9, 87100.CrossRefGoogle ScholarPubMed
Deitch, EA, Xu, D, Lu, Q & Berg, R (1993) Elemental diet-induced immune suppression is caused by both bacterial and dietary factors. Journal of Parenteral and Enteral Nutrition 17, 332336.CrossRefGoogle ScholarPubMed
Delves, PJ & Roitt, IM (2000 a) The immune system: first of two parts. New England Journal of Medicine 343, 3749.CrossRefGoogle ScholarPubMed
Delves, PJ & Roitt, IM (2000 b) The immune system: second of two parts. New England Journal of Medicine 343, 108117.CrossRefGoogle ScholarPubMed
De Witt, RC & Kudsk, KA (1999) The gut's role in metabolism, mucosal barrier function, and gut immunology. Infectious Disease Clinics of North America 13, 465481.CrossRefGoogle ScholarPubMed
Field, CJ, McBurney, MI, Massimino, S, Hayek, MG & Sunvold, GD (1999) The fermentable fiber content of the diet alters the function and composition of canine gut associated lymphoid tissue. Veterinary Immunology and Immunopathology 72, 325341.CrossRefGoogle ScholarPubMed
Fitch, FW, Stack, R, Fields, P, Lancki, DW & Cronin, DC (1995) Regulation of T lymphocyte subsets. Ciba Foundation Symposium 195, 6880.Google ScholarPubMed
Fontaine, N, Meslin, JC, Lory, S & Andrieux, C (1996) Intestinal mucin distribution in the germ-free rat and in the heteroxenic rat harbouring a human bacterial flora: effect of inulin in the diet. British Journal of Nutrition 75, 881892.CrossRefGoogle ScholarPubMed
Frankel, W, Zhang, W, Singh, A, Bain, A, Satchithanandam, S, Klurfeld, D & Rombeau, J (1995) Fiber: effect on bacterial translocation and intestinal mucin content. World Journal of Surgery 19, 144149.CrossRefGoogle ScholarPubMed
Fukushima, Y, Kawata, Y, Hara, H, Terada, A & Mitsuoka, T (1998) Effect of a probiotic formula on intestinal immunoglobulin A production in healthy children. International Journal of Food Microbiology 42, 3944.CrossRefGoogle ScholarPubMed
Fukushima, Y, Kawata, Y, Mizumachi, K, Kurisaki, J & Mitsuoka, T (1999) Effect of bifidobacteria feeding on fecal flora and production of immunoglobulins in lactating mouse. International Journal of Food Microbiology 46, 193197.CrossRefGoogle ScholarPubMed
Gaskins, HR, Mackie, RI, May, T & Garleb, KA (1996) Dietary fructo-oligosaccharide modulates large intestinal inflammatory responses to Clostridium difficile in antibiotic-compromised mice. Microbial Ecology in Health and Disease 9, 157166.CrossRefGoogle Scholar
Gibson, GR (1998) Dietary modulation of the human gut microflora using prebiotics. British Journal of Nutrition 80, S209S212.CrossRefGoogle ScholarPubMed
Gibson, GR, Beatty, ER, Wang, X & Cummings, JH (1995) Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology 108, 975982.CrossRefGoogle ScholarPubMed
Gibson, GR & Roberfroid, MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. Journal of Nutrition 125, 14011412.CrossRefGoogle ScholarPubMed
Goust, JM & Bierer, B (1993) Cell-mediated immunity. Immunology Series 58, 187212.Google ScholarPubMed
Green, DR & Webb, DR (1993) Saying the ‘S’ word in public. Immunology Today 14, 523525.CrossRefGoogle Scholar
Halpern, GM, Vruwink, KG, Van de Water, J, Keen, CL & Gershwin, ME (1991) Influence of long-term yoghurt consumption in young adults. International Journal of Immunotherapy 7, 205210.Google Scholar
Hatcher, GE & Lambrecht, RS (1993) Augmentation of macrophage phagocytic activity by cell-free extracts of selected lactic acid-producing bacteria. Journal of Dairy Science 76, 24852492.CrossRefGoogle ScholarPubMed
Inan, MS, Rasoulpour, RJ, Yin, L, Hubbard, AK, Rosenberg, DW & Giardina, C (2000) The luminal short-chain fatty acid butyrate modulates NF-κB activity in a human colonic epithelial cell line. Gastroenterology 118, 724734.CrossRefGoogle Scholar
Ishizaka, S, Kikuchi, E & Tsujii, T (1993) Effects of acetate on human immune system. Immunopharmacology and Immunotoxicology 15, 151162.CrossRefGoogle ScholarPubMed
Jenkins, DJA, Kendall, CWC, Ransom, TPP, Popovich, DG, Tariq, N, Wolever, TMS, Rao, AV, Thompson, LU & Cunnane, SC (1997) Dietary fiber and cholesterol lowering: future directions. In Dietary Fiber in Health and Disease, [Kritchevsky, D and Bonfield, C, editors]. New York, NY: Plenum Publishing.Google Scholar
Jenkins, DJA, Kendall, CWC & Vuksan, V (1999) Inulin, oligofructose and intestinal function. Journal of Nutrition 129, 1431S1433S.CrossRefGoogle ScholarPubMed
Kagnoff, MF (1987) Immunology of the digestive system. In Physiology of the Gastrointestinal Tract, pp. 16991728 [Johnson, LR, editor]. New York: Raven Press.Google Scholar
Kagnoff, MF (1993) Immunology of the intestinal tract. Gastroenterology 105, 12751280.CrossRefGoogle ScholarPubMed
Katayama, M, Xu, D, Specian, RD & Deitch, EA (1997) Role of bacterial adherence and the mucus barrier on bacterial translocation: effects of protein malnutrition and endotoxin in rats. Annals of Surgery 225, 317326.CrossRefGoogle ScholarPubMed
Kaufhold, J, Hammon, HM & Blum, JW (2000) Fructo-oligosaccharide supplementation: effects on metabolic, endocrine and hematological traits in veal calves. Journal of Veterinary Medicine Series A 47, 1729.CrossRefGoogle ScholarPubMed
Kleesen, B, Sykura, B, Zunft, H-J & Blaut, M (1997) Effects of inulin and lactose on fecal microflora, microbial activity, and bowel habit in elderly constipated persons. American Journal of Clinical Nutrition 65, 13971402.CrossRefGoogle Scholar
Kudoh, K, Shimizu, J, Ishiyama, A, Wada, M, Takita, T, Kanke, Y & Innami, S (1999) Secretion and excretion of immunoglobulin A to cecum and feces differ with type of indigestible saccharides. Journal of Nutritional Science and Vitaminology 45, 173181.CrossRefGoogle ScholarPubMed
Kudoh, K, Shimizu, J, Wada, M, Takita, T, Kanke, Y & Innami, S (1998) Effect of indigestible saccharides on B lymphocyte response of intestinal mucosa and cecal fermentation in rats. Journal of Nutritional Science and Vitaminology 44, 103112.CrossRefGoogle Scholar
Laissue, JA & Gebbers, J-O (1992) The intestinal barrier and the gut-associated lymphoid tissue. Current Studies in Hematology and Blood Transfusions 59, 1943.CrossRefGoogle Scholar
Langkamp-Henken, B, Glezer, JA & Kudsk, KA (1992) Immunologic structure and function of the gastrointestinal tract. Nutrition in Clinical Practice 7, 100108.CrossRefGoogle ScholarPubMed
Lim, BO, Yamada, K, Nonaka, M, Kuramoto, Y, Hung, P & Sugano, M (1997) Dietary fibers modulate indices of intestinal immune function in rats. Journal of Nutrition 127, 663667.CrossRefGoogle ScholarPubMed
Link-Amster, H, Rochat, F, Saudan, KY, Mignot, O & Aeschlimann, JM (1994) Modulation of a specific humoral immune response and changes in intestinal flora mediated through fermented milk intake. FEMS Immunology and Medical Microbiology 10, 5564.CrossRefGoogle ScholarPubMed
MacDonald, TT (1998) T cell immunity to oral antigens. Current Opinion in Immunology 10, 620627.CrossRefGoogle Scholar
Madar, Z, Gurevich, P, Ben-Hur, H, Ben-Arie, A, Berman, V, Sandler, B, Timar, B, Tendler, Y, Zinder, O, Stark, A & Zusman, I (1998) Effects of dietary fiber on the rat intestinal mucosa exposed to low doses of a carcinogen. Anticancer Research 18, 35213526.Google ScholarPubMed
Malin, M, Suomalainen, H, Saxelin, M & Isolauri, E (1996) Promotion of IgA immune response in patients with Crohn's disease by oral bacteriotherapy with Lactobacillus GG. Annals of Nutrition and Metabolism 40, 137145.CrossRefGoogle ScholarPubMed
Marin, ML, Lee, JH, Murtha, J, Ustunol, Z & Pestka, JJ (1997) Differential cytokine production in clonal macrophage and T-cell lines cultured with bifidobacteria. Journal of Dairy Science 80, 27132720.CrossRefGoogle ScholarPubMed
Massimino, S, Field, CJ, Hayek, MG, Sunvold, GD & McBurney, MI (1998) Fermentable dietary fiber increases GLP-1 secretion and improves glucose homeostasis despite increased intestinal glucose transport capacity in healthy dogs. Journal of Nutrition 128, 17861793.CrossRefGoogle ScholarPubMed
Matsuzaki, T (1998) Immunomodulation by treatment with Lactobacillus casei strain Shirota. International Journal of Food Microbiology 41, 133140.CrossRefGoogle ScholarPubMed
Matsuzaki, T, Yamazaki, R, Hashimoto, Y & Yokokura, T (1998) The effect of oral feeding of Lactobacillus casei strain Shirota on immunoglobulin E production in mice. Journal of Dairy Science 81, 4853.CrossRefGoogle ScholarPubMed
McKay, DM & Perdue, MH (1993) Intestinal epithelial function: the case for immunophysiological regulation. Digestive Diseases and Sciences 38, 13771387.CrossRefGoogle ScholarPubMed
Menne, E, Guggenbuhl, N & Roberfroid, MB (2000) Fn-type chicory inulin hydrolysate has a prebiotic effect in humans. Journal of Nutrition 130, 11971199.CrossRefGoogle Scholar
Mitsuoka, T, Hidaka, H & Eida, T (1987) Effect of fructo-oligosaccharides on intestinal microflora. Nahrung 31, 427436.CrossRefGoogle ScholarPubMed
Moineau, S & Goulet, J (1991) Effect of feeding fermented milks on the pulmonary macrophage activity in mice. Milchwissenschaft 46, 551554.Google Scholar
Mortensen, PB & Clausen, MR (1996) Short-chain fatty acids in the human colon: relation to gastrointestinal health and disease. Scandinavian Journal of Gastroenterology 216, 132148.CrossRefGoogle ScholarPubMed
Nagai, T, Ishizuka, S, Hara, H & Aoyama, Y (2000) Dietary sugar beet fiber prevents the increase in aberrant crypt foci induced by γ-irradiation in the colorectum of rats treated with an immunosuppressant. Journal of Nutrition 130, 16821687.CrossRefGoogle ScholarPubMed
Nagendra, R & Venkat Rao, S (1994) Effect of feeding infant formulations containing bifidus factors on in vivo proliferation of bifidobacteria and stimulation of intraperitoneal macrophage activity in rats. Journal of Nutritional Immunology 2, 6168.CrossRefGoogle Scholar
Park, SY, Ji, GE, Ko, YT, Jung, HK, Ustunol, Z & Pestka, JJ (1999) Potentiation of hydrogen peroxide, nitric oxide, and cytokine production in RAW 264·7 macrophage cells exposed to human and commercial isolates of Bifidobacterium. International Journal of Food Microbiology 46, 231241.CrossRefGoogle ScholarPubMed
Perdigon, G, Alvarez, S, Nader de Macias, ME, Roux, ME & Pesce de Ruiz Holgado, A (1990) The oral administration of lactic acid bacteria increase the mucosal intestinal immunity in response to enteropathogens. Journal of Food Protection 53, 404410.CrossRefGoogle ScholarPubMed
Perdigon, G, Alvarez, S, Nader de Macias, ME, Savoy de Giori, G, Medici, M & Nunez de Kairuz, M (1991) Behaviour of natural and heated yogurt in the immune system and preventive capacity on enteric infections. Milchwissenschaft 46, 411416.Google Scholar
Perdigon, G, Nader de Macias, ME, Alvarez, S, Oliver, G & Pesce de Ruiz Holgado, AA (1986 a) Effect of perorally administered lactobacilli on macrophage activation in mice. Infection and Immunity 53, 404410.CrossRefGoogle ScholarPubMed
Perdigon, G, Alvarez, S, Nader de Macias, ME, Margni, RA, Oliver, G & Pesce de Ruiz Holgado, AA (1986 b) Lactobacilli administered orally induce release of enzymes from peritoneal macrophages in mice. Milchwissenschaft 41, 344348.Google Scholar
Perdigon, G, Nader de Macias, ME, Alvarez, S, Medici, M, Oliver, G & Pesce de Ruiz Holgado, A (1986 c) Effect of a mixture of Lactobacillus casei and Lactobacillus acidophilus administered orally on the immune system in mice. Journal of Food Protection 49, 986989.CrossRefGoogle ScholarPubMed
Perdigon, G, Nader de Macias, ME, Alvarez, S, Oliver, G & Pesce de Ruiz Holgado, A (1988) Systemic augmentation of the immune response in mice by feeding fermented milks with Lactobacillus casei and Lactobacillus acidophilus. Immunology 63, 1723.Google ScholarPubMed
Perdigon, G, Nader de Macias, ME, Alvarez, S, Oliver, G & Pesce de Ruiz Holgado, AA (1987) Enhancement of immune response in mice fed with Streptococcus thermophilus and Lactobacillus acidophilus. Journal of Dairy Science 70, 919926.CrossRefGoogle ScholarPubMed
Pierre, F, Perrin, P, Champ, M, Bornet, F, Meflah, K & Menanteau, J (1997) Short-chain fructo-oligosaccharides reduce the occurrence of colon tumors and develop gut-associated lymphoid tissue in min mice. Cancer Research 57, 225228.Google ScholarPubMed
Pratt, VC, Tappenden, KA, McBurney, MI & Field, CJ (1996) Short-chain fatty acid-supplemented total parenteral nutrition improves nonspecific immunity after intestinal resection in rats. Journal of Parenteral and Enteral Nutrition 20, 264271.CrossRefGoogle ScholarPubMed
Ruthlein, J, Heinze, G & Auer, IO (1992) Anti-CD2 and anti-CD3 induced T cell cytotoxicity of human intraepithelial and lamina propria lymphocytes. Gut 33, 16261632.CrossRefGoogle ScholarPubMed
Satchithanandam, S, Vargofcak-Apker, M, Calvert, RJ, Leeds, AR & Cassidy, MM (1990) Alteration of gastrointestinal mucin by fiber feeding in rats. Journal of Nutrition 120, 11791184.CrossRefGoogle ScholarPubMed
Schiffrin, EJ, Rochat, F, Link-Amster, H, Aeschlimann, JM & Donnet-Hughes, A (1995) Immunomodulation of human blood cells following the ingestion of lactic acid bacteria. Journal of Dairy Science 78, 491497.CrossRefGoogle ScholarPubMed
Shu, Q, Lin, H, Rutherford, KJ, Fenwick, SG, Prasad, J, Gopal, PK & Gill, HS (2000) Dietary Bifidobacterium lactis (HN019) enhances resistance to oral Salmonella typhimurium infection in mice. Microbiology and Immunology 44, 213222.CrossRefGoogle ScholarPubMed
Solis Pereyra, B & Lemonnier, D (1993) Induction of human cytokines by bacteria used in dairy foods. Nutrition Research 13, 11271140.CrossRefGoogle Scholar
Spaeth, G, Gottwald, T, Specian, RD, Mainous, MR, Berg, RD & Deitch, EA (1994) Secretory immunoglobulin A, intestinal mucin, and mucosal permeability in nutritionally induced bacterial translocation in rats. Annals of Surgery 220, 798808.CrossRefGoogle ScholarPubMed
Takahashi, T, Nakagawa, E, Nara, T, Yajima, T & Kuwata, T (1998) Effects of orally ingested Bifidobacterium longum on the mucosal IgA response of mice to dietary antigens. Bioscience, Biotechnology and Biochemistry 62, 1015.CrossRefGoogle ScholarPubMed
Takahashi, T, Oka, T, Iwana, H, Kuwata, T & Yamamoto, Y (1993) Immune response of mice to orally administered lactic acid bacteria. Bioscience, Biotechnology and Biochemistry 57, 15571560.CrossRefGoogle Scholar
Tejada-Simon, MV, Ustunol, Z & Pestka, JJ (1999 a) Ex vivo effects of lactobacilli, streptococci, and bifidobacteria ingestion on cytokine and nitric oxide production in a murine model. Journal of Food Protection 62, 162169.CrossRefGoogle ScholarPubMed
Tejada-Simon, MV, Lee, JH, Ustunol, Z & Pestka, JJ (1999 b) Ingestion of yogurt containing Lactobacillus acidophilus and Bifidobacterium to potentiate immunoglobulin A responses to cholera toxin in mice. Journal of Dairy Science 82, 649660.CrossRefGoogle ScholarPubMed
Trejdosiewicz, LK (1992) Intestinal intraepithelial lymphocytes and lymphoepithelial interactions in the human gastrointestinal mucosa. Immunology Letters 32, 1320.CrossRefGoogle ScholarPubMed
Weiner, HL (1997) Oral tolerance: immune mechanisms and treatment of autoimmune diseases. Immunology Today 18, 335343.CrossRefGoogle ScholarPubMed
Wu, G, Field, CJ & Marliss, EB (1991) Glutamine and glucose metabolism in rat splenocytes and mesenteric lymph node lymphocytes. American Journal of Physiology 260, E141E147.Google ScholarPubMed
Xu, D, Lu, Q & Deitch, EA (1998) Elemental diet-induced bacterial translocation associated with systemic and intestinal immune suppression. Journal of Parenteral and Enteral Nutrition 22, 3741.CrossRefGoogle ScholarPubMed
Yamada, K, Tokunaga, Y, Ikeda, A, Ohkura, K, Mamiya, S, Kaku, S, Sugano, M & Tachibana, H (1999) Dietary effect of guar gum and its partially hydrolyzed product on the lipid metabolism and immune function of Sprague-Dawley rats. Bioscience, Biotechnology and Biochemistry 63, 21632167.CrossRefGoogle ScholarPubMed
Yasui, H, Mike, A & Ohwaki, M (1989) Immunogenicity of Bifidobacterium breve and change in antibody production in Peyer's patches after oral administration. Journal of Dairy Science 72, 3035.CrossRefGoogle ScholarPubMed
Yasui, H & Ohwaki, M (1991) Enhancement of immune response in Peyer's patch cells cultured with Bifidobacterium breve. Journal of Dairy Science 74, 11871195.CrossRefGoogle ScholarPubMed
Yun, C-H, Estrada, A, Van Kessel, A, Gajadhar, A, Redmond, MJ & Laarveld, B (1998) Immunomodulatory effects of oat B-glucan administered intragastrically or parenterally on mice infected with Eimeria vermiformis. Microbiology and Immunology 42, 457465.Google ScholarPubMed
Yun, C-H, Estrada, A, Van Kessel, A, Gajadhar, AA, Redmond, MJ & Laarveld, B (1997) B-(1→3, 1→4) oat glucan enhances resistance to Eimeria vermiformis infection in immunosuppressed mice. International Journal for Parasitology 27, 329337.CrossRefGoogle Scholar
Zusman, I, Gurevich, P, Benhur, H, Berman, V, Sandler, B, Tendler, Y & Madar, Z (1998) The immune response of rat spleen to dietary fibers and to low doses of carcinogen: morphometric and immunohistochemical studies. Oncology Reports 5, 15771581.Google ScholarPubMed