[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion

Abstract

Immune checkpoint blockade, which blocks inhibitory signals of T cell activation, has shown tremendous success in treating cancer, although success still remains limited to a fraction of patients. To date, clinically effective CD8+ T cell responses appear to target predominantly antigens derived from tumour-specific mutations that accumulate in cancer, also called neoantigens. Tumour antigens are displayed on the surface of cells by class I human leukocyte antigens (HLA-I). To elicit an effective antitumour response, antigen presentation has to be successful at two distinct events: first, cancer antigens have to be taken up by dendritic cells (DCs) and cross-presented for CD8+ T cell priming. Second, the antigens have to be directly presented by the tumour for recognition by primed CD8+ T cells and killing. Tumours exploit multiple escape mechanisms to evade immune recognition at both of these steps. Here, we review the tumour-derived factors modulating DC function, and we summarize evidence of immune evasion by means of quantitative modulation or qualitative alteration of the antigen repertoire presented on tumours. These mechanisms include modulation of antigen expression, HLA-I surface levels, alterations in the antigen processing and presentation machinery in tumour cells. Lastly, as complete abrogation of antigen presentation can lead to natural killer (NK) cell-mediated tumour killing, we also discuss how tumours can harbour antigen presentation defects and still evade NK cell recognition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Antigen processing and presentation machinery.
Fig. 2: Dendritic cells in antitumour immunity.
Fig. 3: Modulation of antigen presentation in cancer.
Fig. 4: Effects of HLA-I loss on natural killer cell activity and examples of tumour immune escape.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available as Supplementary Figures and in cBioportal: https://www.cbioportal.org/.

References

  1. Waldman, A. D., Fritz, J. M. & Lenardo, M. J. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20, 651–668 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sharpe, A. H. & Pauken, K. E. The diverse functions of the PD1 inhibitory pathway. Nat. Rev. Immunol. 18, 153–167 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1–10 (2013).

    Article  PubMed  CAS  Google Scholar 

  4. Chapuis, A. G. et al. T cell receptor gene therapy targeting WT1 prevents acute myeloid leukemia relapse post-transplant. Nat. Med. 25, 1064–1072 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lowe, K. L. et al. Novel TCR-based biologics: mobilising T cells to warm ‘cold’ tumours. Cancer Treat. Rev. 77, 35–43 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Sahin, U. et al. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature 585, 107–112 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Choi, Y. J. et al. A phase II, prospective, randomized, multicenter, open-label study of GX-188E, an HPV DNA vaccine, in patients with cervical intraepithelial neoplasia 3. Clin. Cancer Res. 26, 1616–1623 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Glisson, B. et al. 1136O - Nivolumab and ISA 101 HPV vaccine in incurable HPV-16+ cancer. Ann. Oncol. 28, v403–v404 (2017).

    Article  Google Scholar 

  9. Youn, J. W. et al. Pembrolizumab plus GX-188E therapeutic DNA vaccine in patients with HPV-16-positive or HPV-18-positive advanced cervical cancer: interim results of a single-arm, phase 2 trial. Lancet Oncol. 21, 1653–1660 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Lu, Y.-C. et al. Efficient identification of mutated cancer antigens recognized by T cells associated with durable tumor regressions. Clin. Cancer Res. 20, 3401310 (2014).

    Article  Google Scholar 

  11. Rizvi, N. A. et al. Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer. Science 348, 124–128 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rosenberg, J. E. et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 387, 1909–1920 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Snyder, A. et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371, 2189–2199 (2014). The first study to show that tumour mutation burden is associated with response to ICI in patients with melanoma.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Tran, E. et al. T-cell transfer therapy targeting mutant KRAS in cancer. N. Engl. J. Med. 375, 2255–2262 (2016). Infusion of T cells against the mutation KRASG12D presented by HLA-C802 leads to objective regression of metastases in a patient with colorectal cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zacharakis, N. et al. Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer. Nat. Med. 24, 724–730 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Carreno, B. M. et al. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 348, 803–808 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hilf, N. et al. Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature 565, 240–245 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Keskin, D. B. et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature 565, 234–239 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Ott, P. A. et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547, 217–221 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sahin, U. et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547, 222–226 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Wculek, S. K. et al. Dendritic cells in cancer immunology and immunotherapy. Nat. Rev. Immunol. 20, 7–24 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Roberts, E. W. et al. Critical role for CD103+/CD141+ dendritic cells bearing CCR7 for tumor antigen trafficking and priming of T cell immunity in melanoma. Cancer Cell 30, 324–336 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Böttcher, J. P. & Reis e Sousa, C. The role of type 1 conventional dendritic cells in cancer immunity. Trends Cancer 4, 784–792 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Hildner, K. et al. Batf3 deficiency reveals a critical role for CD8α+ dendritic cells in cytotoxic T cell immunity. Science 322, 1097–1100 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Salmon, H. et al. Expansion and activation of CD103+ dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity 44, 924–938 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sánchez-Paulete, A. R. et al. Cancer immunotherapy with immunomodulatory anti-CD137 and anti-PD-1 monoclonal antibodies requires BATF3-dependent dendritic cells. Cancer Discov. 6, 71–79 (2016).

    Article  PubMed  CAS  Google Scholar 

  27. Broz, M. L. et al. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell 26, 638–652 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mayoux, M. et al. Dendritic cells dictate responses to PD-L1 blockade cancer immunotherapy. Sci. Transl Med. 12, eaav7431 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Enamorado, M. et al. Enhanced anti-tumour immunity requires the interplay between resident and circulating memory CD8+ T cells. Nat. Commun. 8, 16073 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Spranger, S., Dai, D., Horton, B. & Gajewski, T. F. Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell 31, 711–723.e4 (2017). Intratumoural DCs are essential for the trafficking of effector T cells to the tumour through the secretion of the chemokines CXCL9 and CXCL10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Garris, C. S. et al. Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12. Immunity 49, 1148–1161.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Menares, E. et al. Tissue-resident memory CD8+ T cells amplify anti-tumor immunity by triggering antigen spreading through dendritic cells. Nat. Commun. 10, 4401 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Ferris, S. T. et al. cDC1 prime and are licensed by CD4+ T cells to induce anti-tumour immunity. Nature 584, 624–629 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Binnewies, M. et al. Unleashing type-2 dendritic cells to drive protective antitumor CD4+ T cell immunity. Cell 177, 556–571.e16 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Spranger, S., Bao, R. & Gajewski, T. F. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 523, 231–235 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. de Galarreta, M. R. et al. β-Catenin activation promotes immune escape and resistance to anti-PD-1 therapy in hepatocellular carcinoma. Cancer Discov. 9, 1124–1141 (2019).

    Article  Google Scholar 

  37. Böttcher, J. P. et al. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell 172, 1022–1037.e14 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Lavin, Y. et al. Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses. Cell 169, 750–765.e17 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zelenay, S. et al. Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell 162, 1257–1270 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bonavita, E. et al. Antagonistic inflammatory phenotypes dictate tumor fate and response to immune checkpoint blockade. Immunity 53, 1215–1229.e8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Barry, K. C. et al. A natural killer–dendritic cell axis defines checkpoint therapy–responsive tumor microenvironments. Nat. Med. 24, 1178–1191 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Galluzzi, L., Buqué, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 17, 97–111 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Sancho, D. et al. Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature 458, 899–903 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vacchelli, E. et al. Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1. Science 350, 972–978 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Yatim, N. et al. RIPK1 and NF-κB signaling in dying cells determines cross-priming of CD8+ T cells. Science 350, 328–334 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hangai, S. et al. PGE2 induced in and released by dying cells functions as an inhibitory DAMP. Proc. Natl Acad. Sci. USA 113, 3844–3849 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gabrilovich, D. I. et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat. Med. 2, 1096–1103 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Ohm, J. E. & Carbone, D. P. VEGF as a mediator of tumor-associated immunodeficiency. Immunol. Res. 23, 263–272 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Papaspyridonos, M. et al. Id1 suppresses anti-tumour immune responses and promotes tumour progression by impairing myeloid cell maturation. Nat. Commun. 6, 6840 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Park, S.-J. et al. IL-6 regulates in vivo dendritic cell differentiation through STAT3 activation. J. Immunol. 173, 3844–3854 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Yang, A. S. & Lattime, E. C. Tumor-induced interleukin 10 suppresses the ability of splenic dendritic cells to stimulate CD4 and CD8 T-cell responses. Cancer Res. 63, 2150–2157 (2003).

    CAS  PubMed  Google Scholar 

  52. Maier, B. et al. A conserved dendritic-cell regulatory program limits antitumour immunity. Nature 580, 257–262 (2020). mregDCs, defined by expression of immunoregulatory and maturation genes, are a novel DC subset induced by tumour-antigen uptake. mregDCs reduce antitumour response.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Herber, D. L. et al. Lipid accumulation and dendritic cell dysfunction in cancer. Nat. Med. 16, 880–886 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cao, W. et al. Oxidized lipids block antigen cross-presentation by dendritic cells in cancer. J. Immunol. 192, 2920–2931 (2014).

    Article  CAS  Google Scholar 

  55. Cubillos-Ruiz, J. R. et al. ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis. Cell 161, 1527–1538 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Veglia, F. et al. Lipid bodies containing oxidatively truncated lipids block antigen cross-presentation by dendritic cells in cancer. Nat. Commun. 8, 2122 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Aznar, M. A. et al. Immunotherapeutic effects of intratumoral nanoplexed poly I:C. J. Immunother. Cancer 7, 116 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Corrales, L. et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep. 11, 1018–1030 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ramanjulu, J. M. et al. Design of amidobenzimidazole STING receptor agonists with systemic activity. Nature 564, 439–443 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Osada, T. et al. The effect of anti-VEGF therapy on immature myeloid cell and dendritic cells in cancer patients. Cancer Immunol. Immunother. 57, 1115–1124 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hammerich, L. et al. Systemic clinical tumor regressions and potentiation of PD1 blockade with in situ vaccination. Nat. Med. 25, 814–824 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Lai, J. et al. Adoptive cellular therapy with T cells expressing the dendritic cell growth factor Flt3L drives epitope spreading and antitumor immunity. Nat. Immunol. 21, 914–926 (2020).

    Article  CAS  PubMed  Google Scholar 

  63. Williford, J.-M. et al. Recruitment of CD103+ dendritic cells via tumor-targeted chemokine delivery enhances efficacy of checkpoint inhibitor immunotherapy. Sci. Adv. 5, eaay1357 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rock, K. L., Reits, E. & Neefjes, J. Present yourself! By MHC class I and MHC class II molecules. Trends Immunol. 37, 724–737 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wong, G. H., Clark-Lewis, I., McKimm-Breschkin, L., Harris, A. W. & Schrader, J. W. Interferon-gamma induces enhanced expression of Ia and H-2 antigens on B lymphoid, macrophage, and myeloid cell lines. J. Immunol. 131, 788–793 (1983).

    Article  CAS  PubMed  Google Scholar 

  66. Klar, D. & Hämmerling, G. J. Induction of assembly of MHC class I heavy chains with beta 2microglobulin by interferon-gamma. EMBO J. 8, 475–481 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Restifo, N. P. et al. Identification of human cancers deficient in antigen processing. J. Exp. Med. 177, 265–272 (1993).

    Article  CAS  PubMed  Google Scholar 

  68. Shankaran, V. et al. IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410, 1107–1111 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331, 1565–1570 (2011). Overview of cancer immunoediting, refinement of an initial review from 2002.

    Article  CAS  PubMed  Google Scholar 

  70. Matsushita, H. et al. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482, 400–404 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Maeurer, M. J. et al. Tumor escape from immune recognition: lethal recurrent melanoma in a patient associated with downregulation of the peptide transporter protein TAP-1 and loss of expression of the immunodominant MART-1/melan-A antigen. J. Clin. Invest. 98, 1633–1641 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Russo, V. et al. Expression of the mage gene family in primary and metastatic human breast cancer: implications for tumor antigen-specific immunotherapy. Int. J. Cancer 64, 216–221 (1995).

    Article  CAS  PubMed  Google Scholar 

  73. Rosenthal, R. et al. Neoantigen-directed immune escape in lung cancer evolution. Nature 567, 479–485 (2019). TRACERx consortium study, analysing a clinical NSCLC cohort for LOH at HLA-I, and several modes of disruption to antigen presentation, and the association of these features with immune infiltration and disease-free survival.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Anagnostou, V. et al. Evolution of neoantigen landscape during immune checkpoint blockade in non-small cell lung cancer. Cancer Discov. 7, 264–276 (2017).

    Article  CAS  PubMed  Google Scholar 

  75. Bassani-Sternberg, M., Pletscher-Frankild, S., Jensen, L. J. & Mann, M. Mass spectrometry of human leukocyte antigen class I peptidomes reveals strong effects of protein abundance and turnover on antigen presentation. Mol. Cell. Proteom. 14, 658–673 (2015).

    Article  CAS  Google Scholar 

  76. Jaeger, A. M. et al. Rebalancing protein homeostasis enhances tumor antigen presentation. Clin. Cancer Res. 25, 6392–6405 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G. & Hacohen, N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160, 48–61 (2015). One of the first studies to use a large data set like TCGA to show that HLA and B2M mutations are associated with cytolytic activity, suggesting immune selection pressure.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shukla, S. A. et al. Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes. Nat. Biotechnol. 33, 1152–1158 (2015). Extensive analysis of HLA mutations in TCGA data, showing prevalence of HLA-I mutations in several cancer types, and the landscape of mutations found in HLA-I genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Challa-Malladi, M. et al. Combined genetic inactivation of β2-microglobulin and CD58 reveals frequent escape from immune recognition in diffuse large B cell lymphoma. Cancer Cell 20, 728–740 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Charette, M. de & Houot, R. Hide or defend, the two strategies of lymphoma immune evasion: potential implications for immunotherapy. Haematologica 103, 1256–1268 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Middha, S. et al. Majority of B2M-mutant and -deficient colorectal carcinomas achieve clinical benefit from immune checkpoint inhibitor therapy and are microsatellite instability-high. JCO Precis. Oncol. 3, PO.18.00321 (2019).

    PubMed Central  Google Scholar 

  82. Castro, A. et al. Elevated neoantigen levels in tumors with somatic mutations in the HLA-A, HLA-B, HLA-C and B2M genes. BMC Med. Genomics 12, 107 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Sade-Feldman, M. et al. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat. Commun. 8, 1136 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Allen, E. M. V. et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350, 207–211 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Zaretsky, J. M. et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375, 819–829 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. McGranahan, N. et al. Allele-specific HLA loss and immune escape in lung cancer evolution. Cell 171, 1259–1271.e11 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chen, Y. et al. Loss of heterozygosity at the human leukocyte antigen locus in thymic epithelial tumors. Thorac. Cancer 6, 749–753 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Montesion, M. et al. Somatic HLA class I loss is a widespread mechanism of immune evasion which refines the use of tumor mutational burden as a biomarker of checkpoint inhibitor response. Cancer Discov. 11, 282–292 (2021). Study examining a large pan-cancer clinical cohort for HLA loss and its association with clinical end points.

    Article  CAS  PubMed  Google Scholar 

  89. Lopez-Yrigoyen, M., Cassetta, L. & Pollard, J. W. Macrophage targeting in cancer. Ann. N. Y. Acad. Sci. https://doi.org/10.1111/nyas.14377 (2020).

    Article  PubMed  Google Scholar 

  90. Guedan, S., Ruella, M. & June, C. H. Emerging cellular therapies for cancer. Annu. Rev. Immunol. 37, 145–171 (2019).

    Article  CAS  PubMed  Google Scholar 

  91. Maude, S. L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Kantarjian, H. et al. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N. Engl. J. Med. 376, 836–847 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Crowther, M. D. et al. Genome-wide CRISPR–Cas9 screening reveals ubiquitous T cell cancer targeting via the monomorphic MHC class I-related protein MR1. Nat. Immunol. 21, 178–185 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Nangalia, J. et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N. Engl. J. Med. 369, 2391–2405 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Arshad, N. & Cresswell, P. Tumor-associated calreticulin variants functionally compromise the peptide loading complex and impair its recruitment of MHC-I. J. Biol. Chem. 293, 9555–9569 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bozkus, C. C. et al. Immune checkpoint blockade enhances shared neoantigen-induced T-cell immunity directed against mutated calreticulin in myeloproliferative neoplasms. Cancer Discov. 9, 1192–1207 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  97. Arantes, A. Q. et al. Decreased activity of NK cells in myeloproliferative neoplasms. Blood 126, 1637–1637 (2015).

    Article  Google Scholar 

  98. Schönberg, K. et al. JAK inhibition impairs NK cell function in myeloproliferative neoplasms. Cancer Res. 75, 2187–2199 (2015).

    Article  PubMed  CAS  Google Scholar 

  99. Dunn, G. P., Koebel, C. M. & Schreiber, R. D. Interferons, immunity and cancer immunoediting. Nat. Rev. Immunol. 6, 836–848 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Manguso, R. T. et al. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature 547, 413–418 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Patel, S. J. et al. Identification of essential genes for cancer immunotherapy. Nature 548, 537–542 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gao, J. et al. Loss of IFN-γ pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell 167, 397–404.e9 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Albacker, L. A. et al. Loss of function JAK1 mutations occur at high frequency in cancers with microsatellite instability and are suggestive of immune evasion. PLoS ONE 12, e0176181 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Shin, D. S. et al. Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov. 7, 188–201 (2017).

    Article  CAS  PubMed  Google Scholar 

  105. Mojic, M., Takeda, K. & Hayakawa, Y. The dark side of IFN-γ: its role in promoting cancer immunoevasion. Int. J. Mol. Sci. 19, 89 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  106. Benci, J. L. et al. Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade. Cell 167, 1540–1554.e12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Romero, J. M. et al. Coordinated downregulation of the antigen presentation machinery and HLA class I/β2-microglobulin complex is responsible for HLA-ABC loss in bladder cancer. Int. J. Cancer 113, 605–610 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Meissner, T. B. et al. NLR family member NLRC5 is a transcriptional regulator of MHC class I genes. Proc. Natl Acad. Sci. USA 107, 13794–13799 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Meissner, T. B., Li, A. & Kobayashi, K. S. NLRC5: a newly discovered MHC class I transactivator (CITA). Microbes Infect. 14, 477–484 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Yoshihama, S. et al. NLRC5/MHC class I transactivator is a target for immune evasion in cancer. Proc. Natl Acad. Sci. USA 113, 5999–6004 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Chew, G.-L. et al. DUX4 suppresses MHC class I to promote cancer immune evasion and resistance to checkpoint blockade. Dev. Cell 50, 658–671.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ye, Q. et al. Hypermethylation of HLA class I gene is associated with HLA class I down-regulation in human gastric cancer. Tissue Antigens 75, 30–39 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Qifeng, S., Bo, C., Xingtao, J., Chuanliang, P. & Xiaogang, Z. Methylation of the promoter of human leukocyte antigen class I in human esophageal squamous cell carcinoma and its histopathological characteristics. J. Thorac. Cardiovasc. Surg. 141, 808–814 (2011).

    Article  PubMed  CAS  Google Scholar 

  114. Burr, M. L. et al. An evolutionarily conserved function of polycomb silences the MHC class I antigen presentation pathway and enables immune evasion in cancer. Cancer Cell 36, 385–401.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ennishi, D. et al. Molecular and genetic characterization of MHC deficiency identifies EZH2 as therapeutic target for enhancing immune recognition. Cancer Discov. 9, 546–563 (2019).

    Article  PubMed  Google Scholar 

  116. Yamamoto, K. et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature 581, 100–105 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zebertavage, L. K., Alice, A., Crittenden, M. R. & Gough, M. J. Transcriptional upregulation of NLRC5 by radiation drives STING- and interferon-independent MHC-I expression on cancer cells and T cell cytotoxicity. Sci. Rep. 10, 7376 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Chang, C.-C. et al. Multiple structural and epigenetic defects in the human leukocyte antigen class I antigen presentation pathway in a recurrent metastatic melanoma following immunotherapy. J. Biol. Chem. 290, 26562–26575 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Aki, M. et al. Interferon-gamma induces different subunit organizations and functional diversity of proteasomes. J. Biochem. 115, 257–269 (1994).

    Article  CAS  PubMed  Google Scholar 

  120. Driscoll, J., Brown, M. G., Finley, D. & Monaco, J. J. MHC-linked LMP gene products specifically alter peptidase activities of the proteasome. Nature 365, 262–264 (1993).

    Article  CAS  PubMed  Google Scholar 

  121. Gaczynska, M., Rock, K. L. & Goldberg, A. L. Gamma-interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes. Nature 365, 264–267 (1993).

    Article  CAS  PubMed  Google Scholar 

  122. Kalaora, S. et al. Immunoproteasome expression is associated with better prognosis and response to checkpoint therapies in melanoma. Nat. Commun. 11, 896 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Chapatte, L. et al. Processing of tumor-associated antigen by the proteasomes of dendritic cells controls in vivo T-cell responses. Cancer Res. 66, 5461–5468 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Chapiro, J. et al. Destructive cleavage of antigenic peptides either by the immunoproteasome or by the standard proteasome results in differential antigen presentation. J. Immunol. 176, 1053–1061 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Morel, S. et al. Processing of some antigens by the standard proteasome but not by the immunoproteasome results in poor presentation by dendritic cells. Immunity 12, 107–117 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. Evnouchidou, I. & van Endert, P. Peptide trimming by endoplasmic reticulum aminopeptidases: role of MHC class I binding and ERAP dimerization. Hum. Immunol. 80, 290–295 (2019).

    Article  CAS  PubMed  Google Scholar 

  127. Chen, L. et al. Critical role of endoplasmic reticulum aminopeptidase 1 in determining the length and sequence of peptides bound and presented by HLA-B27. Arthritis Rheumatol. 66, 284–294 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Nagarajan, N. A. et al. ERAAP shapes the peptidome associated with classical and nonclassical MHC class I molecules. J. Immunol. 197, 1035–1043 (2016).

    Article  CAS  PubMed  Google Scholar 

  129. Reeves, E. & James, E. The role of polymorphic ERAP1 in autoinflammatory disease. Biosci. Rep. 38, BSR20171503 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  130. López de Castro, J. A. How ERAP1 and ERAP2 shape the peptidomes of disease-associated MHC-I proteins. Front. Immunol. 9, 2463 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Stratikos, E., Stamogiannos, A., Zervoudi, E. & Fruci, D. A role for naturally occurring alleles of endoplasmic reticulum aminopeptidases in tumor immunity and cancer pre-disposition. Front. Oncol. 4, 363 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Compagnone, M., Cifaldi, L. & Fruci, D. Regulation of ERAP1 and ERAP2 genes and their disfunction in human cancer. Hum. Immunol. 80, 318–324 (2019).

    Article  CAS  PubMed  Google Scholar 

  133. Fruci, D. et al. Expression of endoplasmic reticulum aminopeptidases in EBV-B cell lines from healthy donors and in leukemia/lymphoma, carcinoma, and melanoma cell lines. J. Immunol. 176, 4869–4879 (2006).

    Article  CAS  PubMed  Google Scholar 

  134. Textor, A. et al. Preventing tumor escape by targeting a post-proteasomal trimming independent epitope. J. Exp. Med. 213, 2333–2348 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Lim, Y. W. et al. Germline genetic polymorphisms influence tumor gene expression and immune cell infiltration. Proc. Natl Acad. Sci. USA 115, E11701–E11710 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. van Deutekom, H. W. M. & Keşmir, C. Zooming into the binding groove of HLA molecules: which positions and which substitutions change peptide binding most? Immunogenetics 67, 425–436 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Illing, P. T. et al. HLA-B57 micropolymorphism defines the sequence and conformational breadth of the immunopeptidome. Nat. Commun. 9, 4693 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Garrido, G. et al. Tumor-targeted silencing of the peptide transporter TAP induces potent antitumor immunity. Nat. Commun. 10, 3773 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Hammer, G. E., Gonzalez, F., James, E., Nolla, H. & Shastri, N. In the absence of aminopeptidase ERAAP, MHC class I molecules present many unstable and highly immunogenic peptides. Nat. Immunol. 8, 101–108 (2007).

    Article  CAS  PubMed  Google Scholar 

  140. James, E., Bailey, I., Sugiyarto, G. & Elliott, T. Induction of protective antitumor immunity through attenuation of ERAAP function. J. Immunol. 190, 5839–5846 (2013).

    Article  CAS  PubMed  Google Scholar 

  141. Keller, M. et al. The proteasome immunosubunits, PA28 and ER-aminopeptidase 1 protect melanoma cells from efficient MART-126-35-specific T-cell recognition. Eur. J. Immunol. 45, 3257–3268 (2015).

    Article  CAS  PubMed  Google Scholar 

  142. Li, L. et al. Cross-dressed CD8α+/CD103+ dendritic cells prime CD8+ T cells following vaccination. Proc. Natl Acad. Sci. USA 109, 12716–12721 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Das Mohapatra, A. et al. Cross-dressing of CD8α+ dendritic cells with antigens from live mouse tumor cells is a major mechanism of cross-priming. Cancer Immunol. Res. 8, 1287–1299 (2020).

    Article  CAS  PubMed  Google Scholar 

  144. Shimasaki, N., Jain, A. & Campana, D. NK cells for cancer immunotherapy. Nat. Rev. Drug Discov. 19, 200–218 (2020).

    Article  CAS  PubMed  Google Scholar 

  145. Bald, T., Krummel, M. F., Smyth, M. J. & Barry, K. C. The NK cell-cancer cycle: advances and new challenges in NK cell-based immunotherapies. Nat. Immunol. 21, 835–847 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Capuano, C. et al. Memory NK cell features exploitable in anticancer immunotherapy. J. Immunol. Res. 2019, 8795673 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Guillerey, C., Huntington, N. D. & Smyth, M. J. Targeting natural killer cells in cancer immunotherapy. Nat. Immunol. 17, 1025–1036 (2016).

    Article  CAS  PubMed  Google Scholar 

  148. Sivori, S. et al. Human NK cells: surface receptors, inhibitory checkpoints, and translational applications. Cell. Mol. Immunol. 16, 430–441 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Dogra, P. et al. Tissue determinants of human NK cell development, function, and residence. Cell 180, 749–763.e13 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Cózar, B. et al. Tumor-infiltrating natural killer cells. Cancer Discov. 11, 34–44 (2021). Comprehensive review of evidence regarding tumour infiltration by NK cells.

    Article  PubMed  Google Scholar 

  151. Larsen, S. K., Gao, Y. & Basse, P. H. NK cells in the tumor microenvironment. Crit. Rev. Oncog. 19, 91–105 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Cursons, J. et al. A gene signature predicting natural killer cell infiltration and improved survival in melanoma patients. Cancer Immunol. Res. 7, 1162–1174 (2019).

    Article  CAS  PubMed  Google Scholar 

  153. Borst, L., van der Burg, S. H. & van Hall, T. The NKG2A–HLA-E axis as a novel checkpoint in the tumor microenvironment. Clin. Cancer Res. 26, 5549–5556 (2020).

    Article  CAS  PubMed  Google Scholar 

  154. Bi, J. & Tian, Z. NK cell exhaustion. Front. Immunol. 8, 760 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. de Kruijf, E. M. et al. HLA-E and HLA-G expression in classical HLA class I-negative tumors is of prognostic value for clinical outcome of early breast cancer patients. J. Immunol. 185, 7452–7459 (2010).

    Article  PubMed  CAS  Google Scholar 

  156. Raneros, A. B., Álvarez, B. S. & Larrea, C. L. Secretory pathways generating immunosuppressive NKG2D ligands: new targets for therapeutic intervention. OncoImmunology 3, e28497 (2014).

    Article  Google Scholar 

  157. Maurer, S. et al. Platelet-mediated shedding of NKG2D ligands impairs NK cell immune-surveillance of tumor cells. OncoImmunology 7, e1364827 (2018).

    Article  PubMed  Google Scholar 

  158. Boudreau, J. E. & Hsu, K. C. Natural killer cell education in human health and disease. Curr. Opin. Immunol. 50, 102–111 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Björklund, A. T. et al. Complete remission with reduction of high-risk clones following haploidentical NK-cell therapy against MDS and AML. Clin. Cancer Res. 24, 1834–1844 (2018).

    Article  PubMed  CAS  Google Scholar 

  160. Chen, Z., Yang, Y., Liu, L. L. & Lundqvist, A. Strategies to augment natural killer (NK) cell activity against solid tumors. Cancers 11, 1040 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  161. Gauthier, L. et al. Multifunctional natural killer cell engagers targeting NKp46 trigger protective tumor immunity. Cell 177, 1701–1713.e16 (2019).

    Article  CAS  PubMed  Google Scholar 

  162. Lin, M. et al. Pembrolizumab plus allogeneic NK cells in advanced non-small cell lung cancer patients. J. Clin. Invest. 130, 2560–2569 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Zhao, X.-Y. et al. Expanded clinical-grade membrane-bound IL-21/4-1BBL NK cell products exhibit activity against acute myeloid leukemia in vivo. Eur. J. Immunol. 50, 1374–1385 (2020).

    Article  CAS  PubMed  Google Scholar 

  164. Rock, K. L., York, I. A., Saric, T. & Goldberg, A. L. Protein degradation and the generation of MHC class I-presented peptides. Adv. Immunol. 80, 1–70 (2002).

    Article  CAS  PubMed  Google Scholar 

  165. Craiu, A., Akopian, T., Goldberg, A. & Rock, K. L. Two distinct proteolytic processes in the generation of a major histocompatibility complex class I-presented peptide. Proc. Natl Acad. Sci. USA 94, 10850–10855 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Wearsch, P. A. & Cresswell, P. The quality control of MHC class I peptide loading. Curr. Opin. Cell Biol. 20, 624–631 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Fisette, O., Wingbermühle, S., Tampé, R. & Schäfer, L. V. Molecular mechanism of peptide editing in the tapasin–MHC I complex. Sci. Rep. 6, 19085 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Thomas, C. & Tampé, R. Proofreading of peptide–MHC complexes through dynamic multivalent interactions. Front. Immunol. 8, 65 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Niu, B. et al. MSIsensor: microsatellite instability detection using paired tumor-normal sequence data. Bioinformatics 30, 1015–1016 (2014).

    Article  CAS  PubMed  Google Scholar 

  170. Chauvin, J.-M. & Zarour, H. M. TIGIT in cancer immunotherapy. J. Immunother. Cancer 8, e000957 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Sanchez-Correa, B. et al. DNAM-1 and the TIGIT/PVRIG/TACTILE axis: novel immune checkpoints for natural killer cell-based cancer immunotherapy. Cancers 11, 877 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  172. Krijgsman, D., Roelands, J., Hendrickx, W., Bedognetti, D. & Kuppen, P. J. K. HLA-G: a new immune checkpoint in cancer. Int. J. Mol. Sci. 21, 4528 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  173. Coulie, P. G., Van den Eynde, B. J., van der Bruggen, P. & Boon, T. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat. Rev. Cancer 14, 135–146 (2014). Review on different types of tumour antigen relevant to cancer immunotherapy.

    Article  CAS  PubMed  Google Scholar 

  174. Chiappinelli, K. B. et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 162, 974–986 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Sheng, W. et al. LSD1 ablation stimulates anti-tumor immunity and enables checkpoint blockade. Cell 174, 549–563.e19 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Smith, C. C. et al. Endogenous retroviral signatures predict immunotherapy response in clear cell renal cell carcinoma. J. Clin. Invest. 128, 4804–4820 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Kong, Y. et al. Transposable element expression in tumors is associated with immune infiltration and increased antigenicity. Nat. Commun. 10, 5228 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Takahashi, Y. et al. Regression of human kidney cancer following allogeneic stem cell transplantation is associated with recognition of an HERV-E antigen by T cells. J. Clin. Invest. 118, 1099–1109 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  180. Capietto, A.-H., Jhunjhunwala, S. & Delamarre, L. Characterizing neoantigens for personalized cancer immunotherapy. Curr. Opin. Immunol. 46, 58–65 (2017).

    Article  CAS  PubMed  Google Scholar 

  181. Vormehr, M., Türeci, Ö. & Sahin, U. Harnessing tumor mutations for truly individualized cancer vaccines. Annu. Rev. Med. 70, 395–407 (2019).

    Article  CAS  PubMed  Google Scholar 

  182. Burchell, J. M., Mungul, A. & Taylor-Papadimitriou, J. O-linked glycosylation in the mammary gland: changes that occur during malignancy. J. Mammary Gland Biol. Neoplasia 6, 355–364 (2001).

    Article  CAS  PubMed  Google Scholar 

  183. Cobbold, M. et al. MHC class I-associated phosphopeptides are the targets of memory-like immunity in leukemia. Sci. Transl Med. 5, 203ra125 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Vlad, A. M., Kettel, J. C., Alajez, N. M., Carlos, C. A. & Finn, O. J. MUC1 immunobiology: from discovery to clinical applications. Adv. Immunol. 82, 249–293 (2004).

    Article  CAS  PubMed  Google Scholar 

  185. Borst, J., Ahrends, T., Bąbała, N., Melief, C. J. M. & Kastenmüller, W. CD4+ T cell help in cancer immunology and immunotherapy. Nat. Rev. Immunol. 18, 635–647 (2018).

    Article  CAS  PubMed  Google Scholar 

  186. Oh, D. Y. et al. Intratumoral CD4+ T cells mediate anti-tumor cytotoxicity in human bladder cancer. Cell 181, 1612–1625.e13 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Seliger, B., Kloor, M. & Ferrone, S. HLA class II antigen-processing pathway in tumors: molecular defects and clinical relevance. Oncoimmunology 6, e1171447 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Axelrod, M. L., Cook, R. S., Johnson, D. B. & Balko, J. M. Biological consequences of MHC-II expression by tumor cells in cancer. Clin. Cancer Res. 25, 2392–2402 (2019).

    Article  CAS  PubMed  Google Scholar 

  189. Reizis, B. Plasmacytoid dendritic cells: development, regulation, and function. Immunity 50, 37–50 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Bosteels, C. et al. Inflammatory type 2 cDCs acquire features of cDC1s and macrophages to orchestrate immunity to respiratory virus infection. Immunity 52, 1039–1056.e9 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Guilliams, M. et al. Unsupervised high-dimensional analysis aligns dendritic cells across tissues and species. Immunity 45, 669–684 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Shortman, K. Dendritic cell development: a personal historical perspective. Mol. Immunol. 119, 64–68 (2020).

    Article  CAS  PubMed  Google Scholar 

  193. Cohn, L. et al. Antigen delivery to early endosomes eliminates the superiority of human blood BDCA3+ dendritic cells at cross presentation. J. Exp. Med. 210, 1049–1063 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Zelenay, S. et al. The dendritic cell receptor DNGR-1 controls endocytic handling of necrotic cell antigens to favor cross-priming of CTLs in virus-infected mice. J. Clin. Invest. 122, 1615–1627 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Theisen, D. J. et al. WDFY4 is required for cross-presentation in response to viral and tumor antigens. Science 362, 694–699 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Bennett, S. R. M. et al. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393, 478–480 (1998).

    Article  CAS  PubMed  Google Scholar 

  197. Schoenberger, S. P., Toes, R. E. M., van der Voort, E. I. H., Offringa, R. & Melief, C. J. M. T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions. Nature 393, 480–483 (1998).

    Article  CAS  PubMed  Google Scholar 

  198. Boegel, S. et al. HLA and proteasome expression body map. BMC Med. Genomics 11, 36 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Morozov, A. V. & Karpov, V. L. Proteasomes and several aspects of their heterogeneity relevant to cancer. Front. Oncol. 9, 761 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Fabre, B. et al. Label-free quantitative proteomics reveals the dynamics of proteasome complexes composition and stoichiometry in a wide range of human cell lines. J. Proteome Res. 13, 3027–3037 (2014).

    Article  CAS  PubMed  Google Scholar 

  201. Guillaume, B. et al. Two abundant proteasome subtypes that uniquely process some antigens presented by HLA class I molecules. Proc. Natl Acad. Sci. USA 107, 18599–18604 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Guillaume, B. et al. Analysis of the processing of seven human tumor antigens by intermediate proteasomes. J. Immunol. 189, 3538–3547 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

L.D. and S.J. contributed equally to the manuscript as a whole. C.H. led the NK cell topic.

Corresponding authors

Correspondence to Suchit Jhunjhunwala or Lélia Delamarre.

Ethics declarations

Competing interests

All the authors are employees of Genentech Inc.

Additional information

Peer review information

Nature Reviews Cancer thanks M. Smyth, S. Spranger and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

cBioportal: https://www.cbioportal.org/

Supplementary information

Glossary

Major histocompatibility complex

(MHC). A locus that encodes several genes involved in antigen presentation and other related immune processes.

Human leukocyte antigen

(HLA). In humans, MHC is also called HLA. HLA-I, or MHC class-I, includes classical HLA-Ia genes (HLA-A, HLA-B and HLA-C) and non-classical HLA-Ib genes. Classical HLA genes present peptides at the cell surface, while non-classical HLA gene products have several other functions including natural killer cell activation or inhibition, and presentation of metabolites, lipids, etc. In this Review, we use HLA-I to refer to the classical genes only. Similarly, HLA-II will be used to refer to classical MHC class-II genes. For most of the discussion, we use the term HLA instead of MHC.

Neoantigens

Mutated peptides presented on the tumour cell surface by HLA. They are specific to tumours, as they arise from somatic mutations, thus distinguishing them from self antigens.

Professional antigen-presenting cells

(pAPCs). Cells that specialize in presenting antigens on MHC molecules to prime and stimulate T cells. These include dendritic cells, macrophages and B cells.

Antigen processing and presentation machinery

(APM). Includes the peptide loading complex and also peptide processing machinery such as the proteasome.

In situ vaccines

The delivery of an innate stimulus to dendritic cells (DCs) at the tumour site. Unlike conventional vaccines, which co-deliver antigens and innate stimulus to DCs to stimulate antitumour T cell immunity, in situ vaccines rely on the antigens released by dying tumour cells as a source of tumour antigens for DCs. Examples of innate stimuli evaluated in the clinic are TLR agonists (TLR7/8 ligands, TLR9 ligands, the TLR3 ligand poly(I:C)), STING agonist and anti-CD40 agonist antibody.

Peptide loading complex

(PLC). Includes the core set of proteins in the endoplasmic reticulum (ER) that mediate peptide transport into the ER and subsequent loading of peptide onto HLA-I. These include TAP1, TAP2, tapasin, ERp57, calnexin, calreticulin, ERAP1, ERAP2, HLA-I and β2m.

Polymorphism at the HLA locus

HLA is the most polymorphic locus in humans, with more than 19,000 alleles documented. HLA-I consists of three genes, and since both alleles of each gene are expressed, up to six different HLA-I proteins or allotypes may be expressed in an individual, with each allotype presenting its own set of peptides. As different HLA-I allotypes may present a distinct set of peptides, the total repertoire of peptides presented by HLA-I (also called the HLA-I ligandome) is highly diverse.

Macroautophagy

A catabolic pathway that degrades cytosolic components including proteins and organelles. Autophagosomes capture these cytosolic materials and fuse with lysosomes to mediate their degradation.

ERAP

ERAP1 and ERAP2 are endoplasmic reticulum-resident aminopeptidases that may trim peptides that bind to HLA-I. ERAP1 and ERAP2 are collectively referred to as ERAP.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jhunjhunwala, S., Hammer, C. & Delamarre, L. Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion. Nat Rev Cancer 21, 298–312 (2021). https://doi.org/10.1038/s41568-021-00339-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-021-00339-z

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer