[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Targeting the HIF2–VEGF axis in renal cell carcinoma

An Author Correction to this article was published on 28 August 2024

This article has been updated

Abstract

Insights into the role of the tumor suppressor pVHL in oxygen sensing motivated the testing of drugs that target the transcription factor HIF or HIF-responsive growth factors, such as VEGF, for the treatment of cancers caused by VHL inactivation, such as clear-cell renal cell carcinoma (ccRCC). Multiple VEGF inhibitors are now approved for the treatment of ccRCC, and a HIF2α inhibitor has advanced to phase 3 development for this disease. These inhibitors are now also increasingly combined with immune-checkpoint blockers. In this Perspective, we describe the understanding of the mechanisms of oxygen sensing and hypoxia signaling that resulted in the development of HIF2α-targeted therapies for patients with VHL-associated tumors. We also present future directions for extending the use of these therapies to other cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Mechanisms of resistance.

Similar content being viewed by others

Change history

References

  1. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 70, 7–30 (2020).

    Article  PubMed  Google Scholar 

  2. Choueiri, T. K. & Motzer, R. J. Systemic therapy for metastatic renal-cell carcinoma. N. Engl. J. Med. 376, 354–366 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Gossage, L., Eisen, T. & Maher, E. R. VHL, the story of a tumour suppressor gene. Nat. Rev. Cancer 15, 55–64 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Ledford, H. & Callaway, E. Biologists who decoded how cells sense oxygen win medicine Nobel. Nature 574, 161–162 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Cho, H. & Kaelin, W. G. Targeting HIF2 in clear cell renal cell carcinoma. Cold Spring Harb. Symp. Quant. Biol. 81, 113–121 (2016).

    Article  PubMed  Google Scholar 

  6. Mckay, R. R., Bossé, D. & Choueiri, T. K. Evolving systemic treatment landscape for patients with advanced renal cell carcinoma. J. Clin. Oncol. 36, 3615–3623 (2018).

    Article  CAS  Google Scholar 

  7. Graham, J., Dudani, S. & Heng, D.Y.C. Prognostication in kidney cancer: Recent advances and future directions. J. Clin. Oncol. https://doi.org/10.1200/JCO.2018.79.0147 (2018).

  8. v. Hippel, E. Über eine sehr seltene Erkrankung der Netzhaut - Klinische Beobachtungen. Albr. von. Gr.æfe’s Arch. f.ür. Ophthalmol. 59, 83–106 (1904).

    Article  Google Scholar 

  9. Maher, E. R. & Kaelin, W. G. Jr. von Hippel-Lindau disease. Medicine 76, 381–391 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Kaelin, W. G. Von Hippel-Lindau disease. Annu. Rev. Pathol. 2, 145–173 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Sgambati, M. T. et al. Mosaicism in von Hippel-Lindau disease: lessons from kindreds with germline mutations identified in offspring with mosaic parents. Am. J. Hum. Genet. 66, 84–91 (2000).

    Article  CAS  Google Scholar 

  12. Latif, F. et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 260, 1317–1320 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Kim, W. Y. & Kaelin, W. G. Role of VHL gene mutation in human cancer. J. Clin. Oncol. 22, 4991–5004 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Montani, M. et al. VHL-gene deletion in single renal tubular epithelial cells and renal tubular cysts: further evidence for a cyst-dependent progression pathway of clear cell renal carcinoma in von Hippel-Lindau disease. Am. J. Surg. Pathol. 34, 806–815 (2010).

    Article  Google Scholar 

  15. Zhuang, Z. et al. A microdissection technique for archival DNA analysis of specific cell populations in lesions < 1 mm in size. Am. J. Pathol. 146, 620–625 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhuang, Z. et al. Detection of the von Hippel-Lindau gene deletion in cytologic specimens using microdissection and the polymerase chain reaction. Acta Cytol. 38, 671–675 (1994).

    CAS  PubMed  Google Scholar 

  17. Zhuang, Z. et al. Detection of von Hippel-Lindau disease gene mutations in paraffin-embedded sporadic renal cell carcinoma specimens. Mod. Pathol. 9, 838–842 (1996).

    CAS  PubMed  Google Scholar 

  18. Creighton, C. J. et al. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43–49 (2013).

    Article  CAS  Google Scholar 

  19. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gerlinger, M. et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat. Genet. 46, 225–233 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Iliopoulos, O., Kibel, A., Gray, S. & Kaelin, W. G. Jr. Tumour suppression by the human von Hippel-Lindau gene product. Nat. Med. 1, 822–826 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Lee, Y. S. et al. Coexpression of erythropoietin and erythropoietin receptor in von Hippel-Lindau disease-associated renal cysts and renal cell carcinoma. Clin. Cancer Res. 11, 1059–1064 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Jubb, A. M. et al. Expression of vascular endothelial growth factor, hypoxia inducible factor 1α, and carbonic anhydrase IX in human tumours. J. Clin. Pathol. 57, 504–512 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Golde, D. W., Hocking, W. G., Koeffler, H. P. & Adamson, J. W. Polycythemia: mechanisms and management. Ann. Intern. Med. 95, 71–87 (1981).

    Article  CAS  PubMed  Google Scholar 

  25. Iliopoulos, O., Levy, A. P., Jiang, C., Kaelin, W. G. Jr. & Goldberg, M. A. Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. Proc. Natl Acad. Sci. USA 93, 10595–10599 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gnarra, J. R. et al. Post-transcriptional regulation of vascular endothelial growth factor mRNA by the product of the VHL tumor suppressor gene. Proc. Natl Acad. Sci. USA 93, 10589–10594 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Siemeister, G. et al. Reversion of deregulated expression of vascular endothelial growth factor in human renal carcinoma cells by von Hippel-Lindau tumor suppressor protein. Cancer Res. 56, 2299–2301 (1996).

    CAS  PubMed  Google Scholar 

  28. Kaelin, W. G. Jr. & Ratcliffe, P. J. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol. Cell 30, 393–402 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Ohh, M. et al. Ubiquitination of hypoxia-inducible factor requires direct binding to the β-domain of the von Hippel-Lindau protein. Nat. Cell Biol. 2, 423–427 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Cockman, M. E. et al. Hypoxia inducible factor-α binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. J. Biol. Chem. 275, 25733–25741 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Tanimoto, K., Makino, Y., Pereira, T. & Poellinger, L. Mechanism of regulation of the hypoxia-inducible factor-1α by the von Hippel-Lindau tumor suppressor protein. EMBO J. 19, 4298–4309 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kamura, T. et al. Activation of HIF1α ubiquitination by a reconstituted von Hippel-Lindau (VHL) tumor suppressor complex. Proc. Natl Acad. Sci. USA 97, 10430–10435 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ivan, M. et al. HIFα targeted for VHL-mediated destruction by proline hydroxylation: Implications for O2 sensing. Science 292, 464–468 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Jaakkola, P. et al. Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468–472 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Yu, F., White, S. B., Zhao, Q. & Lee, F. S. HIF-1α binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc. Natl Acad. Sci. USA 98, 9630–9635 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Epstein, A. C. R. et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107, 43–54 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Bruick, R. K. & McKnight, S. L. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294, 1337–1340 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Ivan, M. et al. Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxia-inducible factor. Proc. Natl Acad. Sci. USA 99, 13459–13464 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shen, C. et al. Genetic and functional studies implicate HIF1α as a 14q kidney cancer suppressor gene. Cancer Discov. 1, 222–235 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Maxwell, P. H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–275 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Krieg, M. et al. Up-regulation of hypoxia-inducible factors HIF-1α and HIF-2α under normoxic conditions in renal carcinoma cells by von Hippel-Lindau tumor suppressor gene loss of function. Oncogene 19, 5435–5443 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Kondo, K., Klco, J., Nakamura, E., Lechpammer, M. & Kaelin, W. G. Jr. Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. Cancer Cell 1, 237–246 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Raval, R. R. et al. Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol. Cell. Biol. 25, 5675–5686 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Maranchie, J. K. et al. The contribution of VHL substrate binding and HIF1-α to the phenotype of VHL loss in renal cell carcinoma. Cancer Cell 1, 247–255 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Kondo, K., Kim, W. Y., Lechpammer, M. & Kaelin, W. G. Jr. Inhibition of HIF2α is sufficient to suppress pVHL-defective tumor growth. PLoS Biol. 1, E83 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zimmer, M., Doucette, D., Siddiqui, N. & Iliopoulos, O. Inhibition of hypoxia-inducible factor is sufficient for growth suppression of VHL-/- tumors. Mol. Cancer Res. 2, 89–95 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Cho, H. et al. On-target efficacy of a HIF-2α antagonist in preclinical kidney cancer models. Nature 539, 107–111 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gordan, J. D. et al. HIF-α effects on c-Myc distinguish two subtypes of sporadic VHL-deficient clear cell renal carcinoma. Cancer Cell 14, 435–446 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mandriota, S. J. et al. HIF activation identifies early lesions in VHL kidneys: evidence for site-specific tumor suppressor function in the nephron. Cancer Cell 1, 459–468 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Schietke, R. E. et al. Renal tubular HIF-2α expression requires VHL inactivation and causes fibrosis and cysts. PLoS One 7, e31034 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Purdue, M. P. et al. Genome-wide association study of renal cell carcinoma identifies two susceptibility loci on 2p21 and 11q13.3. Nat. Genet. 43, 60–65 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Li, L. et al. Hypoxia-inducible factor linked to differential kidney cancer risk seen with type 2A and type 2B VHL mutations. Mol. Cell. Biol. 27, 5381–5392 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dengler, V. L., Galbraith, M. & Espinosa, J. M. Transcriptional regulation by hypoxia inducible factors. Crit. Rev. Biochem. Mol. Biol. 49, 1–15 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Minamishima, Y. A. et al. A feedback loop involving the Phd3 prolyl hydroxylase tunes the mammalian hypoxic response in vivo. Mol. Cell. Biol. 29, 5729–5741 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Uniacke, J. et al. An oxygen-regulated switch in the protein synthesis machinery. Nature 486, 126–129 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang, Y. et al. Regulation of endocytosis via the oxygen-sensing pathway. Nat. Med. 15, 319–324 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Schödel, J. et al. Common genetic variants at the 11q13.3 renal cancer susceptibility locus influence binding of HIF to an enhancer of cyclin D1 expression. Nat. Genet. 44, 420–425 (2012). S1–S2.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Nicholson, H. E. et al. HIF-independent synthetic lethality between CDK4/6 inhibition and VHL loss across species. Sci. Signal. 12, eaay0482 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bommi-Reddy, A. et al. Kinase requirements in human cells: III. Altered kinase requirements in VHL-/- cancer cells detected in a pilot synthetic lethal screen. Proc. Natl Acad. Sci. USA 105, 16484–16489 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bindra, R. S., Vasselli, J. R., Stearman, R., Linehan, W. M. & Klausner, R. D. VHL-mediated hypoxia regulation of cyclin D1 in renal carcinoma cells. Cancer Res. 62, 3014–3019 (2002).

    CAS  PubMed  Google Scholar 

  61. Escudier, B. et al. Bevacizumab plus interferon α2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet 370, 2103–2111 (2007).

    Article  PubMed  Google Scholar 

  62. Yang, J. C. et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N. Engl. J. Med. 349, 427–434 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Motzer, R. J. et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N. Engl. J. Med. 356, 115–124 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Escudier, B. et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med. 356, 125–134 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Strumberg, D. et al. Phase I clinical and pharmacokinetic study of the novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43-9006 in patients with advanced refractory solid tumors. J. Clin. Oncol. 23, 965–972 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Awada, A. et al. Phase I safety and pharmacokinetics of BAY 43-9006 administered for 21 days on/7 days off in patients with advanced, refractory solid tumours. Br. J. Cancer 92, 1855–1861 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wilhelm, S. M. et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 64, 7099–7109 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Motzer, R. J. et al. Pazopanib versus sunitinib in metastatic renal-cell carcinoma. N. Engl. J. Med. 369, 722–731 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Rini, B. I. et al. Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a randomised phase 3 trial. Lancet 378, 1931–1939 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Zhou, L. et al. Targeting MET and AXL overcomes resistance to sunitinib therapy in renal cell carcinoma. Oncogene 35, 2687–2697 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Yakes, F. M. et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol. Cancer Ther. 10, 2298–2308 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Yamamoto, Y. et al. Lenvatinib, an angiogenesis inhibitor targeting VEGFR/FGFR, shows broad antitumor activity in human tumor xenograft models associated with microvessel density and pericyte coverage. Vasc. Cell 6, 18 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Nakaigawa, N. et al. Inactivation of von Hippel-Lindau gene induces constitutive phosphorylation of MET protein in clear cell renal carcinoma. Cancer Res. 66, 3699–3705 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Koochekpour, S. et al. The von Hippel-Lindau tumor suppressor gene inhibits hepatocyte growth factor/scatter factor-induced invasion and branching morphogenesis in renal carcinoma cells. Mol. Cell. Biol. 19, 5902–5912 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pennacchietti, S. et al. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3, 347–361 (2003).

    Article  PubMed  Google Scholar 

  76. Beroukhim, R. et al. Patterns of gene expression and copy-number alterations in von-hippel lindau disease-associated and sporadic clear cell carcinoma of the kidney. Cancer Res. 69, 4674–4681 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Choueiri, T. K. et al. Cabozantinib versus sunitinib as initial targeted therapy for patients with metastatic renal cell carcinoma of poor or intermediate risk: the Alliance A031203 CABOSUN trial. J. Clin. Oncol. 35, 591–597 (2017).

    Article  CAS  PubMed  Google Scholar 

  78. Choueiri, T. K. et al. Cabozantinib versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373, 1814–1823 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Choueiri, T. K. et al. Cabozantinib versus everolimus in advanced renal cell carcinoma (METEOR): final results from a randomised, open-label, phase 3 trial. Lancet Oncol. 17, 917–927 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Motzer, R. J. et al. Lenvatinib, everolimus, and the combination in patients with metastatic renal cell carcinoma: a randomised, phase 2, open-label, multicentre trial. Lancet Oncol. 16, 1473–1482 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Bhargava, P. & Robinson, M. O. Development of second-generation VEGFR tyrosine kinase inhibitors: current status. Curr. Oncol. Rep. 13, 103–111 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Huang, H., Bhat, A., Woodnutt, G. & Lappe, R. Targeting the ANGPT-TIE2 pathway in malignancy. Nat. Rev. Cancer 10, 575–585 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Jonker, L. TGF-β & BMP receptors endoglin and ALK1: overview of their functional role and status as antiangiogenic targets. Microcirculation 21, 93–103 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Rini, B. et al. AMG 386 in combination with sorafenib in patients with metastatic clear cell carcinoma of the kidney: a randomized, double-blind, placebo-controlled, phase 2 study. Cancer 118, 6152–6161 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Choueiri, T. K. et al. Results of the phase II TRAXAR study: A randomized phase II trial of axitinib and TRC105 (TRAX) versus axitinib (AX) alone in patients with advanced or metastatic renal cell carcinoma (mRCC). Ann. Oncol. 30, v362–v363 (2019).

    Article  Google Scholar 

  86. Voss, M. H. et al. The DART study: results from the dose-escalation and expansion cohorts evaluating the combination of dalantercept plus axitinib in advanced renal cell carcinoma. Clin. Cancer Res. 23, 3557–3565 (2017).

    Article  CAS  PubMed  Google Scholar 

  87. Chan, J., Bayliss, P. E., Wood, J. M. & Roberts, T. M. Dissection of angiogenic signaling in zebrafish using a chemical genetic approach. Cancer Cell 1, 257–267 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Saxton, R. A. & Sabatini, D. M. mTOR signaling in growth, metabolism, and disease. Cell 168, 960–976 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hua, H. et al. Targeting mTOR for cancer therapy. J. Hematol. Oncol. 12, 71 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Hudes, G. et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N. Engl. J. Med. 356, 2271–2281 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Motzer, R. J. et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 372, 449–456 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Santoni, M. et al. Emerging strategies to overcome the resistance to current mTOR inhibitors in renal cell carcinoma. Cancer or. Biochim. Biophys. Acta 1845, 221–231 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. O’Reilly, K. E. et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 66, 1500–1508 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Dibble, C. C., Asara, J. M. & Manning, B. D. Characterization of Rictor phosphorylation sites reveals direct regulation of mTOR complex 2 by S6K1. Mol. Cell. Biol. 29, 5657–5670 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Toschi, A., Lee, E., Gadir, N., Ohh, M. & Foster, D. A. Differential dependence of hypoxia-inducible factors 1 α and 2 α on mTORC1 and mTORC2. J. Biol. Chem. 283, 34495–34499 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zheng, B. et al. Pre-clinical evaluation of AZD-2014, a novel mTORC1/2 dual inhibitor, against renal cell carcinoma. Cancer Lett. 357, 468–475 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Cho, D. C. et al. The efficacy of the novel dual PI3-kinase/mTOR inhibitor NVP-BEZ235 compared with rapamycin in renal cell carcinoma. Clin. Cancer Res. 16, 3628–3638 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Powles, T. et al. A randomised phase 2 study of AZD2014 versus everolimus in patients with VEGF-refractory metastatic clear cell renal cancer. Eur. Urol. 69, 450–456 (2016).

    Article  CAS  PubMed  Google Scholar 

  99. Choueiri, T. et al. Randomised phase 2 study of sapanisertib (TAK 228/MLN0128) ± TAK-117 versus everolimus in patients with VEGF-targeted therapy-refractory metastatic clear cell renal cell carcinoma. Fourteenth European International Kidney Cancer Symposium (2019).

  100. Powles, T. et al. Randomized open-label phase II trial of apitolisib (GDC-0980), a novel inhibitor of the PI3K/mammalian target of rapamycin pathway, versus everolimus in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 34, 1660–1668 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Carlo, M. I. et al. A phase Ib study of BEZ235, a dual inhibitor of phosphatidylinositol 3-kinase (PI3K) and mammalian target of rapamycin (mTOR), in patients with advanced renal cell carcinoma. Oncologist 21, 787–788 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Janiszewska, A. D., Poletajew, S. & Wasiutyński, A. Spontaneous regression of renal cell carcinoma. Contemp. Oncol. 17, 123–127 (2013).

    Google Scholar 

  103. Klapper, J. A. et al. High-dose interleukin-2 for the treatment of metastatic renal cell carcinoma : a retrospective analysis of response and survival in patients treated in the surgery branch at the National Cancer Institute between 1986 and 2006. Cancer 113, 293–301 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Wei, S. C., Duffy, C. R. & Allison, J. P. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 8, 1069–1086 (2018).

    Article  PubMed  Google Scholar 

  105. Motzer, R. J. et al. Nivolumab for metastatic renal cell carcinoma: results of a randomized phase II trial. J. Clin. Oncol. 33, 1430–1437 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. Tykodi, S. S. et al. First-line pembrolizumab (pembro) monotherapy in advanced clear cell renal cell carcinoma (ccRCC): Updated results for KEYNOTE-427 cohort A. J. Clin. Oncol. 37, 4570 (2019).

    Article  Google Scholar 

  107. Yarchoan, M., Hopkins, A. & Jaffee, E. M. Tumor mutational burden and response rate to PD-1 inhibition. N. Engl. J. Med. 377, 2500–2501 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Panda, A. et al. Endogenous retrovirus expression is associated with response to immune checkpoint blockade in clear cell renal cell carcinoma. JCI Insight 3, e121522 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Smith, C. C. et al. Endogenous retroviral signatures predict immunotherapy response in clear cell renal cell carcinoma. J. Clin. Invest. 128, 4804–4820 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Takahashi, Y. et al. Regression of human kidney cancer following allogeneic stem cell transplantation is associated with recognition of an HERV-E antigen by T cells. J. Clin. Invest. 118, 1099–1109 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Cherkasova, E. et al. Inactivation of the von Hippel-Lindau tumor suppressor leads to selective expression of a human endogenous retrovirus in kidney cancer. Oncogene 30, 4697–4706 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Braun, D. A. et al. Interplay of somatic alterations and immune infiltration modulates response to PD-1 blockade in advanced clear cell renal cell carcinoma. Nat. Med. 26, 909–918 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Koehler, A. N. A complex task? Direct modulation of transcription factors with small molecules. Curr. Opin. Chem. Biol. 14, 331–340 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Scheuermann, T. H. et al. Artificial ligand binding within the HIF2α PAS-B domain of the HIF2 transcription factor. Proc. Natl Acad. Sci. USA 106, 450–455 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Scheuermann, T. H. et al. Allosteric inhibition of hypoxia inducible factor-2 with small molecules. Nat. Chem. Biol. 9, 271–276 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Rogers, J. L. et al. Development of inhibitors of the PAS-B domain of the HIF-2α transcription factor. J. Med. Chem. 56, 1739–1747 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wehn, P. M. et al. Design and activity of specific hypoxia-inducible factor-2α (HIF-2α) inhibitors for the treatment of clear cell renal cell carcinoma: discovery of clinical candidate (S)-3-((2,2-difluoro-1-hydroxy-7-(methylsulfonyl)-2,3-dihydro-1 H-inden-4-yl)oxy)-5-fluorobenzonitrile (PT2385). J. Med. Chem. 61, 9691–9721 (2018).

    Article  CAS  PubMed  Google Scholar 

  118. Xu, R. et al. 3-[(1 S,2S,3R)-2,3-difluoro-1-hydroxy-7-methylsulfonylindan-4-yl]oxy-5-fluorobenzonitrile (PT2977), a hypoxia-inducible factor 2α (HIF-2α) inhibitor for the treatment of clear cell renal cell carcinoma. J. Med. Chem. 62, 6876–6893 (2019).

  119. Wallace, E. M. et al. A small-molecule antagonist of HIF2α is efficacious in preclinical models of renal cell carcinoma. Cancer Res. 76, 5491–5500 (2016).

    Article  CAS  PubMed  Google Scholar 

  120. Chen, W. et al. Targeting renal cell carcinoma with a HIF-2 antagonist. Nature 539, 112–117 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Courtney, K. D. et al. Phase I dose-escalation trial of PT2385, a first-in-class hypoxia-inducible factor-2α antagonist in patients with previously treated advanced clear cell renal cell carcinoma. J. Clin. Oncol. 36, 867–874 (2018).

    Article  CAS  PubMed  Google Scholar 

  122. Smith, T. G. et al. Mutation of von Hippel-Lindau tumour suppressor and human cardiopulmonary physiology. PLoS Med. 3, e290 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Cheng, X. et al. Marked and rapid effects of pharmacological HIF-2α antagonism on hypoxic ventilatory control. J. Clin. Invest. 130, 2237–2251 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Strowd, R. E. et al. Safety and activity of a first-in-class oral HIF2-α inhibitor, PT2385, in patients with first recurrent glioblastoma (GBM). J. Clin. Oncol. 37, 2027 (2019).

    Article  Google Scholar 

  125. Rini, B. I. et al. Results from a phase I expansion cohort of the first-in-class oral HIF-2α inhibitor PT2385 in combination with nivolumab in patients with previously treated advanced RCC. J. Clin. Oncol. 37, 558 (2019).

    Article  Google Scholar 

  126. Yang, G. et al. Glucuronidation: driving factors and their impact on glucuronide disposition. Drug Metab. Rev. 49, 105–138 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Papadopoulos, K. P., Jonasch, E., Zojwalla, N. J., Wang, K. & Bauer, T. M. A first-in-human phase 1 dose-escalation trial of the oral HIF-2a inhibitor PT2977 in patients with advanced solid tumors. J. Clin. Oncol. 36, 2508 (2018).

    Article  Google Scholar 

  128. Choueiri, T. K. et al. Phase I/II study of the oral HIF-2 α inhibitor MK-6482 in patients with advanced clear cell renal cell carcinoma (RCC). J. Clin. Oncol. 38, 611 (2020).

    Article  Google Scholar 

  129. Jonasch, E. et al. Phase II study of the oral HIF-2α inhibitor MK-6482 for Von Hippel-Lindau disease–associated renal cell carcinoma. J. Clin. Oncol. 38, 5003 (2020).

    Article  Google Scholar 

  130. Courtney, K. D. et al. HIF-2 complex dissociation, target inhibition, and acquired resistance with PT2385, a first-in-class HIF-2 inhibitor in clear cell renal cell carcinoma patients running title: acquired resistance to HIF-2 inhibitor in patients. Clin. Cancer Res. 15, 793–803 (2019).

    Google Scholar 

  131. Feldman, D. R. et al. Phase I trial of bevacizumab plus escalated doses of sunitinib in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 27, 1432–1439 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Flaherty, K. T. et al. BEST: a randomized phase II study of vascular endothelial growth factor, RAF kinase, and mammalian target of rapamycin combination targeted therapy with bevacizumab, sorafenib, and temsirolimus in advanced renal cell carcinoma—a trial of the ECOG-ACRIN cancer research group (E2804). J. Clin. Oncol. 33, 2384–2391 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Molina, A. M. et al. A phase 1b clinical trial of the multi-targeted tyrosine kinase inhibitor lenvatinib (E7080) in combination with everolimus for treatment of metastatic renal cell carcinoma (RCC). Cancer Chemother. Pharmacol. 73, 181–189 (2014).

    Article  CAS  PubMed  Google Scholar 

  134. LaFleur, M. W. et al. A CRISPR-Cas9 delivery system for in vivo screening of genes in the immune system. Nat. Commun. 10, 1668 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Amin, A. et al. Safety and efficacy of nivolumab in combination with sunitinib or pazopanib in advanced or metastatic renal cell carcinoma: the CheckMate 016 study. J. Immunother. Cancer 6, 109 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Chowdhury, S. et al. A phase I/II study to assess the safety and efficacy of pazopanib (PAZ) and pembrolizumab (PEM) in patients (pts) with advanced renal cell carcinoma (aRCC). J. Clin. Oncol. 35, 4506 (2017).

    Article  Google Scholar 

  137. Yi, M. et al. Synergistic effect of immune checkpoint blockade and anti-angiogenesis in cancer treatment. Mol. Cancer 18, 60 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Lalani, A. A. et al. Differential expression of c-Met between primary and metastatic sites in clear-cell renal cell carcinoma and its association with PD-L1 expression. Oncotarget 8, 103428–103436 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Guo, Z., Li, Y., Zhang, D. & Ma, J. Axl inhibition induces the antitumor immune response which can be further potentiated by PD-1 blockade in the mouse cancer models. Oncotarget 8, 89761–89774 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Katoh, M. Fibroblast growth factor receptors as treatment targets in clinical oncology. Nat. Rev. Clin. Oncol. 16, 105–122 (2019).

    Article  CAS  PubMed  Google Scholar 

  141. Motzer, R. J. et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N. Engl. J. Med. 378, 1277–1290 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Motzer, R. J. et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 380, 1103–1115 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Rini, B. I. et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 380, 1116–1127 (2019).

    Article  CAS  PubMed  Google Scholar 

  144. Rini, B. I. et al. Atezolizumab plus bevacizumab versus sunitinib in patients with previously untreated metastatic renal cell carcinoma (IMmotion151): a multicentre, open-label, phase 3, randomised controlled trial. Lancet 393, 2404–2415 (2019).

    Article  PubMed  Google Scholar 

  145. Bristol Myers Squibb. Bristol Myers Squibb announces positive topline result from pivotal phase 3 trial evaluating Opdivo (nivolumab) plus Yervoy (ipilimumab) vs. chemotherapy in previously untreated malignant pleural mesothelioma. https://news.bms.com/press-release/corporatefinancial-news/bristol-myers-squibb-and-exelixis-announce-positive-topline-re (2020).

  146. Palmer, A. C. & Sorger, P. K. Combination cancer therapy can confer benefit via patient-to-patient variability without drug additivity or synergy. Cell 171, 1678–1691.e13 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Rankin, E. B. et al. Direct regulation of GAS6/AXL signaling by HIF promotes renal metastasis through SRC and MET. Proc. Natl Acad. Sci. USA 111, 13373–13378 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Shojaei, F. et al. HGF/c-Met acts as an alternative angiogenic pathway in sunitinib-resistant tumors. Cancer Res. 70, 10090–10100 (2010).

    Article  CAS  PubMed  Google Scholar 

  149. Sennino, B. et al. Suppression of tumor invasion and metastasis by concurrent inhibition of c-Met and VEGF signaling in pancreatic neuroendocrine tumors. Cancer Discov. 2, 270–287 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Ciamporcero, E. et al. Combination strategy targeting VEGF and HGF/c-met in human renal cell carcinoma models. Mol. Cancer Ther. 14, 101–110 (2015).

    Article  CAS  PubMed  Google Scholar 

  151. Chakraborty, A. A. et al. HIF activation causes synthetic lethality between the VHL tumor suppressor and the EZH1 histone methyltransferase. Sci. Transl. Med. 9, eaal5272 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Chan, D. A. et al. Targeting GLUT1 and the Warburg effect in renal cell carcinoma by chemical synthetic lethality. Sci. Transl. Med. 3, 94ra70 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Thompson, J. M. et al. Rho-associated kinase 1 inhibition is synthetically lethal with von Hippel-Lindau deficiency in clear cell renal cell carcinoma. Oncogene 36, 1080–1089 (2017).

    Article  CAS  PubMed  Google Scholar 

  154. Hu, L. et al. TBK1 is a synthetic lethal target in cancer with VHL loss. Cancer Discov. 10, 460–475 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Bakouny, Z. & Barbie, D. A. TBK1 activation by VHL loss in renal cell carcinoma: a novel HIF-independent vulnerability. Cancer Discov. 10, 348–350 (2020).

    Article  CAS  PubMed  Google Scholar 

  156. Fishbein, L. et al. Comprehensive molecular characterization of pheochromocytoma and paraganglioma. Cancer Cell 31, 181–193 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Dahia, P. L.M. Pheochromocytomas and paragangliomas, genetically diverse and minimalist, all at once! Cancer Cell 31, 159–161 (2017).

    Article  CAS  PubMed  Google Scholar 

  158. Dahia, P. L. M. Pheochromocytoma and paraganglioma pathogenesis: learning from genetic heterogeneity. Nat. Rev. Cancer 14, 108–119 (2014).

    Article  CAS  PubMed  Google Scholar 

  159. Kaelin, W. G. Jr. The von Hippel-Lindau tumour suppressor protein: O2 sensing and cancer. Nat. Rev. Cancer 8, 865–873 (2008).

    Article  CAS  PubMed  Google Scholar 

  160. Mohlin, S., von Stedingk, K., Pietras, A. & Påhlman, S. No reason to reconsider HIF-2 as an oncogene in neuroblastoma and other cancer forms. Proc. Natl Acad. Sci. USA 114, E10856–E10858 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Renfrow, J. J. et al. Hypoxia-inducible factor 2α: a novel target in gliomas. Future Med. Chem. 10, 2227–2236 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Mohlin, S., von Stedingk, K., Pietras, A. & Påhlman, S. No reason to reconsider HIF-2 as an oncogene in neuroblastoma and other cancer forms. Proc. Natl Acad. Sci. USA 114, E10856–E10858 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Wu, D., Potluri, N., Lu, J., Kim, Y. & Rastinejad, F. Structural integration in hypoxia-inducible factors. Nature 524, 303–308 (2015).

    Article  CAS  PubMed  Google Scholar 

  164. Escudier, B. et al. Sorafenib for treatment of renal cell carcinoma: final efficacy and safety results of the phase III treatment approaches in renal cancer global evaluation trial. J. Clin. Oncol. 27, 3312–3318 (2009).

    Article  CAS  PubMed  Google Scholar 

  165. Motzer, R. J. et al. Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 27, 3584–3590 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Sternberg, C. N. et al. Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. J. Clin. Oncol. 28, 1061–1068 (2010).

    Article  CAS  PubMed  Google Scholar 

  167. Sternberg, C. N. et al. A randomised, double-blind phase III study of pazopanib in patients with advanced and/or metastatic renal cell carcinoma: final overall survival results and safety update. Eur. J. Cancer 49, 1287–1296 (2013).

    Article  CAS  PubMed  Google Scholar 

  168. Motzer, R. J. et al. Axitinib versus sorafenib as second-line treatment for advanced renal cell carcinoma: overall survival analysis and updated results from a randomised phase 3 trial. Lancet Oncol. 14, 552–562 (2013).

    Article  CAS  PubMed  Google Scholar 

  169. Choueiri, T. K. et al. Cabozantinib versus sunitinib as initial therapy for metastatic renal cell carcinoma of intermediate or poor risk (Alliance A031203 CABOSUN randomised trial): Progression-free survival by independent review and overall survival update. Eur. J. Cancer 94, 115–125 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Motzer, R. J. et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373, 1803–1813 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Motzer, R. J. et al. Final analysis of the CheckMate 025 trial comparing nivolumab (NIVO) versus everolimus (EVE) with >5 years of follow-up in patients with advanced renal cell carcinoma (aRCC). J. Clin. Oncol. 38, 617 (2020).

    Article  Google Scholar 

  172. Escudier, B. et al. Phase III trial of bevacizumab plus interferon α2a in patients with metastatic renal cell carcinoma (AVOREN): final analysis of overall survival. J. Clin. Oncol. 28, 2144–2150 (2010).

    Article  CAS  PubMed  Google Scholar 

  173. Motzer, R. J. et al. Lenvatinib, everolimus, and the combination in patients with metastatic renal cell carcinoma: a randomised, phase 2, open-label, multicentre trial. Lancet Oncol. 16, 1473–1482 (2015).

    Article  CAS  PubMed  Google Scholar 

  174. Motzer, R. J., Hutson, T. E., Ren, M., Dutcus, C. & Larkin, J. Independent assessment of lenvatinib plus everolimus in patients with metastatic renal cell carcinoma. Lancet Oncol. 17, e4–e5 (2016).

    Article  PubMed  Google Scholar 

  175. Tannir, N. M. et al. Overall survival and independent review of response in CheckMate 214 with 42-month follow-up: First-line nivolumab + ipilimumab (N+I) versus sunitinib (S) in patients (pts) with advanced renal cell carcinoma (aRCC). J. Clin. Oncol. 38, 609 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge Z. Bakouny and K. Pels (Dana-Farber Cancer Institute) and N. Zojwalla (Peloton Therapeutics) for careful reading of this manuscript and useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Toni K. Choueiri or William G. Kaelin Jr.

Ethics declarations

Competing interests

T.K.C. reports receiving research support (institutional and personal) from AstraZeneca, Alexion, Bayer, Bristol Myers-Squibb/ER Squibb & Sons, Cerulean, Eisai, Foundation Medicine, Exelixis, Ipsen, Tracon, Genentech, Roche, Roche Products, F. Hoffmann-La Roche, GlaxoSmithKline, Lilly, Merck, Novartis, Peloton, Pfizer, Prometheus Labs, Corvus, Calithera, Analysis Group, Sanofi/Aventis, and Takeda; honoraria from AstraZeneca, Alexion, Sanofi/Aventis, Bayer, Bristol-Myers Squibb/ER Squibb & Sons, Cerulean, Eisai, Foundation Medicine, Exelixis, Genentech, Roche, Roche Products, F. Hoffmann-La Roche, GlaxoSmithKline, Merck, Novartis, Peloton, Pfizer, EMD Serono, Prometheus Labs, Corvus, Ipsen, Up-to-Date, Analysis Group, National Comprehensive Cancer Network, Michael J. Hennessy (MJH) Associates (healthcare communications company with several brands, such as OncLive, PeerView and PER), Research to Practice, L-path, Kidney Cancer journal, Clinical Care Options, Platform Q, Navinata Healthcare, Harborside Press, American Society of Medical Oncology, New England Journal of Medicine, Lancet Oncology, Heron Therapeutics and Lilly; has had a consulting or advisory role for AstraZeneca, Alexion, Sanofi/Aventis, Bayer, Bristol-Myers Squibb/ER Squibb & Sons, Cerulean, Eisai, Foundation Medicine, Exelixis, Genentech, Heron Therapeutics, Lilly, Roche, GlaxoSmithKline, Merck, Novartis, Peloton, Pfizer, EMD Serono, Prometheus Labs, Corvus, Ipsen, Up-to-Date, National Comprehensive Cancer Network, Analysis Group, Pionyr and Tempest; owns stock in Pionyr and Tempest; and has received travel, accommodations, and expenses in relation to consulting, advisory roles or honoraria. W.G.K. is a board director at Lilly Pharmaceuticals, is a founder of Tango Therapeutics and Cedilla Therapeutics, is a Scientific Advisor at Nextech Invest, has ownership interest (including stock, patents, etc.) in Lilly, Tango Therapeutics, Nextech Invest and Cedilla Therapeutics, and is a consultant/advisory board member for Lilly Pharmaceuticals, Tango Therapeutics, Nextech Invest and Cedilla Therapeutics.

Additional information

Peer review information Hannah Stower was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choueiri, T.K., Kaelin, W.G. Targeting the HIF2–VEGF axis in renal cell carcinoma. Nat Med 26, 1519–1530 (2020). https://doi.org/10.1038/s41591-020-1093-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-020-1093-z

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research