The proliferation of synthetic data in artificial intelligence for medicine and healthcare raises concerns about the vulnerabilities of the software and the challenges of current policy.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Open challenges and opportunities in federated foundation models towards biomedical healthcare
BioData Mining Open Access 04 January 2025
-
Experts fail to reliably detect AI-generated histological data
Scientific Reports Open Access 19 November 2024
-
Generating and evaluating synthetic data in digital pathology through diffusion models
Scientific Reports Open Access 18 November 2024
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
£14.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
£99.00 per year
only £8.25 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
References
Pencina, M. J., Goldstein, B. A. & D’Agostino, R. B. N. Engl. J. Med. 382, 1583–1586 (2020).
Oxley, T. J. et al. N. Engl. J. Med. 382, e60 (2020).
Trister, A. D. JAMA Oncol. 5, 1429–1430 (2019).
Wang, X. et al. IEEE Trans. Intell. Transp. Syst. 19, 910–920 (2017).
Chesney, B. & Citron, D. Calif. Law Rev. 107, 1753 (2019).
Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) - Discussion Paper and Request for Feedback (FDA, 2019); https://go.nature.com/3zefINL
Benjamens, S., Dhunnoo, P. & Mesko, B. npj Digit. Med. 3, 118 (2020).
Abowd, J. M. & Vilhuber, L. In International Conference on Privacy in Statistical Databases 239–246 (Springer, 2008).
Beaulieu-Jones, B. K. et al. Circ. Cardiovasc. Qual. Outcomes 12, e005122 (2019).
Artificial Intelligence in Healthcare Market Worth $45.2 Billion by 2026 (Markets and Markets, 2020); https://go.nature.com/357P9fA
LeCun, Y., Bengio, Y. & Hinton, G. Nature 521, 436–444 (2015).
Goodfellow, I. et al. In Advances in Neural Information Processing Systems (eds Ghahramani, Z. et al.) 2672–2680 (MIT Press, 2014).
Ghorbani, A., Natarajan, V., Coz, D. & Liu, Y. In Proceedings of the Machine Learning for Health NeurIPS Workshop (eds Dalca, A. V. et al.) 155–170 (PMLR, 2020).
Mahmood, F. et al. IEEE Trans. Med. Imaging 39, 3257–3267 (2019).
Mahmood, F., Chen, R. & Durr, N. J. IEEE Trans. Med. Imaging 37, 2572–2581 (2018).
Teixeira, B. et al. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 9059–9067 (IEEE, 2018).
Waheed, A. et al. IEEE Access 8, 91916–91923 (2020).
Tang, Y., Tang, Y., Zhu, Y., Xiao, J. & Summers, R. M. Med. Image Anal. 67, 101839 (2021).
Costa, P. et al. IEEE Trans. Med. Imaging 37, 781–791 (2017).
Frangi, A. F., Tsaftaris, S. A. & Prince, J. L. IEEE Trans. Med. Imaging 37, 673–679 (2018).
Nie, D. et al. IEEE Trans. Biomed. Eng. 65, 2720–2730 (2018).
Zhou, T., Fu, H., Chen, G., Shen, J. & Shao, L. IEEE Trans. Med. Imaging 39, 2772–2781 (2020).
Karras, T., Aila, T., Laine, S. & Lehtinen, J. In International Conference on Learning Representations (OpenReview.net, 2018).
El Emam, K. & Hoptroff, R. Executive Update: The Synthetic Data Paradigm for Using and Sharing Data (Cutter Consortium, 2019); https://go.nature.com/356Pm2E
Chen, D., Yu, N., Zhang, Y. & Fritz, M. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security 343–362 (ACM, 2020).
Cheng, V., Suriyakumar, V. M., Dullerud, N., Joshi, S. & Ghassemi, M. In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency 149–160 (ACM, 2021).
Xu, C. et al. IEEE Trans. Inform. Foren. Secur. 14, 2358–2371 (2019).
Torkzadehmahani, R., Kairouz, P. & Paten, B. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (IEEE, 2019).
Chang, Q. et al. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 13856–13866 (IEEE, 2020).
Yale, A. et al. Neurocomputing 416, 244–255 (2020).
Jordon, J., Yoon, J. & Van Der Schaar, M. In International Conference on Learning Representations (OpenReview.net, 2018).
Movshovitz-Attias, Y., Kanade, T. & Sheikh, Y. In European Conference on Computer Vision 202–217 (Springer, 2016).
Wan, C. & Jones, D. T. Nat. Mach. Intell. 2, 540–550 (2020).
Bolanos, L. A. et al. Nat. Methods 18, 378–381 (2021).
Padala, S. A. et al. Epidemiology of renal cell carcinoma. World J. Oncol. 11, 79–87 (2020).
Chen, R. et al. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining 2145–2155 (ACM, 2019).
Shapiro, A. et al. Patterns 2, 100188 (2021).
Salimans, T. et al. In Advances in Neural Information Processing Systems (eds Lee, D. D. et al.) (Curran Associates Inc., 2016).
Zhou, S. et al. In International Conference on Learning Representations (OpenReview.net, 2019).
Choi, E. et al. In Machine Learning for Healthcare 286–305 (PMLR, 2017).
Chen, J., Chun, D., Patel, M., Chiang, E. & James, J. BMC Med. Inform. Decis. 19, 1–9 (2019).
Ive, J. et al. npj Digit. Med. 3, 69 (2020).
Tucker, A., Wang, Z., Rotalinti, Y. & Myles, P. npj Digit. Med. 3, 147 (2020).
Zhang, Z., Yan, C., Lasko, T. A., Sun, J. & Malin, B. A. J. Am. Med. Inform. Assoc. 28, 596–604 (2021).
Stupp, C. Fraudsters used AI to mimic CEO’s voice in unusual cybercrime case. The Wall Street Journal https://go.nature.com/3iqKhKi (30 August 2019).
Finlayson, S. G. et al. Science 363, 1287–1289 (2019).
Gafni, O., Wolf, L. & Taigman, Y. In Proceedings of the IEEE/CVF International Conference on Computer Vision 9378–9387 (IEEE, 2019).
Zhu, B., Fang, H., Sui, Y. & Li, L. In Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society 414–420 (ACM, 2020).
Wosik, J. et al. J. Am. Med. Inform. Assoc. 27, 957–962 (2020).
Dick, P. K. How To Build A Universe That Doesn’t Fall Apart Two Days Later: The Shifting Realities of Philip K. Dick: Selected Literary and Philosophical Writings 259–280 (Doubleday, 1978).
Tzachor, A. et al. Nat. Mach. Intell. 2, 365–366 (2020).
Jiang, Y., Chen, H., Loew, M. & Ko, H. IEEE J. Biomed. Health 27, 957–962 (2020).
Wang, L., Chen, J. & Marathe, M. ACM Trans. Spat. Algorithms Syst. 6, 1–39 (2020).
Bao, H., Zhou, X., Zhang, Y., Li, Y. & Xie, Y. In Proceedings of the 28th International Conference on Advances in Geographic Information Systems (eds Lu, C.-T. et al.) 273–282 (ACM, 2020).
Bengio, Y. et al. In International Conference on Learning Representations https://go.nature.com/2SgfhlF (2020).
El Emam, K., Mosquera, L., Jonker, E. & Sood, H. J. J. Am. Med. Inform. Assoc. Open 4, ooab012 (2021).
Off road, but not offline: how simulation helps advance our Waymo Driver. Waymo https://go.nature.com/2TXz0XF (28 April 2020).
Wu, J., Yildirim, I., Lim, J. J., Freeman, B. & Tenenbaum, J. In Proceedings of the First 12 Conferences in Advances in Neural Information Processing Systems (eds Jordan, M. I. et al.) 127–135 (2015).
Varol, G. et al. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 109–117 (IEEE, 2017).
Shrivastava, A. et al. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2107–2116 (IEEE, 2017).
Sankaranarayanan, S., Balaji, Y., Jain, A., Nam Lim, S. & Chellappa, R. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 3752–3761 (IEEE, 2018).
Prakosa, A. et al. IEEE Trans. Med. Imaging 32, 99–109 (2012).
Mahmood, F., Chen, R., Sudarsky, S., Yu, D. & Durr, N. J. Phys. Med. Biol. 63, 185012 (2018).
Incetan, K. et al. Med. Image Anal. 70, 101990 (2021).
Beede, E. et al. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems 1–12 (ACM, 2020).
Johnson-Roberson, M. et al. In Proceedings of the IEEE International Conference on Robotics and Automation 746–753 (IEEE, 2017).
Qiu, W. & Yuille, A. In European Conference on Computer Vision 909–916 (Springer, 2016).
Ramanagopal, M. S., Anderson, C., Vasudevan, R. & Johnson-Roberson, M. IEEE Robot. Autom. Lett. 3, 3860–3867 (2018).
Naeem, M. F., Oh, S. J., Uh, Y., Choi, Y. & Yoo, J. In International Conference on Machine Learning 7176–7185 (PMLR, 2020).
Sajjadi, M. S., Bachem, O., Lucic, M., Bousquet, O. & Gelly, S. Preprint at https://arxiv.org/abs/1806.00035 (2018).
Alaa, A. M., van Breugel, B., Saveliev, E. & van der Schaar, M. In International Conference on Machine Learning (PMLR, 2021); preprint at https://arxiv.org/abs/2102.08921 (2021).
Senior, A. W. et al. Nature 577, 706–710 (2020).
Ogden, P. J., Kelsic, E. D., Sinai, S. & Church, G. M. Science 366, 1139–1143 (2019).
Sheridan, C. Novartis, Sarepta join Dyno’s enterprise to boldly go to new gene therapy frontier. BioWorld https://go.nature.com/3zeAugn (11 May 2020).
Zhavoronkov, A. et al. Nat. Biotechnol. 37, 1038–1040 (2019).
Acknowledgements
This work was supported in part by internal funds from BWH Pathology, a Google Cloud Research Grant, the Nvidia GPU Grant Program and NIGMS R35GM138216 (F.M.). R.J.C. was supported by an NSF Graduate Fellowship. The content is solely the responsibility of the authors and does not reflect the official views of the National Science Foundation or the National Institutes of Health.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Supplementary information
Supplementary Video 1
GAN training for skin-imaging data.
Supplementary Video 2
GAN training for chest-X-ray data.
Supplementary Video 3
GAN training for renal-pathology data.
Supplementary Video 4
Latent-space interpolation for synthetic skin-imaging data.
Supplementary Video 5
Latent-space interpolation for synthetic chest-X-ray data.
Supplementary Video 6
Latent-space interpolation for synthetic renal-pathology data.
Rights and permissions
About this article
Cite this article
Chen, R.J., Lu, M.Y., Chen, T.Y. et al. Synthetic data in machine learning for medicine and healthcare. Nat Biomed Eng 5, 493–497 (2021). https://doi.org/10.1038/s41551-021-00751-8
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41551-021-00751-8